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Abstract 
 
 
 
Currently the issue of Quality of Service (QoS) is a major problem in IP networks due 
to the growth in multimedia traffic (e.g. voice and video applications) and therefore 
many mechanisms like IntServ, DiffServ, etc. have been proposed. Since the IEEE 
802.11b (or Wi-Fi) standard was approved in 1999, it has gained in popularity to 
become the leading Wireless Local Area Network (WLAN) technology with millions 
of such networks deployed worldwide. Wireless networks have a limited capacity (11 
Mbit/s in the case of Wi-Fi networks) owing to the limited amount of frequency 
spectrum available. At any given time there may be a large number of users 
contending for access which results in the bandwidth available to each user being 
severely limited. Moreover, the system does not differentiate between traffic types 
which means that all traffic, regardless of its importance or priority, experiences the 
same QoS. An important network application requiring QoS guarantees is the 
provision of time-bounded services, such as voice over IP and video streaming, where 
the combination of packet delay, jitter and packet loss will impact on the perceived 
QoS. Consequently, this has led to a large amount of research work focussing mainly 
on QoS enhancement schemes for the 802.11 MAC mechanism. The Task Group E of 
the IEEE 802.11 working group has been developing an extension to the Wi-Fi 
standard that proposes to make changes to the MAC mechanism to support 
applications with QoS requirements. The 802.11e QoS standard is currently 
undergoing final revisions before approval expected sometime in 2004. As 802.11e 
WLAN equipment is not yet available, performance reports can only be based upon 
simulation. The objective of this thesis was to develop a computer simulator that 
implements the upcoming IEEE 802.11e standard and to use this simulator to evaluate 
the QoS performance enhancement potential of 802.11e. This thesis discusses the 
QoS facilities, analyses the MAC protocol enhancements and compares them with the 
original 802.11 standard. The issue of QoS provisioning is primarily concerned with 
providing predictable performance guarantees with regard to throughput, packet 
delay, jitter and packet loss. The simulated results indicate that the proposed QoS 
enhancements to the MAC will considerably improve QoS performance in 802.11b 
WLANs. However, in order for the proposed 802.11e QoS mechanism to be effective, 
the 802.11e parameters will need to be continually adjusted in order to ensure QoS 
guarantees are fulfilled for all traffic loads. 
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Chapter 1 
 
 

Introduction 
 
 
 
The past few years have seen an explosion in the deployment of wireless networks 

due to their ease of installation and flexibility. The IEEE 802.11b WLANs are one of 

the most widely deployed wireless technologies and are likely to play a major role in 

multimedia home networks and next-generation wireless communications. The main 

characteristics of the IEEE 802.11b WLAN are its simplicity, scalability, robustness, 

reliability and cost effectiveness. The initial growth in WLAN deployment has been 

in enterprise networks as a supplement to traditional wired LANs. More recently, 

WLANs have seen enormous growth in home deployments. As WLANs become more 

widespread and begin to replace traditional wired Ethernet in many installations, it is 

natural that people expect them to support the same applications. However the 

wireless medium has fundamentally different characteristics from a wired medium 

and previous research work shows that what works well in a wired network cannot be 

directly applied in a wireless network. Indeed QoS issues in wired Ethernet (e.g. 

802.3) have been neglected due to the relative ease with which the physical layer 

bandwidth has improved (1Gbit/s is now a common link speed between switches in 

enterprise LANs). In wireless environments, bandwidth is scarce and channel 

conditions are time varying and sometimes highly lossy which makes physical layer 

data rate improvements more difficult to achieve. 

 

 



Chapter 1 Introduction 
 

 
2 

Indeed wireless networks have a limited capacity (11 Mbit/s in the case of Wi-Fi 

networks) owing to the limited amount of frequency spectrum available. At any given 

time there may be a large number of users contending for access which results in the 

bandwidth available to each user being severely limited. While the original IEEE 

802.11 DCF (Distributed Coordination Function) channel access function may 

provide satisfactory performance in delivering best-effort traffic, it does not have any 

provision to support QoS, i.e. all data traffic is treated in a best-effort manner. An 

important network application requiring QoS guarantees is the provision of time-

bounded services, such as Voice over IP (VoIP) and video streaming which a require 

specified bandwidth allocation and where the combination of packet delay, jitter and 

packet loss will impact on the perceived QoS. Moreover in DCF operation, all stations 

contend for the wireless medium with the same priority. There is no differentiation 

between traffic types to support traffic with QoS requirements therefore all traffic, 

regardless of its importance or priority, experiences the same QoS. 

 

Consequently these issues have led to a large amount of research work focussing 

mainly on QoS enhancement schemes for the 802.11 MAC mechanism 

[2][3][4][5][6]. At the same time Task Group E of the IEEE 802.11 working group 

has been developing an extension to the Wi-Fi standard, known as IEEE 802.11e [7], 

that proposes to make changes to the MAC mechanism to support applications with 

QoS requirements. The QoS facility includes an additional coordination function 

called the Hybrid Coordination Function (HCF) that is used to support parameterized 

IntServ QoS services. The HCF uses both a contention-based channel access function, 

called the Enhanced Distributed Channel Access (EDCA) mechanism for contention-

based access and HCF Controlled Channel Access (HCCA) based on a polling 

mechanism for contention-free access. HCF combines and enhances aspects of the 

contention-based and contention-free access methods to provide QoS stations with 

prioritized DiffServ and parameterized IntServ QoS access to the wireless medium, 

while continuing to support non-QoS stations for best-effort data transfer. The HCF is 

compatible with the Distributed Coordination Function (DCF) and may also 

optionally contain the Point Coordination Function (PCF). 
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As with the original 802.11 MAC, the 802.11e enhancements are designed to work 

with all possible 802.11 physical layers, the original 802.11, 802.11b, 802.11a and 

802.11g. The 802.11 WLAN standards operates in the unlicensed 2.4 GHz and 5 GHz 

Industrial, Scientific and Medical (ISM) bands. The 802.11b PHY amendment is an 

extension to the original 802.11 Direct-Sequence Spread Spectrum (DSSS) PHY and 

supports up to 11 Mbit/s data rate and is currently the most widely deployed WLAN 

technology. Another PHY amendment, 802.11a, supports up to 54 Mbit/s using 

Orthogonal Frequency-Division Multiplexing (OFDM) modulation techniques and 

operates in the 5 GHz band. Although 802.11a supports higher data rates, it is not as 

widely deployed yet, as it is a later standard than 802.11b and uses the 5 GHz band 

which has different availability worldwide. A new PHY amendment, 802.11g has just 

been ratified which achieves significantly higher data rates than 802.11b in the 2.4 

GHz band using OFDM modulation. It also seems to be more robust than 802.11a, 

mainly due to better propagation characteristics in the 2.4 GHz band [8]. 

 

The proposed 802.11e QoS standard is currently undergoing final revisions by the 

IEEE for approval sometime in 2004 with equipment becoming available around the 

same time. As 802.11e WLAN equipment is not yet available, performance studies 

can only be based upon simulation. Consequently we propose a computer simulation 

model that faithfully implements the latest draft of the 802.11e standard [7]. The 

simulator was developed in C/C++ and essentially implements the 802.11e MAC 

mechanism. We simulated the contention-based channel access EDCA mechanism 

only and have implemented FIFO buffers in every station which allow us to calculate 

throughput, packet delay, jitter and packet loss which are important statistics when 

measuring and monitoring the level of QoS experienced by stations. The simulator 

was tested using performance results from published papers on the 802.11e standard 

to ensure correct implementation of the standard by the simulator. After being 

completely satisfied with the correct operation of the simulator, traffic engineering 

tests were carried out with regard to throughput and packet loss. The objective here 

was to identify the effects of varying the 802.11e parameters on performance. From 

the range of tuneable parameters that 802.11e offers, we have identified the two most 

important parameters for QoS provisioning, namely the Arbitration Inter Frame 

Spacing (AIFS) which is the minimum time interval between the wireless medium 

becoming idle and the start of transmission of a frame and the size of the Contention 
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Window (CW) from which a random number is drawn as part of the access 

mechanism. As a result of these tests a good understanding of the effects of these two 

parameters on performance was achieved. 

 

By combining the effects of these two 802.11e parameters on QoS provisioning we 

have devised a set of design rules for establishing a class-based differentiated service 

QoS scheme comprising three QoS classes (e.g. a Gold class, a Silver class and a 

Bronze class of service). We show how AIFS may be used to set the class boundaries 

while CWmin is used to differentiate between stations within a class. The set of design 

rules ensures that at all times all stations belonging to a higher priority class 

(irrespective of the number of stations, traffic types, network load conditions, etc.) 

should always experience a better service than stations belonging to lower priority 

classes. We use a worked example to illustrate how these design rules might be 

applied. 

 

This class-based differentiated service QoS scheme could be usefully applied to a real 

world scenario, e.g. a hotspot service where the operator could offer its customers 

different levels of services, i.e. Gold, Silver and Bronze. A customer who pays a 

premium for the Gold service will have the highest priority in terms of receiving 

service over the other customers using lower (and usually cheaper) services. 

 

An additional consideration in any such QoS scheme is that it is traffic load dependent 

which suggests that if the 802.11e mechanism is to be successfully deployed in a 

WLAN network (e.g. hotspot scenario) the 802.11e parameters will have to be 

continually updated to meet the changing load. 

 

Despite these problems, we find the proposed 802.11e QoS standard (at least in the 

case of the EDCA mechanism) attractive because of its simplicity and its ability to 

provide QoS differentiation which is an important improvement over legacy DCF. 
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The thesis is organised as follow: 

 

Chapter 2 describes the IEEE 802.11b and 802.11e standards in detail, identifies the 

important metrics to be investigated and outlines the simulation environment that we 

have used to simulate the EDCA mechanism. 

 

Chapter 3 gives an overview of different QoS enhancement schemes that have been 

investigated. It introduces a useful and intuitive description of the MAC operation 

based upon the concept of MAC bandwidth components. 

 

Chapter 4 describes the C/C++ computer simulator of the 802.11e MAC mechanism 

that forms the basis for this work. 

