814 research outputs found

    Performance analysis of a threshold-based dynamic TXOP scheme for intra-AC QoS in wireless LANs

    Get PDF
    PublishedJournal ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has been proposed for provisioning of differentiated Quality-of-Service (QoS) between various Access Categories (ACs), i.e., inter-AC QoS, in Wireless Local Area Networks (WLANs). However, the EDCA lacks the support of the intra-AC QoS provisioning, which is indispensable in practical WLANs since the network loads are always asymmetric between traffic flows of ACs with the same priority. To address the intra-AC QoS issue, this paper proposes a Threshold-Based Dynamic Transmission Opportunity (TBD-TXOP) scheme which sets the TXOP limits adaptive to the current status of the transmission queue based on the pre-setting threshold. An analytical model is further developed to evaluate the QoS performance of this scheme in terms of throughput, end-to-end delay, and frame loss probability. NS-2 simulation experiments validate the accuracy of the proposed analytical model. The performance results demonstrate the efficacy of TBD-TXOP for the intra-AC QoS differentiation. © 2013 Elsevier B.V. All rights reserved

    A differentiated Services Architecture for Quality of Service Provisioning in Wireless Local Area Networks

    Get PDF
    Currently the issue of Quality of Service (QoS) is a major problem in IP networks due to the growth in multimedia traffic (e.g. voice and video applications) and therefore many mechanisms like IntServ, DiffServ, etc. have been proposed. Since the IEEE 802.11b (or Wi-Fi) standard was approved in 1999, it has gained in popularity to become the leading Wireless Local Area Network (WLAN) technology with millions of such networks deployed worldwide. Wireless networks have a limited capacity (11 Mbits/s in the case of Wi-Fi networks) owing to the limited amount of frequency spectrum available. At any given time there may be a large number of users contending for access which results in the bandwidth available to each user being severely limited. Moreover, the system does not differentiate between traffic types which means that all traffic, regardless of its importance or priority, experiences the same QoS. An important network application requiring QoS guarantees is the provision of time-bounded services, such as voice over IP and video streaming, where the combination of packet delay, jitter and packet loss will impact on the perceived QoS. Consequently this has led to a large amount of research work focussing mainly on QoS enhancement schemes for the 802.11 MAC mechanism. The Task Group E of the IEEE 802.11 working group has been developing an extension to the Wi-Fi standard that proposes to make changes to the MAC mechanism to support applications with QoS requirements. The 802.11e QoS standard is currently undergoing final revisions before approval expected sometime in 2004. As 802.11e WLAN equipment is not yet available, performance reports can only be based on simulation. The objective of this thesis was to develop a computer simulator that implements the upcoming IEEE 802.11e standard and to use this simulator to evaluate the QoS performance enhancement potential of 802.11e. This thesis discusses the QoS facilities, analyses the MAC protocol enhancements and compares them with the original 802.11 standard. The issue of QoS provisioning is primarily concerned with providing predictable performance guarantees with regard to throughput, packet delay, jitter and packet loss. The simulated results indicate that the proposed QoS enhancements to the MAC will considerably improve QoS performance in 802.11b WLANs. However, in order for the proposed 802.11e QoS mechanism to be effective the 802.11e parameters will need to be continually adjusted in order to ensure QoS guarantees are fulfilled for all traffic loads

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    A Comprehensive Study of the Enhanced Distributed Control Access (EDCA) Function

    Get PDF
    This technical report presents a comprehensive study of the Enhanced Distributed Control Access (EDCA) function defined in IEEE 802.11e. All the three factors are considered. They are: contention window size (CW), arbitration inter-frame space (AIFS), and transmission opportunity limit (TXOP). We first propose a discrete Markov chain model to describe the channel activities governed by EDCA. Then we evaluate the individual as well as joint effects of each factor on the throughput and QoS performance. We obtain several insightful observations showing that judiciously using the EDCA service differentiation mechanism is important to achieve maximum bandwidth utilization and user-specified QoS performance. Guided by our theoretical study, we devise a general QoS framework that provides QoS in an optimal way. The means of realizing the framework in a specific network is yet to be studied

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness
    corecore