 

Chapter 5 describes the simulations setup and presents the results of the simulations. 

Also a set of design guidelines are proposed for setting up a class-based differentiated 

service QoS scheme. 

 

Chapter 6 presents a summary of the main findings and conclusions arising from the 

work. It also suggests areas of further research. 
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Chapter 2 
 
 

Background 
 
 
 
2.1 IEEE 802.11 Standard 
 

The Institute of Electrical and Electronics Engineers (IEEE) ratified the original 

802.11 specification in 1997 as the standard for wireless LANs [1]. This original 

version of 802.11 provides for 1 Mbit/s mandatory and 2 Mbit/s optional data rates 

and a set of fundamental signalling methods and other services. The most critical 

issue affecting WLAN demand has been limited throughput. The data rates supported 

by the original 802.11 standard were too slow to support most general business 

requirements. Recognising the critical need to support higher data transmission rates, 

the IEEE ratified in 1999 the 802.11b PHY extension to the standard for rates of up to 

11 Mbit/s. 
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2.1.1 Protocol Stack 

 

The 802.11 standard focuses on the bottom two levels of the ISO model. 

 

 
 

Figure 2.1 IEEE 802.11 Layers Description 
 

The original 802.11 standard defines the basic architecture, features and services of 

802.11b. The 802.11b specification affects only the physical layer (PHY), adding 

higher data rates and more robust connectivity. 

 

2.1.2 802.11 Architecture 

 

802.11 defines two pieces of equipment: A wireless station (STA) which is usually a 

PC equipped with a wireless network interface card and an Access Point (AP) which 

acts as a bridge between the wireless and wired networks. 

 

An 802.11 WLAN is based on a cellular architecture where the system is subdivided 

into cells. Each cell is controlled by an AP which acts as the base station for the 

wireless network, aggregating access for multiple wireless STAs onto the wired 

network. 

 

The 802.11 standard defines two modes: An infrastructure mode and ad-hoc mode. In 

infrastructure mode, the wireless network consists of at least one AP connected to the 

wired network called Distribution System (DS) and a set of wireless STAs. This 

configuration is called a Basic Service Set (BSS). An Extended Service Set (ESS) is a 

set of two or more BSSs forming a single subnet network. 
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Figure 2.2 A Typical 802.11 WLAN 
 

Ad hoc mode, also called peer-to-peer mode or an Independent Basic Service Set 

(IBSS) is simply a set of 802.11 wireless STAs that communicate directly with one 

another without using an AP or any connection to a wired network. 

 

2.1.3 802.11 Physical Layer 

 

The 802.11 physical layer includes two spread-spectrum radio techniques and a 

diffused infrared specification. The radio-based standards operate within the 2.4 GHz 

ISM band. These frequency bands are recognised by international regulatory agencies, 

such as the FCC (USA) and ETSI (Europe). 

 

The 802.11 wireless standard defines data rates of 1 Mbit/s and 2 Mbit/s via radio 

waves using Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence Spread 

Spectrum (DSSS). It is important to note that FHSS and DSSS are fundamentally 

different signalling mechanisms and will not interoperate with one another. 

 

Using the frequency hopping technique, the 2.4 GHz band is divided into 75 sub 

channels each of which is 1 MHz wide. The sender and receiver agree on a hopping 

pattern and data is sent over a sequence of the sub channels. Each conversation within 

the 802.11 network occurs over a different hopping pattern and the patterns are 
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designed to minimize the chance of two senders using the same sub channel 

simultaneously. 

 

In contrast, the direct sequence signalling technique divides the 2.4 GHz band into 14 

channels each of which is 22 MHz wide. Adjacent channels overlap one another 

partially, with three of the 14 being completely non-overlapping. Data is sent across 

one of these 22 MHz channels without hopping to other channels. To compensate for 

noise on a given channel, a technique called "chipping" is used. This technique 

specifies an 11-bit chipping sequence called a "Barker sequence" to encode all data 

sent over the air. 

 

Each 11-bit chipping sequence represents a single data bit and is converted to a 

waveform, called a symbol, that can be sent over the air. These symbols are 

transmitted at a 1 Msps (1 Million symbols per second) rate using a technique called 

Binary Phase Shift Keying (BPSK). In the case of 2 Mbit/s, a more sophisticated 

implementation called Quadrature Phase Shift Keying (QPSK) is used which doubles 

the data rate available in BPSK via improved efficiency in the use of the radio 

bandwidth. 

 

2.1.4 802.11b Physical Layer 

 

The 802.11b standard was developed in order to enable the physical layer to support 

two new speeds, 5.5 Mbit/s and 11 Mbit/s. To achieve this, DSSS had to be selected 

as the sole physical layer technique since FHSS cannot support higher speeds without 

violating the current FCC regulations. The implication is that 802.11b systems can 

only interoperate with 1 Mbit/s and 2 Mbit/s 802.11 DSSS systems and cannot work 

with the 1 Mbit/s and 2 Mbit/s 802.11 FHSS system. 

 

To increase the data rate in the 802.11b standard, advanced coding techniques are 

employed. Rather than the two 11-bit Barker sequences, 802.11b specifies 

Complementary Code Keying (CCK) which consists of a set of 64 8-bit code words. 

The 5.5 Mbit/s rate employs CCK to encode 4 bits per carrier while the 11 Mbit/s rate 
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encodes 8 bits per carrier. Both speeds use QPSK as the modulation technique and 

signal at 1.375 Mbit/s. 

2.1.5 802.11 Data Link Layer 

 

The data link layer consists of two sub-layers: Logical Link Control (LLC) and 

Medium Access Control (MAC). 802.11 operates the same as 802.2 LLC and uses 48-

bit addressing as other 802 LANs, this allowing for simple bridging from wireless to 

wired networks. 

 

2.1.6 MAC Layer 

 

The MAC layer defines two channel access functions, the Distributed Coordination 

Function (DCF) and the Point Coordination Function (PCF). 

The transmission medium can operate both in contention mode (DCF) and contention-

free mode (PCF). The IEEE 802.11 MAC protocol provides two types of 

transmission: Asynchronous and synchronous. Asynchronous data transfer refers to 

traffic that is relatively insensitive to time delay (e.g. electronic mail and file 

transfers) and synchronous data transfer refers to traffic that is bounded by specified 

time delays to achieve an acceptable QoS, e.g. packetised voice and video streaming. 

The asynchronous type of transmission is provided by DCF which implements the 

basic access method of the 802.11 MAC protocol. DCF is based on the Carrier Sense 

Multiple Access with Collision Avoidance (CSMA/CA) protocol and should be 

implemented in all the STAs. The synchronous service (also called contention-free 

service) is provided by PCF which basically implements a polling-based access 

method. The PCF uses a centralized polling approach which requires an Access Point 

(AP) that acts as a Point Coordinator (PC). The AP cyclically polls STAs to give them 

the opportunity to transmit the packets. Unlike the DCF, the implementation of the 

PCF is not mandatory. Furthermore, the PCF itself relies on the asynchronous service 

provided by the DCF. 
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2.1.7 Distributed Coordination Function (DCF) 

 

The 802.11 MAC is similar in concept to 802.3, in that it is designed to support 

multiple users on a shared medium by having the sender sense the medium before 

accessing it. For 802.3 Ethernet LANs, the Carrier Sense Multiple Access with 

Collision Detection (CSMA/CD) protocol regulates how Ethernet STAs establish 

access to the wired medium and how they detect and handle collisions that occur 

when two or more devices try to simultaneously communicate over the LAN. In an 

802.11 WLAN, collision detection is not possible, because a STA is unable to listen 

to the channel for collisions while transmitting. So 802.11 is a slightly modified 

protocol known as Carrier Sense Multiple Access with Collision Avoidance 

(CSMA/CA) or DCF. CSMA/CA attempts to avoid collisions by using explicit packet 

acknowledgement (ACK) meaning an ACK packet is sent by the receiving STA to 

confirm that the data packet arrived intact. 

 

Priority access to the wireless medium is controlled through the use of Inter Frame 

Space (IFS) time intervals between the transmissions of frames. The IFS intervals are 

mandatory periods of idle time on the transmission medium. Three IFS intervals are 

specified: Short IFS (SIFS), PCF-IFS (PIFS) and DCF-IFS (DIFS). The SIFS interval 

is the smallest IFS, followed by PIFS and DIFS respectively. STAs only required to 

transmit a SIFS have priority access over those STAs required to wait a PIFS or DIFS 

interval before transmitting. 

 

 
 

Figure 2.3 IFS Relationships of IEEE 802.11 
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2.1.7.1 Basic Access Method: CSMA/CA 

 

DCF is a distributed medium access scheme. In this mode, a STA must sense the 

medium before initiating a packet transmission. If the medium is found idle for a time 

interval longer than Distributed Inter Frame Space (DIFS), then the STA can transmit 

the packet directly. Otherwise, the transmission is deferred and the backoff process is 

started (see Figure 2.4). Specifically, the STA computes a random time interval called 

Backoff Counter (BC), uniformly distributed between zero and the current Contention 

Window size (CW): 

 

BC = rand[0, CW]      (equation 2.1) 

where: 

CWmin < CW < CWmax 

 

The BC is decreased only when the medium is idle, whereas it is frozen when another 

STA is transmitting. Each time the medium becomes idle, the STA waits for a DIFS 

and then continuously decrements the BC after every time slot. As soon as the BC 

reaches zero the STA is authorised to access the medium. Obviously, a collision 

occurs if two or more STAs start transmission simultaneously. The transmission of 

the ACK is initiated after a time interval equal to the SIFS after the end of the 

reception of the previous frame. Since the SIFS is smaller than the DIFS, the 

receiving STA does not need to sense the medium before transmitting an ACK. If the 

ACK is not received, the sender assumes that the transmitted frame was lost and 

schedules a retransmission and then enters the backoff process again. To reduce the 

probability of collisions, after each unsuccessful transmission attempt, the size of the 

contention window is doubled until a predefined maximum value CWmax is reached. 

To improve the channel utilization, after each successful transmission, the contention 

window is reset to a fixed minimum value CWmin. 
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Figure 2.4 Basic DCF CSMA/CA Mechanism 
 

In IEEE 802.11, carrier sensing is performed at both the air interface, referred to as 

physical carrier sensing and at the MAC sublayer, referred to as virtual carrier 

sensing. Physical carrier sensing detects the presence of other IEEE 802.11 WLAN 

users by analysing all detected packets and also detects activity in the channel via 

relative signal strength from other sources. virtual carrier sensing is described as 

follows. 

 

2.1.7.2 Virtual Carrier Sense 

 

A STA waiting to transmit a packet first transmits a short control packet called RTS 

(Request To Send) which includes the source, destination and the duration of the 

following transmission (i.e. the packet and the respective ACK). The destination STA 

then responds with a response control packet called CTS (Clear To Send) which 

includes the frame duration information. 

 

All STAs receiving either the RTS and/or the CTS, set their virtual carrier sense 

indicator called NAV (Network Allocation Vector), for the given duration and use 

this information together with the physical carrier sense when sensing the medium. 

This mechanism also helps to combat the "hidden STA" problem, in which two STAs 

on opposite sides of an AP cannot hear activity from each other, usually due to 

distance or an obstruction. This helps in that it reduces the probability of a collision 
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on the receiver that is caused by a "hidden STA" which can not "hear" the RTS from 

the transmitter but can "hear" the CTS and reserves the medium as busy until the end 

of the transmission. Conversely the RTS protects the transmitter area from collisions 

during the ACK from STAs that are out of range of the acknowledging STA. 

 

 
 

Figure 2.5 RTS/CTS Access Scheme 
 

Since the RTS and CTS are short frames, the mechanism also reduces the overhead of 

collisions, since these are recognised faster then if the whole packet was to be 

transmitted. This is true if the packet is significantly larger than the RTS. However for 

small packet sizes, an additional delay is imposed by the overhead of the RTS/CTS 

frames, so the standard allows for short packets to be transmitted without the 

RTS/CTS transaction. This is controlled by a parameter called the RTS threshold. The 

decision to use the RTS/CTS is determined by the size of the packet to be transmitted, 

where the RTS threshold parameter sets the minimum packet size for invoking the 

RTS/CTS mechanism. 

 



Chapter 2 Background 
 

 
15 

2.1.8 Point Coordination Function (PCF) 

 

PCF is an optional channel access function in the 802.11 MAC specification which 

was intended to support time-bounded services such as voice and video. However, the 

PCF channel access function has never been implemented by any manufacturers of 

WLAN equipment. Unlike the DCF mode where control is distributed across all 

STAs, in the PCF mode a Point Coordinator (PC) collocated with an Access Point 

(AP) controls access to the media. If a BSS is set up with PCF-enabled, the two access 

functions (DCF and PCF) alternate, with a Contention-Free Period (CFP) followed by 

a Contention Period (CP) (see Figure 2.6). During the PCF mode, the PC maintains a 

list of registered STAs and polls each STA one by one according to the list. No STA 

is allowed to transmit unless it is polled and STAs receive data from the AP only 

when they are polled. Since PCF gives every STA in turn an opportunity to transmit 

in a predetermined order, a maximum latency is bounded. However, PCF is not 

scalable. A single AP dominates and controls medium access and it must poll all the 

STAs which can be ineffective in large networks. Moreover, all the traffic must go 

through the AP which wastes much bandwidth. The PCF is defined as an optional 

capability which needs a PC to initiate and control the CFP. The PC first senses the 

channel for a PIFS interval (PCF Inter Frame Space) and then starts a CFP by 

broadcasting a beacon signal. Note that PIFS is shorter than DIFS which allows the 

AP to gain control from the DCF mode and no DCF STAs are able to interrupt the 

operation of PCF mode. All STAs add CFPmaxduration (the maximum possible 

duration of the contention-free period) to their own NAVs which prevents them from 

taking control of the medium during CFP. Then, active users with time-bounded 

packet streams are periodically polled by the PC. The PC can terminate the CFP at 

any time by transmitting a CF-end packet which occurs frequently when the network 

is lightly loaded. When a terminal's turn in the polling list comes, the PC sends a 

buffered data packet to it, piggybacked with a CF-Poll or an ACK for the previous 

transmission. The receiver sends back an ACK or any buffered data, piggybacked 

with an ACK after a SIFS interval. Indeed, piggybacking can improve the channel 

utilisation greatly in PCF mode. Normally PCF would use a round-robin polling 

algorithm, where each STA is polled sequentially in the order in which it is placed in 

the polling list, although the 802.11 standard does not actually mandate the polling 
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schedule. Priority-based polling mechanisms can also be used if different QoS levels 

are requested by different polled STAs. STAs which are repeatedly idle are removed 

from the poll cycle after several idle periods and polled again at the beginning of the 

next CFP. 

 

 

 

Figure 2.6 PCF and DCF Cycles 
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2.2 QoS Limitations of the 802.11 MAC 

 

The wireless medium has fundamentally different characteristics from a wired 

medium and previous research work shows that what works well in a wired network 

cannot be directly applied in a wireless network. Indeed QoS issues in wired Ethernet 

(e.g. 802.3) have been neglected due to the relative ease with which the physical layer 

bandwidth has improved (1Gbit/s is now a common link speed between switches in 

enterprise LANs). On the other hand wireless networks have a limited capacity, (i.e. 

11 Mbit/s in the case of Wi-Fi networks) owing to the limited amount of frequency 

spectrum available. At any given time there may be a large number of users 

contending for access which results in the bandwidth available to each user being 

severely limited. 

 

While DCF may provide satisfactory performance in delivering best-effort traffic, it 

does not have any provision to support QoS, i.e. all data traffic is treated in a best-

effort manner. Typically, time-bounded services such as VoIP and video streaming 

require stringent bandwidth, delay and jitter bounds, but are more tolerant of packet 

loss. Moreover in DCF, all STAs contend for the wireless medium with the same 

priority. So there is no differentiation between traffic types to support traffic with QoS 

requirements and therefore all traffic, regardless of its importance or priority, 

experiences the same QoS. 

 

Although PCF has been designed to support time-bounded traffic, this mode presents 

many problems which leads to poor QoS performance: 

• The inefficient and complex central polling scheme of PCF deteriorates the 

performance of high-priority traffic when the traffic load increases. 

• The incompatible cooperation between CP and CFP modes leads to unpredictable 

delays in beacon resulting in significantly shortened CFP. 

• The unknown transmission duration of a polled STA makes it difficult for the PC 

to predict and control the polling schedule for the remainder of the CFP. 
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These QoS issues for both DCF and PCF have led to a large amount of research work 

focussing mainly on QoS enhancement schemes for the 802.11 MAC mechanism 

[2][3][4][5][6]. At the same time Task Group E of the IEEE 802.11 working group 

has been developing an extension to the IEEE 802.11 standard, known as IEEE 

802.11e [7], that proposes to make changes to the MAC mechanism to support 

applications with QoS requirements. The 802.11e standard is currently undergoing 

final revisions by the IEEE for approval sometime in 2004. It introduces the concept 

of Hybrid Coordination Function (HCF) for the MAC mechanism. HCF is backward 

compatible with DCF and PCF and at the same time it provides QoS STAs with 

prioritized DiffServ and parameterized IntServ QoS access to the wireless medium. 

HCF has two modes of operation: Enhanced Distributed Channel Access (EDCA) 

which is a contention-based channel access function and HCF Controlled Channel 

Access (HCCA) based on a polling mechanism which is controlled by the Hybrid 

Coordinator (HC). 
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2.3 IEEE 802.11e QoS Standard 

 

The IEEE 802.11e QoS facility provides MAC enhancements to the original 802.11 

MAC so as to support applications with QoS requirements. The QoS enhancements 

are available to QoS STAs (QSTAs) associated with a QoS AP (QAP) in a QoS BSS 

(QBSS). Because a QSTA implements a superset of STA functionality as defined in 

the 1999 edition of IEEE 802.11, the QSTA may associate with a non-QoS AP 

(nQAP) in a non-QoS BSS (nQBSS), to provide non-QoS MAC data service in cases 

where there is no QBSS to associate with. The enhancements distinguish QSTAs from 

non-QoS STAs (nQSTAs) and QAPs from nQAPs. These features are collectively 

termed "QoS facility". 

 

There are two main functional blocks defined in 802.11e. These are the channel 

access functions (i.e. EDCA and HCCA) and Traffic Specification (TSPEC) 

management. TSPEC management provides the link between the Channel Access 

Functions and higher layer QoS protocols such as IntServ or DiffServ. A traffic 

specification describes the QoS characteristics (i.e. data rate, packet size, delay and 

service interval) of a Traffic Stream (TS) (i.e. a set of MSDUs to be delivered subject 

to a set of QoS parameters) created by negotiation between a non-AP QSTA and an 

HC. 
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2.3.1 MAC Architecture 

 

The MAC architecture can be described as providing PCF and HCF through the 

services of the DCF. 

 

 
 

Figure 2.7 MAC Architecture 
 

2.3.2 Hybrid Coordination Function (HCF) 

 

The QoS facility includes an additional coordination function called HCF that is used 

to support parameterized IntServ QoS services. The HCF shall be implemented in all 

QSTAs. The HCF uses both a contention-based channel access function, called the 

Enhanced Distributed Channel Access (EDCA) mechanism for contention-based 

access and HCF Controlled Channel Access (HCCA) based on a polling mechanism 

for contention-free access. HCF combines and enhances aspects of the contention-

based and contention-free access methods to provide QSTAs with prioritized DiffServ 

and parameterized IntServ QoS access to the wireless medium, while continuing to 

support nQSTAs for best-effort data transfer. The HCF is compatible with DCF and 

may also optionally contain PCF. 

 

The basic concept of these channel access functions is the Transmission Opportunity 

(TXOP). A TXOP is an interval of time when a particular QSTA has the right to 
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initiate a frame exchange sequence on the wireless medium. A TXOP is defined by a 

starting time and a maximum duration. QSTAs may obtain TXOPs using one or both 

of the channel access mechanisms. If a TXOP is obtained using the contention-based 

channel access, it is called an EDCA-TXOP. If a TXOP is obtained using the 

controlled channel access, it is called a polled TXOP. 

 

EDCA is used only during CP, while HCCA can theoretically operate during both 

CFP and CP. 

 

 
 

Figure 2.8 Relationship between Channel Access Mechanisms 
 

The original standard mandated ACKs for successfully received frames. In 802.11e 

MAC-level ACK has become optional. This means when the "No ACK" policy is 

used, the MAC would not send an ACK when it has correctly received a frame. This 

also means the reliability of "No ACK" traffic is reduced, but it improves the overall 

MAC efficiency for time-sensitive traffic, such as VoIP. The "No ACK" option also 

introduces more stringent real-time constraints because if an ACK is not expected, 

then the next frame for transmission has to be ready within SIFS time from the end of 

the last transmission. 
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2.3.3 HCF Contention-based Channel Access (EDCA) 

 

EDCA enhances aspects of the original DCF contention-based methods to provide 

QSTAs with prioritized QoS access to the wireless medium for 8 priorities. EDCA 

channel access defines the Access Category (AC) mechanism that provides support 

for the priorities at the QSTAs. Each QSTA may have up to 4 ACs to support 8 User 

Priorities (UPs). One or more UPs are assigned to one AC. A QSTA accesses the 

medium based on the access category of the frame that is to be transmitted. The 

mapping from priorities to access categories is defined in the following table. 

 

 
 

Table 2.1 User Priority to Access Category Mappings 
 

Each AC has its own transmit queue and its own set of EDCA parameters used by the 

channel access function to control its operation. The differentiation in priority 

between ACs is realised by setting different values of EDCA parameters: 
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• EDCA uses the Contention Window (CW) size to change the priority of each AC. 

Indeed the CW limits (CWmin and CWmax) from which the random backoff is 

computed are not fixed as with DCF, but are instead variable. Assigning a small 

CWmin and CWmax to a high AC ensures that in most cases, the high-priority AC 

will be able to transmit ahead of low-priority ACs. 

 

• For further differentiation the minimum specified idle duration time before trying 

to access the medium or starting to decrement the backoff timer is not the constant 

value DIFS as defined for DCF, but is instead a distinct value called Arbitration 

Inter Frame Spacing (AIFS) which equals a DIFS plus a number of time slots 

(which may be zero). This means that an AC using a large AIFS (i.e. many extra 

time slots) will have lower priority than an AC using a small AIFS, since they will 

have to wait longer on average before trying to access the medium or starting to 

decrement the backoff timer. 

 

 
 

Figure 2.9 IFS Relationships of IEEE 802.11e 
 

When a new MSDU (MAC Service Data Unit) arrives at the MAC, EDCA first 

classifies it with the appropriate AC (i.e. the UP value associated with the MSDU is 

mapped onto an AC) and then buffers it into the appropriate AC transmit queue. Then 

MSDUs from different ACs contend for EDCA-TXOP internally within the QSTA. 

Collisions between contending MSDUs within a QSTA are resolved within the QSTA 

such that the MSDU from the high-priority AC receives the TXOP and the MSDU 

from the lower-priority colliding ACs behave as if there was an external collision on 

the wireless medium. However, this collision behaviour does not include setting retry 
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bits in the MAC headers of MPDUs, as this would be done after a transmission 

attempt that was unsuccessful due to an actual external collision on the wireless 

medium. 

 
 

Figure 2.10 EDCA Implementation Model 
 

The winning AC would then contend externally for the wireless medium. 

 

 
 

Figure 2.11 Example Implementation of the External Contention 
 

AIFS is a duration derived from the Arbitration Inter Frame Spacing Number 

(AIFSN) by the relation: 

 

AIFS = AIFSN × Slot Time + SIFS    (equation 2.2) 

 

AIFSN indicates the number of slots times following a SIFS duration a QSTA should 

defer before either invoking a backoff or starting a transmission. The minimum value 

for AIFSN is 2. 
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During an EDCA-TXOP won by an AC, a QSTA may initiate multiple frame 

exchange sequences (i.e. packet bursting) to enhance the performance and achieve 

better medium utilization. The QSTA is allowed to send as many frames it wishes as 

long as the total access time (i.e. EDCA-TXOP) does not exceed the value of the 

TXOP limit parameter. A value of 0 means that the EDCA-TXOP is limited to a 

single MSDU. To ensure that no other QSTA interrupts the packet burst, the 

interframe space used between the reception of an ACK and the transmission of the 

next data frame is a SIFS. If a collision occurs (no ACK frame is received), the packet 

burst is terminated. Since packet bursting might increase the jitter, it is recommended 

that TXOP Limit is chosen such that it is not longer than the time required for the 

transmission of a data frame of maximum size. 

 

With proper tuning of AC parameters, traffic performance from different ACs can be 

optimized as well as achieving prioritization of traffic. This requires a central 

coordinator QAP to maintain a common set of AC parameters to guarantee fairness of 

access for all QSTAs within the QBSS. This is further enhanced by an admission 

control mechanism which would protect the performance of existing traffic. 

 

2.3.4 HCF Controlled Channel Access (HCCA) 

 

The HCCA mechanism uses a QoS-aware centralized coordinator, called a Hybrid 

Coordinator (HC) and operates under rules that are different from the Point 

Coordinator (PC) of the PCF. The HC is collocated with the QAP of the QBSS and 

uses the HCs higher priority of access to the wireless medium to initiate frame 

exchange sequences and to allocate TXOPs to itself and other QSTAs so as to provide 

limited duration Controlled Access Phase (CAP) for contention-free transfer of QoS 

data. 

 

HC traffic delivery and TXOP allocation may be scheduled during both the CFP and 

CP, to meet the QoS requirements of particular Traffic Stream (TS). TXOP 

allocations and contention-free transfers of QoS traffic can be based on the HC's 

QBSS-wide knowledge of the amounts of pending traffic belonging to different TS 

and subject to QBSS-specific QoS policies. 
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Controlled Access Phases (CAPs) are defined as several intervals within one CP when 

short bursts of frames are transmitted using polling-based controlled channel access 

mechanisms. During the remainder of the CP, all frames are transmitted using the 

EDCA contention-based rules. The following figure shows the relationship of CFP, 

CP and CAPs. CAPs may also include Controlled Contention Intervals (CCIs), during 

which contention occurs only when QSTAs need to request new TXOPs. 

 

 
 

Figure 2.12 Relationship between CFP, CP and CAP 
 

A QAP may indicate availability of CF-Polls to nQSTAs, thereby providing non-QoS 

contention-free transfers during the CFP. However the 802.11e standard does not 

recommend using HCCA during CFP. This is mainly due to the complexity involved 

in implementing polling using CF-Poll and QoS CF-Poll at the same time. 
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2.4 QoS Metrics 

 

In order to measure the level of QoS experienced by a QSTA, there are a number of 

important QoS performance metrics associated with time-bounded traffic that need to 

be monitored such as throughput, delay, jitter (delay variation) and packet loss. 

 

• Throughput: This is a measure of the amount of data that will be sent across a 

network per unit of time. This is usually measured in bits per second (or packets 

per second). 

 

• Delay: This is also known as latency and is defined as the period of time it takes 

for a transmitted packet to get from its source to its destination. 

 

• Jitter: This is also known as delay variation and is defined as the variation in inter-

packet arrival time (at the receiver) introduced by the variable transmission delay 

over the network. Jitter can be minimised by introducing a jitter buffer to remove 

this variation, however the buffer causes additional delay which adds to the 

overall delay. 

 

• Packet loss: This is a measure of the maximum acceptable packet loss that can be 

tolerated by voice and video while still maintaining a good level of quality. This is 

normally a percentage of the overall packet transmission. 

 

The following table shows QoS performance requirements for time-bounded 

applications [9]: 

 

Key performance parameters and requirements Application Throughput 
requirements One-way delay Jitter Packet Loss 

Rate (PLR) 
VoIP 4-64 kbit/s <150 ms preferred 

<400 ms limit 
<40-50 ms <3 % 

Video Conferencing 16-384 kbit/s <150 ms preferred 
<400 ms limit 

<40-50 ms <1% 

Video Streaming 16-384 kbit/s <10 sec  <1% 
 

Table 2.2 QoS Performance Metrics for Time-bounded Applications 
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VoIP: 

• Heavily influenced by one-way delay which may result in echo and impacts on 

conversational dynamics. 

• Intolerant to jitter. 

• Human ear is tolerant to a certain amount of information loss. 

 

Video Conferencing: 

• Requires a full-duplex system, carrying both voice and video and intended for 

use in a conversational environment. 

• Same delay and jitter requirements as for conversational voice (i.e. VoIP). 

• Human eye is tolerant to a certain amount of information loss 

• Added requirements that the audio and video must be synchronised within 

certain limits to provide "lip-synch" (lip-synch < 80 ms) [9]. 

 

Video streaming: 

• No conversational element involved, meaning that the delay requirements will 

be less stringent. 
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2.5 Computer Simulator 

 

As the IEEE 802.11e enhanced QoS standard is not yet ratified and no equipment 

supporting the standard is yet available, performance studies on 802.11e can only be 

based upon simulation. Consequently in order to evaluate the performance of the 

802.11e MAC mechanism, an existing 802.11b DCF MAC protocol computer 

simulation model previously developed in the context of the WITM research project 

at the Dublin Institute of Technology [10] was extended to include queuing and 

prioritisation-scheduling mechanisms in order to realise an 802.11e simulator. The 

simulator has been implemented while referring to the specification of the latest draft 

of the 802.11e standard [7]. The simulator was developed in C/C++ and essentially 

implements the 802.11e MAC mechanism. Of the various features defined in the 

latest draft, there are some that we did not implement in the MAC for simplicity, i.e. 

the HCCA polling mechanism for contention-free channel access. We simulated the 

contention-based channel access EDCA mechanism and did not consider other 

features such as EDCA-TXOP and the "No ACK" policy in the simulation. Any STA 

gaining access to the medium transmits one packet and then releases the channel for 

the next STA. We consider a BSS infrastructure-type WLAN, hence all the traffic 

within the WLAN is handled by a single AP, i.e. no direct links or ad-hoc operation 

have been simulated. 

 

The simulator implements FIFO buffers in every QSTA and is able to gather detailed 

statistics information about the MAC Buffer, e.g. it records the position in the queue 

where packets are buffered, queue lengths, buffer overflow, etc. The simulator also 

collects statistical information on the MAC mechanism, e.g. it records the number of 

transmission attempts it took to successfully transmit a packet or if it was dropped. 

 

The simulator calculates local QoS metrics (i.e. throughput, delay, jitter and packet 

loss) for each QSTA from a simulation run in order to monitor the level of QoS 

experienced by the QSTAs. 
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2.6 Background Material 
 

The IEEE 802.11e standard is an emerging technology and therefore there are few 

direct references to it. However, the issue of QoS provisioning in both wired and 

wireless networks is in general a well-researched area. Consequently a large number 

of publications in this area have been consulted as background material in carrying 

out this study. 

 

A list of this background material has been included after the Bibliography at the end 

of the thesis. 
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Chapter 3 
 
 

Quality of Service and 802.11 
 
 
 
3.1 State of the Art 
 

Previous research into the performance evaluation of 802.11 has been carried out by 

using computer simulations or by means of analytical models.  

 

In order to support QoS in the 802.11 MAC, many QoS enhancement schemes have 

been proposed by several research workers. In this section we first outline some of 

these schemes and then we review a number of the major contributions to the field. 

 

3.1.1 QoS Enhancement Schemes Overview 
 

AC scheme: To introduce priorities in IEEE 802.11 using DCF, Aad and Castellucia 

[2] propose three techniques. Each technique uses different parameters to provide 

service differentiation. Henceforth we shall refer to it as the AC scheme. 

 

• Different backoff increase function (also called the scaling contention window 

scheme) where each priority level has a different backoff increment function. 

Assigning a short contention window to the higher priority STAs ensures that in 

most cases, high-priority STAs are more likely to access the channel than low-

priority ones. This method modifies the CW of the priority level j after i 

transmission attempts as follows: 
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CWnew = Pj 
2+i × CWold     (equation 3.1) 

 

where Pj is a factor used to achieve service differentiation which has a higher value 

for lower priority STAs. Experiments show that this scheme performs well with UDP 

(User Datagram Protocol) traffic but not so well with TCP (Transmission Control 

Protocol) traffic because TCP ACKs affect the differentiation mechanism since all 

ACKs have the same priorities. 

 

• Different DIFS: Each STA has a different DIFS according to its priority level. For 

example, DIFSj+1 < DIFSj < DIFSj-1. So before transmitting a packet, the STAs 

having priority j+1 will wait for an idle period of length DIFSj+1 slot time which 

is shorter than that of STA with priority j. To avoid collision between frames of 

the same priority, the backoff mechanism is maintained in a way that the 

maximum contention window size added to DIFSj is DIFSj-1 - DIFSj. This ensures 

that no STA of priority j+1 has queued frames when a STA of priority j starts 

transmission. The main issue of this scheme is that low priority traffic suffers as 

long as high priority frames are queued. Moreover TCP ACKs also reduce the 

effects of service differentiation since all ACKs have the same priorities. 

 

• Different maximum frame length: Each STA has a different maximum frame 

length according to its priority level. Here there are two possibilities: One is either 

to drop packets that exceed the maximum frame length assigned to a given STA 

(or simply configure it to limit its packet lengths), the other is to fragment packets 

that exceed the maximum frame length. This mechanism is used to increase both 

transmission reliability and differentiation and works well for TCP and UDP 

flows. However, in a noisy environment long packets are more likely to be 

corrupted than short ones which decreases the differentiation efficiency of this 

scheme. 
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DENG scheme: Deng and Chang [3] have proposed a service differentiation scheme 

that requires minimal modifications to the IEEE 802.11 DCF MAC protocol. 

Henceforth we will refer to it as the Deng scheme. 

 

The Deng scheme uses two properties of IEEE 802.11 to provide differentiation: The 

Inter Frame Space (IFS) used between data frames and the backoff mechanism. If two 

STAs use a different IFS, the STA with the shorter IFS will get higher priority than a 

STA with a longer IFS. Since the IEEE 802.11 standard already defines two kinds of 

IFS (PIFS and DIFS) to assure that no low priority traffic is sent during the 

contention-free period of the PCF, these can be used for easy implementation of the 

Deng scheme. By using these two different interframe spaces, traffic can be 

differentiated in terms of two classes. To further extend the number of available 

classes, the backoff mechanism could be used to differentiate between STAs. This is 

done by designing the backoff algorithm such that it generates backoff intervals at 

different times, depending on the priority of the STA. Therefore four classes of 

priorities can be supported using two different interframe spaces and two different 

backoff algorithms. The backoff algorithm chosen guarantees that STAs that use the 

low-priority backoff algorithm always generate longer backoff intervals than STAs 

with higher priority. 

 

DFS scheme: Vaidya and Bahl [4] have proposed an access scheme which utilizes the 

ideas behind fair queuing in the wireless domain. This access scheme is called the 

Distributed Fair Scheduling (DFS) algorithm. In this context, fair means that each 

flow gets bandwidth proportional to some weight that has been assigned to it. Since 

different weights can be assigned to the flows, this can be used for differentiation 

between flows. 

 

The DFS scheme is based on the fair queuing mechanism known as Self-Clocked Fair 

Queuing (SCFQ) and uses the backoff mechanism of IEEE 802.11 to determine which 

STA should send first. Before transmitting a frame, the backoff process is always 

initiated, even if no previous frame has been transmitted. The backoff interval 

calculated is proportional to the size of the packet to send and inversely proportional 

to the weight of the flow. This causes STAs with low weights to generate longer 

backoff intervals than those with high weights, thus getting lower priority. Fairness is 
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achieved by including the packet size in the calculation of the backoff interval, 

causing flows with smaller packets to get to send more often. This gives flows with 

equal weights the same bandwidth regardless of the packet sizes used. If a collision 

occurs, a new backoff interval is calculated using the backoff algorithm of the IEEE 

802.11 standard. 

 

Blackburst scheme: Sobrinho and Krishnakumar [5] have proposed a scheme called 

Blackburst where the main goal is to minimise the delay for real-time traffic. 

Blackburst requires that all high priority STAs try to access the medium with equal 

and constant intervals, tsch and have the ability to jam the medium for a period of time. 

 

When a high priority STA wants to send a frame, it senses the medium to see if it has 

been idle for PIFS and then sends its frame. If the medium is busy, the STA waits for 

the medium to be idle for a PIFS and then enters a Blackburst contention period. The 

STA sends a so-called "Blackburst" to jam the channel. The length of the Blackburst 

is determined by the time the STA has waited to access the medium and is calculated 

as a number of black slots. After transmitting the Blackburst, the STA listens to the 

medium for a short period of time (less than a black slot) to see if some other STA is 

sending a longer Blackburst which would imply that the other STA has waited longer 

and thus should access the medium first. If the medium is idle the STA will send its 

frame, otherwise it will wait until the medium becomes idle again and enters another 

Blackburst contention period. By using slotted time and imposing a minimum frame 

size on real time frames, it can be guaranteed that each Blackburst contention period 

will yield a unique winner. 

 

After the successful transmission of a frame, the STA schedules the next transmission 

attempt tsch seconds in the future. This has the benefit that real-time flows will 

synchronize and share the medium in a TDMA (Time Division Multiple Access) 

fashion. In the Blackburst scheme, low priority STAs use the ordinary CSMA/CA 

access method of IEEE 802.11. This means that unless some low priority traffic 

comes and disturbs the order, few Blackburst contention periods will have to be 

initiated once the STAs have synchronized. The main drawback of Blackburst is that 

it requires constant access intervals for high-priority traffic otherwise the performance 

degrades considerably. 
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AEDCF scheme: In order to efficiently support time-bounded multimedia 

applications, Romdhani and Turletti [6] have proposed a scheme called Adaptive 

Enhanced Distributed Coordination Function (AEDCF) that uses a dynamic procedure 

to change the CW value after each successful transmission or collision. After each 

successful transmission, the EDCA mechanism resets the contention window CW[i] 

of the corresponding class i to CWmin[i] regardless of the network conditions. Instead 

the AEDCF scheme proposes to reset the CW[i] values more slowly to adaptive 

values (different to CWmin[i]) taking into account their current sizes and the average 

collision rate while maintaining the priority-based discrimination. 

 

The simplest scheme that can be used to update the CW[i] of each class i is to reduce 

it by a static factor such as 0.5 × CWold. However, a static factor cannot be optimal in 

all network conditions. The AEDCF scheme proposes that every class updates its CW 

in an adaptive way taking into account the estimated collision rate f j
curr in each STA. 

Indeed, the collision rate can give an indication about contentions in a distributed 

network. The value of f j
curr is calculated using the number of collisions and the total 

number of packets sent during a constant period (i.e. a fixed number of slot times). 

 

To minimize the bias against transient collisions, an estimator of Exponentially 

Weighted Moving Average (EWMA) is used to smooth over the estimated values. Let 

f j
avg be the average collision rate at step j (for each update period) computed 

according to the following iterative relationship: 

 

f javg = (1 - �) × f jcurr + � × f j-1avg    (equation 3.2) 

 

where j refers to the jth update period, f j
curr stands for the instantaneous collision rate 

and � is the weight (also called the smoothing factor). 

 

To ensure that the priority relationship between different classes is still fulfilled when 

a class updates its CW, each class should use a different factor according to its 

priority level, this factor is called the Multiplication Factor (MF). Keeping in mind 

that the factor used to reset the CW should not exceed the previous CW, the 

maximum value of MF is limited to 0.8. This limit has been fixed according to an 
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extensive set of simulations calculated with several scenarios. The MF of class i is 

defined as follows: 

 

MF[i] = min{(1 + (i × 2) × f javg, 0.8)}   (equation 3.3) 

 

This formula allows the highest priority class to reset the CW parameter with the 

smallest MF value. 

 

After each successful transmission of packet of class i, CW[i] is then updated as 

follows: 

 

CWnew[i] = max{(CWmin[i], CWold[i] × MF[i])}  (equation 3.4) 

 

This equation guarantees that CW[i] is always greater than or equal to CWmin[i] and 

that the priority access to the wireless medium is always maintained. 

 

In the current version of EDCA, after each unsuccessful transmission of a packet of 

class i, the CW of this class is doubled, while remaining less than the maximum 

contention window CWmax[i]. In AEDCF, after each unsuccessful transmission of 

packet of class i, the new CW of this class is increased with a Persistence Factor 

PF[i] which is set differently for different priority classes, yielding high priority 

classes with a smaller value of PF[i]: 

 

CWnew[i] = min{(CWmax[i], CWold × PF[i])}   (equation 3.5) 

 

This mechanism offers high priority traffic a higher probability of generating a 

smaller CW value than low priority traffic. This PF parameter has been proposed in 

previous versions of the 802.11e draft but has since been removed. The AEDCF 

scheme re-introduces it because it can reduce the probability of a new collision and 

consequently decrease delay. 
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3.1.2 Literature Overview 
 

In [11] Lindgren and Almquist evaluate four mechanisms for providing service 

differentiation in IEEE 802.11 wireless LANs. The evaluated schemes are the Point 

Coordinator Function (PCF) of IEEE 802.11, the Enhanced Distributed Channel 

Access (EDCA) of the proposed IEEE 802.11e extension to IEEE 802.11, Distributed 

Fair Scheduling (DFS) and Blackburst. The evaluation was done using the Berkeley 

ns-2 network simulator. Furthermore, the impact of some parameter settings on 

performance has also been investigated. The metrics used in the evaluation are 

throughput, medium utilisation, collision rate, average access delay and delay 

distribution for a variable load of real-time and background traffic. The simulations 

show that the best performance is achieved by Blackburst. PCF and EDCA are also 

able to provide pretty good service differentiation. DFS can give a relative 

differentiation and consequently avoids starvation of low priority traffic. Evaluation 

includes both some trade offs in parameter settings for individual schemes and 

performance comparisons between the different schemes. 

 

The simulations show that when using PCF, it is important to select a proper size for 

the superframe which determines how often poll frames are sent to high priority 

STAs. To obtain good performance for high priority traffic without wasting resources 

on unnecessary control frames, the superframe should be approximately as long as the 

interval between packets generated by a high priority STA. 

 

When comparing the schemes, the simulations show that Blackburst gives the best 

performance of the evaluated schemes to high priority traffic both with regard to 

throughput and access delay. At low loads, it also gives acceptable performance to 

low priority traffic, but it does however deteriorate to complete starvation of low 

priority traffic at high loads. A drawback with Blackburst is the requirement for 

constant access intervals that it imposes on high priority traffic. If these cannot be 

met, EDCA might be a suitable alternative. Although not being able to provide as 

good a service as Blackburst and also suffering from a high rate of collisions, it can 

still serve many high priority STAs and give low delay to high priority traffic. 
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Both Blackburst and EDCA starve low priority traffic when there is high loads of high 

priority traffic which in many cases is not desirable. If relative differentiation is 

desired, DFS would be better. It ensures better service to high priority traffic and still 

does not starve low priority traffic (ensuring that it gets its fair share of the 

bandwidth). 

 

Further, the simulations show that the Blackburst scheme gives the best medium 

utilization at reasonable loads of high priority traffic. This is important given the 

scarcity of bandwidth in wireless networks. This paper shows that Blackburst is good 

at avoiding collisions between high priority STAs, while EDCA suffers from a high 

rate of collisions. 

 

Contrary to EDCA and DFS, Blackburst and PCF transmit bursts and control frames 

on the channel to determine which STA should get access to the medium. During 

those transmissions, the channel is occupied and cannot be used for any useful 

transmission of data. It is shown that for Blackburst, this overhead is rather low up to 

a certain point of high priority load, after which the amount of overhead increases 

rapidly. For PCF, the overhead is quite large and increases with the number of high 

priority STAs. 

 

Finally, the paper concludes with the observation that it is difficult to say that any one 

QoS scheme is better than another, since it largely depends on the context in which it 

is to be used and which results are desired. It can be said that Blackburst works well 

in many scenarios, but scenarios certainly exist where some of the other schemes 

would be preferable. Before deciding on what QoS scheme to use in a network, an 

analysis of what the network should be used for and what kind of services are 

required to be supported. 

 



Chapter 3 Quality of Service and 802.11 
 

 
39 

In [6] Romdhani and Turletti describe an adaptive service differentiation scheme for 

QoS enhancement in IEEE 802.11 wireless ad-hoc networks. This approach is called 

Adaptive Enhanced Distributed Coordination Function (AEDCF) and is derived from 

the new EDCA to be introduced in the upcoming IEEE 802.11e standard. This 

scheme aims to share the transmission channel efficiently. Relative priorities are 

provisioned by adjusting the size of the CW of each traffic class taking into account 

both application requirements and network conditions. This paper evaluates through 

simulations the performance of AEDCF and compares it with the EDCA scheme 

proposed in the 802.11e. The evaluation was done using the Berkeley ns-2 network 

simulator. The metrics used in the evaluation are gain of throughput, mean delay, 

latency distribution, medium utilization and collision rate. 

 

The main outcome in this paper is the design of a new adaptive scheme for QoS 

enhancement for IEEE 802.11 WLANs. The 802.11e EDCA scheme is extended by 

dynamically varying the contention window of each active class of service. Results 

show that AEDCF outperforms the basic EDCA, especially at high traffic load 

conditions. Indeed, the scheme increases the medium utilization ratio and reduces the 

collision rate by more than 50%. While achieving delay differentiation, the overall 

throughput obtained is up to 25% higher than EDCA. Moreover, the complexity of 

AEDCF remains similar to the EDCA scheme, enabling the design of cheap 

implementations. The results were validated by analyzing the impact of sources and 

network dynamics on the performance metrics and comparing the results obtained 

with EDCA and the static slow decrease schemes. 

 

Although AEDCF is intended to improve performance of wireless ad-hoc networks, 

the same idea can be used in the infrastructure mode with some changes. Future work 

could include adapting other parameters such as CWmax, the maximum number of 

retransmissions and the packet burst length according to the network load rate. 
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In [12] Li and Battiti aim at gaining an insight into three mechanisms to differentiate 

among traffic categories, i.e. differentiating the minimum CW size (CWmin), IFS and 

the length of the packet payload according to the priority of different traffic 

categories. This paper proposes an analytical model to compute the throughput and 

packet transmission delays in a WLAN with enhanced IEEE 802.11 DCF which 

supports service differentiation. In the analytical model, service differentiation is 

supported by scaling CW, IFS and the packet length according to the priority of each 

traffic flow. Comparisons with simulation results show accurate performance 

evaluations can be achieved by using the proposed model. 

 

This paper concludes that: 

 

1. The settings of CWmin for different types of traffic flows have a significant 

influence on the throughput and packet delay. One type of traffic gains priority over 

other types of traffic through a smaller CWmin. More channel resources are occupied, 

with a smaller packet delay. 

 

2. Traffic flows with a shorter IFS obtain higher priority to access the channel 

resources. However, excessive IFS values cause long packet delays for traffic flows 

with lower priority, bordering on starvation. 

 

3. The length of packet payload for different types of traffic directly influences the 

bandwidth allocation among different traffic flows. However, the differentiation of 

packet payload size has little influence on the differentiation of packet delays. This 

paper notes that in noisy channel conditions, the typical situation in wireless LANs, 

longer payloads suffer a higher error probability and this fact may discourage 

applying payload length variability as a differentiation mechanism. 

 

4. The number of traffic flows with higher priority must be limited to maintain the 

system working at a high performance regime by suitable access control or pricing 

schemes. 
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5. By adopting the scheme of scaling CWmin and packet payloads, approximate and 

simple relationships exist between throughput, packet delays and lengths of packet 

payload of different traffic types. These relationships can be used for the optimal 

design of the whole system. 

 

By using the proposed model, three different service differentiation schemes have 

been analyzed. The schemes are not mutually exclusive. The appropriate choice and 

setting of parameters for the control of a real-world system, including access control, 

is an interesting area of future research that can benefit from the analysis presented in 

this paper. 
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3.2 Computer Simulator Overview 

 

In order to gain a deeper insight into the proposed IEEE 802.11e QoS enhanced 

standard with service differentiation support, system modelling and performance 

analysis are needed. We propose a computer simulation model that faithfully 

implements the latest draft of the 802.11e standard [7]. The simulator was developed 

in C/C++ and essentially implements the 802.11e MAC mechanism. We simulated the 

contention-based channel access EDCA mechanism only and have implemented FIFO 

buffers in every STA which allowed us to calculate throughput, packet delay, jitter 

and packet loss which are important QoS metrics when measuring and monitoring the 

level of QoS experienced by STAs. The simulator was tested using performance 

results from published papers on the 802.11e standard to ensure correct 

implementation of the standard by the simulator. After being completely satisfied with 

the correct operation of the simulator, traffic-engineering tests were carried out with 

regard to throughput and packet loss. The objective here was to identify the effects of 

varying the 802.11e parameters on performance. From the range of tuneable 

parameters that 802.11e offers, we have identified the two most important parameters 

for QoS provisioning, namely AIFS which is the minimum time interval between the 

wireless medium becoming idle and the start of transmission of a frame and the CW 

size from which a random number is drawn as part of the access mechanism. As a 

result of these tests a good understanding of the effects of these two parameters on 

performance was achieved. We have identified that it is possible to allocate 

bandwidth for a STA by the appropriate setting of the 802.11e parameters and thereby 

improve QoS support for STAs or classes of service in IEEE 802.11 networks. EDCA 

provides significant improvements for high priority QoS traffic, however these 

improvements are typically achieved at the cost of reduced performance for lower 

priority traffic. Despite these problems, we find that EDCA is attractive because of its 

simplicity and its ability to provide QoS differentiation which is an important 

improvement over legacy DCF. 
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3.3 MAC Bandwidth Components 
 

In order to gain an insight into the operation of the 802.11e MAC mechanism we have 

identified a set of MAC bandwidth components that present a useful and intuitive 

descriptive framework of the MAC mechanism. At any given time the wireless 

medium can be either busy (STAs are transmitting frames) or idle (the wireless 

medium is not in use). Based on this observation we define the MAC bandwidth 

components that describe the MAC operation. First, the load bandwidth (BWload) 

corresponds to the bandwidth used for frame transmission and which determines the 

throughput of a STA. Next, the idle bandwidth (BWidle) corresponds to the unused 

bandwidth on the wireless medium (i.e. when no frames are being transmitted). The 

BWidle subdivided into two components: The access bandwidth (BWaccess) which 

corresponds to the idle bandwidth required by STAs when accessing the medium prior 

to starting frame transmission and the free bandwidth (BWfree) which corresponds to 

the remaining unused idle bandwidth. 

 

The following figure shows the different time components associated with these MAC 

bandwidth components in the wireless medium. 

 

 
 

Figure 3.1 Time Components for the MAC Mechanism 
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Summing the STAs’ load time (i)
loadT  components over the measurement time interval 

of interest gives the medium busy time: 

 

�
=

=
n

1i

(i)
loadbusy TT        (equation 3.6) 

 

The medium idle time contains two time components, i.e. an access (i)
accessT  and a free 

time (i)
freeT : 

 
(i)
free

(i)
accessidle TTT +=  for all stations i   (equation 3.7) 

 
(i)

accessT  depends primarily on the STA’s offered load but also on the other STAs’ loads. 

For example, a STA will have to stop decrementing its BC if another STA starts 

transmitting and will only resume decrementing when the wireless medium becomes 

idle again which ultimately will increase the STA’s access time. In addition, the 

selection of the initial BC value is a random process which results in the entire access 

mechanism being inherently stochastic, i.e. (i)
accessT  is a random quantity. 

 
(i)
freeT  arises from the idle time intervals when a STA does not have a packet awaiting 

transmission and will vary between STAs depending on their respective offered loads 

and access requirements. This free time on the medium (i)
freeT  can be viewed as spare 

capacity on the medium, essentially acting as a reservoir that can be drawn on when 

required. The amount of free time experienced by a STA is closely related to the level 

of QoS experienced by its traffic load where the greater the free capacity available to 

a STA, the better the QoS likely to be experienced. 

 

The medium idle time is shared commonly by all STAs and depending on their 

offered loads and access requirements will make different use of it. 

 
(n)
free

(n)
access

(i)
free

(i)
access

(1)
free

(1)
accessidle TTTTTTT +==+==+= ......  (equation 3.8) 
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For example, in the case of a STA that is saturated (i.e. there is always a packet 

awaiting transmission in its buffer), it will use all of the available idle time to obtain 

access for its load. Consequently, idle
(i)

access TT =  and hence 0=(i)
freeT . Therefore, one 

would expect the STA to have a poor QoS. Similarly, in the case of a non-saturated 

STA, idle
(i)

access TT <  and hence 0>(i)
freeT  resulting in a better QoS. 

 

Equations (3.6) to (3.8) serve to illustrate how the performance of STAs are coupled 

under the MAC mechanism. For example, a heavily loaded STA i will have a large 
(i)

loadT  leading to a large value for busyT . This has the effect of reducing the idleT  

available to all STAs, leading to a reduced freeT  and possibly accessT  for all STAs. 

Consequently, the performance of all STAs can be affected by the presence of a 

heavily loaded STA. 

 

The MAC bandwidth components are calculated on a per STA basis, e.g. for (i)
freeBW : 

 

 Mbit/s11
TTT

T
BW (i)

free
(i)

access
(i)

load

(i)
free(i)

free  ×
++

=    (equation 3.9) 

 

We multiply by 11 Mbit/s to normalise to the line rate (11 Mbit/s PHY operation is 

assumed here). 

 

As outlined above, the MAC bandwidth components are related according to: 

 

�
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i
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i
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i
free BWBWBWBWBW

1

)()()()( 11   (equation 3.10) 
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The following figure shows the performance characteristic of two wireless STAs 

(STA1 and STA2) in terms of their combined loads (BWload), BWfree and Packet Loss 

Rate (PLR) as a function of STA2‘s offered load when using the legacy DCF, i.e. 

AIFS = DIFS for both STAs. The two wireless STAs carry identical traffic types and 

generate packets with a packet size equal to 512 bytes and an exponentially 

distributed inter-arrival time, i.e. Poisson traffic. The load presented to the wireless 

medium by STA1 is held fixed at 250 pps (packets per second), whereas the load 

presented by STA2 is ramped from zero to full saturation in steps of 50 pps. 

 

 
 

Figure 3.2 Two STAs Scenario using the Legacy DCF 
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It is apparent from the figure that there are quite distinct regions of saturation. When 

the combined BWload of STA1 and STA2 is small, both STAs have sufficient BWfree 

and hence both STAs experience a high QoS (i.e. negligible PLR), this corresponds to 

the region of no saturation. As the load from STA2 increases both STAs experience a 

reduced BWfree until a point is reached where the QoS experienced by STA2 begins to 

deteriorate (i.e. the PLR for STA2 rises dramatically). At this point STA2 begins to 

saturate and the offered load here represents the capacity of the network as seen by 

STA2. As the load presented by STA2 continues to increase, quickly a point is reached 

where it begins to noticeably impact on the performance of STA1, i.e. its QoS starts to 

deteriorate. This point represents the onset of network saturation where both STAs no 

longer have sufficient BWfree and hence both STAs experience poor QoS. The 

question here is to determine how much BWfree needs to be available in order to 

support QoS requirements. It is clear that STA1 and STA2 require different amounts of 

BWfree given that the nature of their loads are different. 

 

In the following figure the relationship between the MAC bandwidth components and 

the nature of their interaction is described. 

Figure 3.3 Relationship between MAC Bandwidth Components 
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As mentioned above the BWload is used for frame transmission and determines the 

throughput of a STA. The BWidle is the unused bandwidth on the wireless medium 

(i.e. when no frames are being transmitted) and subdivided into two components: The 

BWaccess which is the idle bandwidth required by STAs when accessing the medium 

prior to starting frame transmission and the BWfree which is the remaining unused idle 

bandwidth that will determine the QoS experienced by the STAs. 

 

As mentioned in section 3.2 we have identified the two most important 802.11e 

parameters, namely AIFS and the CW size that determine QoS and as a result of many 

tests we have achieved a good understanding of the effects these two parameters have 

on performance. We have identified that by varying both AIFS and the size of CW it 

is possible to control the interaction between the MAC bandwidth components in 

order to prioritise a particular STA over another and thereby improve its QoS (see 

chapter 5). 

 

3.4 MAC Bandwidth Components Simulation Results 

 

In the next chapter, an 802.11e MAC simulator developed in C/C++ will be 

described. The simulator explicitly calculates the MAC bandwidth components (i.e. 

BWload, BWidle, BWaccess and BWfree). The simulator will be used to generate 

performance plots similar to Figure 3.2 for a number of different test scenarios 

involving a range of different traffic loads and priorities in order to assess the 

potential for QoS provisioning in the proposed 802.11e MAC enhancement standard. 
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Chapter 4 
 
 

Computer Simulator 
 
 
 

The simulator has been developed in C/C++ and essentially implements the 802.11e 

MAC mechanism. We simulated the contention-based channel access EDCA 

mechanism only and have implemented FIFO buffers in every STA which allowed us 

to calculate throughput, packet delay, jitter and packet loss which are important QoS 

metrics when measuring and monitoring the level of QoS experienced by STAs. The 

simulator does not include any PHY operation therefore the only sources of packet 

loss considered here are either packet drops due to buffer overflow or MAC drops 

after the maximum number of re-transmission attempts has been reached due to 

excessive collisions. We did not consider other traffic parameters such as EDCA-

TXOP and the "No ACK" policy in simulator. Any STA gaining access to the 

medium transmits one packet and then releases the channel for the next STA. We 

considered a BSS infrastructure-type WLAN, hence all the traffic within the WLAN 

is handled by a single AP, i.e. no direct links or ad-hoc operation have been 

simulated. We assume no hidden terminals, no mobility in the system and also neglect 

transmission errors due to noise. Finally, we did not include any high-level 

management functionality such as beacon frames, association and authentication 

frames exchanges, etc. 
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4.1 Simulator Architecture 
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Figure 4.1 Simulator Architecture 
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4.2 Simulator Overview 

4.2.1 Functions and Constants 

 

The initialisation of the simulation takes place in the main( ) function where a number 

of different parameters need to be set: 

 

• The simulator gives the option to include three QoS classes (i.e. Gold, Silver and 

Bronze) and for every class we can define the number of STAs to be simulated. 

 

• The total number of packets to be generated for the simulation. 

 

• The number of Access Categories (ACs) per STA. 

 

• The buffer size for each AC. 

 

• The maximum number of MAC retransmission attempts per STA. 

 

• The AIFS parameter for each AC within each STA. 

 

• The CWmin and CWmax parameters for each AC within each STA. 

 

• The MSDU size, i.e. packet size for each stream within each STA. 

 

• The MSDU rate, i.e. packet rate for each stream within each STA. 

 

• The packet inter-arrival time for each stream within each STA. The simulator 

gives the option to choose between constant and exponentially distributed inter-

arrival time, i.e. Poisson traffic. 
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The simulator also gives users the option to set any of these parameters from the 

command prompt. 

 

These parameters are then passed on to simulation_run( ) which is the main kernel of 

the simulator that essentially implements the 802.11e MAC mechanism, i.e. a 

differentiated CSMA/CA mechanism. 

 

Param802.11b contains parameters declaration for the 802.11b PHY and MAC 

layers. These parameters are stored as global constants so that they can be accessed 

anywhere within the simulator. 

 

4.2.2 Classes Overview 

 

• The class Packet Generator generates packets according to three parameters: 

 

��Packet size in bytes. 

��Packet rate in packets per second (pps). 

��Packet inter-arrival time which can be constant or exponentially 

distributed, i.e. Poisson traffic. 

 

• The class Source inherits from Packet Generator. There is one Source for every 

STA and it allows the setting and retrieving of the three parameters. 

 

• The class Station Source inherits from Source and groups all the sources into an 

array which is used in simulation_run( ) to access the parameters 

 

• The class Data Packet creates data packets (i.e. MSDUs) according to two 

parameters: 

 

��Packet length in bytes. 

��Time created (i.e. the time when the packet is emitted from the source). 
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• The class Buffer inherits from Data Packet and essentially implements a FIFO 

buffer according to a fixed buffer size. 

 

• The class Station Buffer inherits from Buffer and groups all the buffers into an 

array which is used in simulation_run( ) to monitor of the buffer size. 

 

• The class Station MAC implements STAs according to a set of 802.11e MAC 

parameters: 

 

��AIFS, the Arbitration Inter Frame Spacing. 

��Contention Window (CW) size which is an integer number. 

��CWmin, the minimum size of CW. 

��CWmax, the maximum size of CW. 

��Backoff Counter (BC), a random number drawn from the interval [0, CW]. 

 

• The class WLAN inherits from Station MAC and groups all the STAs into an array 

which is used in simulation_run( ) to access the STAs parameters. 

 

• The class Buffer Stat collects statistical information about the MAC Buffer, e.g. 

records the position in the queue where packets are buffered, queue lengths and 

buffer overflow, etc. 

 

• The class MAC Stat collects statistical information on the MAC mechanism, e.g. 

records the number of transmission attempts it took to successfully transmit a 

packet or if it was dropped. 

 

• The class Delay stats collects statistical information on the delay taken to transmit 

packets which then is used to calculate the mean delay and jitter. 

 

• The class Random number Generator generates random floating point numbers in 

intervals from 0 to 1 which are then used to calculate the exponentially distributed 

inter-arrival times for Poisson traffic. 
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The following figure is a visual representation of the simulator implementation based 

on the C++ classes. 
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Figure 4.2 Simulator Implementation based on the C++ classes 
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4.3 Simulation_run( ) Flowchart 
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4.3.1 Flowchart Description 

 

Initialise the simulation: 

 

First simulation_run( ) receives input parameters (i.e. number of STAs, buffer size, 

number of packets to transmit, etc.) from main( ) and Param802.11b. 

 

Output files are then created and opened for the output simulation statistics. 

 

Next objects of the following classes (WLAN, Station Source, MAC Stats, Buffer Stats, 

Delay Stats and Random number Generator) are instantiated with the input 

parameters. The class WLAN will in turn instantiate more objects of classes Station 

MAC and Station Buffer which will create the STAs and their associated buffers 

respectively. The class Station Source will also instantiate more objects of class 

Source which will create a packet generator for every STA. The classes MAC Stats, 

Buffer Stats and Delay Stats will then be used to monitor the operating/performance 

statistics of the MAC, buffers and delays respectively for every STA. Next the class 

Random number Generator will be used to calculate exponentially distributed inter-

arrival times for Poisson traffic. 

 

Finally numerous counters for the simulation are created and initialised. 

 

Update packet generator: 

 

To generate a new packet, the packet inter-arrival time may be set to constant or 

exponentially distributed. Once the packet inter-arrival time has elapsed, the packet is 

generated, i.e. the packet size is set, the time the packet is generated is recorded and 

the count number of packets generated is incremented. 

 

Update buffer: 

 

To buffer a new packet, the queue size in the buffer must be first checked. If the 

buffer is not full, the packet is buffered otherwise the packet is dropped. In the case of 
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a packet being buffered, the queue size is decremented and the count number of 

packets buffered is incremented. If the packet is dropped (i.e. gives rise to buffer 

loss), the buffer overflow count is incremented. 

 

Update the medium using CSMA/CA mechanism: 

 

For a STA to transmit a packet, it must first set its BC. The STA can only set its BC if 

the medium has been idle for at least AIFS. It can then decrement its BC by one time 

slot if the medium is still idle. Once the STAs BC has reach zero, the STA can 

proceed to transmit the packet. 

 

Reset the MAC and update the buffer and time: 

 

If the transmission is successful, (i.e. no collisions have occurred) the packet is 

removed from the buffer and the STA resets its CW size and BC. The simulation time 

is then updated using the duration of the packet transmission. 

 

Update the MAC, buffer and time: 

 

If the transmission is unsuccessful, (i.e. a collision has occurred) the STAs involved in 

the collision have to double their CW size and reset their BC. Also if the maximum 

number of MAC retransmissions attempts of a STA has been exceeded, the STA has 

to drop the packet from the buffer and reset its CW size. The simulation time in that 

case is updated with the duration of the collision. 

 

Update the MAC and time: 

 

If no transmissions are taking place, i.e. the medium remains idle; STAs decrement 

their BC by one time slot. The simulation time in that case is updated with the 

duration of a time slot. 
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4.4 Simulator Outputs 

4.4.1 Time Intervals Statistics 

 

The simulator calculates a set of time intervals that arise during the course of a 

simulation run: 

 

• The simulation duration time which is used to calculate statistics such as average 

throughput, average packet rate and average bit rate, etc. 

 

• The medium Idle time (i.e. when no STAs are transmitting) which further 

subdivided into two time intervals: Free and Access time. 

 

• The Load time which is the time it takes to transmit a packet on the medium 

including its acknowledgment. 

 

• The medium Busy time which is the sum of all STAs’ Load time. 

 

These times intervals are shown in the following figure: 

 

 
 

Figure 4.4 Simulation Run Time Intervals 
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These time intervals are useful in the interpretation and understanding of the operation 

(and performance) of the 802.11e MAC mechanism and form the basis for the MAC 

bandwidth component calculations (see equation 3.9). 

 

4.4.2 Station Statistics 

 

The simulator calculates local statistics for each STA from a simulation run: 

 

• The Throughput which is calculated by dividing the total number of bits (or 

packets) transmitted by a STA by the total duration of a simulation run. 

 

• The average packet delay and jitter which are useful performances statistics that 

determine the level of QoS experienced by a STA. 

 

• Buffer statistics: 

 

��Records the position in the queue where packets are buffered. These are 

collected on a per packet basis. If a STAs packets tend to be buffered at the 

back of the queue, this means that this STA does not get to transmit often. On 

the other hand if most of the packets are buffered at the front of the queue, this 

means that the STA regularly accesses the medium. 

 

��The buffer loss which is due to buffer overflow (i.e. packets that fail to be 

buffered) is a useful performance statistic to determine the level of QoS 

experienced by a STA. 

 

A nearly full buffer would mean that the network is heavily loaded. In other 

words, the STA is saturated and packet delay and jitter would be high and the 

STA will experience a poor QoS. On the other hand a nearly empty buffer 

would mean that the network is lightly loaded with low packet delay and jitter, 

i.e. the STA would experience a good QoS. 
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• MAC statistics: 

 

��Records the number of transmission attempts it took to successfully transmit a 

packet. These are collected on a per packet basis. The more transmission 

attempts it took a STA to successfully transmit a packet means that the STA 

was involved in many collisions which gives also an indication of the level of 

congestion on the WLAN. 

 

��The MAC losses which are due to too many collisions (i.e. the maximum 

number of re-transmission attempts has been exceeded) is a useful 

performance statistic to determine the level of QoS experienced by a STA. 

 

A STA which transmits most of its packets in one or two attempts would mean 

that the network is lightly loaded with low packet delay and jitter, i.e. the STA 

would experience a good QoS. On the other hand, a STA transmitting most of 

its packets in more than two or three attempts would mean that the network is 

heavily saturated and packet delay and jitter would be high, i.e. the STA 

would experience a poor QoS. 

 

4.5 Simulation Results 

 

In the next chapter the computer simulator is used to test various scenarios, such as 

different traffic loads and priorities, in order to assess the effect of varying the 

802.11e parameters, namely AIFS and the CW size on QoS provisioning and to 

investigate the operation (and performance) of the proposed 802.11e MAC 

mechanism. 
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Chapter 5 
 
 

Simulation Results 
 
 
 
In this chapter, by using the computer simulation model we investigate the effect of 

varying two of the 802.11e parameters, namely AIFS and the CW size, on STA 

differentiation and we validate the assumptions made in section 3.3 about the 

relationship between the MAC bandwidth components and the nature of their 

interaction. We proceed by first considering the effect of varying AIFS on QoS 

provisioning and then proceed to consider the effect of varying the CW size. Finally, 

we propose a QoS scheme based on a combination of varying both AIFS and CW 

size. 

 

In the simulations, two wireless STAs using the EDCA mechanism are employed. We 

assume no hidden terminals, no mobility in the system and also neglect transmission 

errors due to noise. The simulation uses the 802.11b DSSS PHY standard operating at 

the maximum rate of 11 Mbit/s to simulate the wireless medium, while the original 

802.11 MAC was modified to support the EDCA mechanism. The following table 

shows the IEEE 802.11b PHY/MAC parameters values used in the simulations: 
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Parameter Value 
PHY Header 24 bytes 

Long PLCP Preamble 192 µs 
Long MAC Header 34 bytes 

ACK size 14 bytes 
Channel Bit Rate 11 Mbit/s 

Slot Time 20 µs 
SIFS 10 µs 
DIFS 50 µs 

MAC retransmission limit 10 
MAC buffer size 10 

 

Table 5.1 IEEE 802.11b PHY/MAC Parameters used in Simulation 
 

 

5.1 Effects of varying AIFS 

5.1.1 QoS Support 

 

The simulations consist of two wireless STAs (STA1 and STA2) carrying identical 

traffic types. Both STAs generate packets with a packet size equal to 512 bytes and an 

exponentially distributed inter-arrival time, i.e. Poisson traffic. We have chosen to 

simulate Poisson traffic, as it is considered to be a reasonable approximation to typical 

data traffic characteristics and is widely used. Consequently, the simulation results 

presented here are strictly only valid for Poisson type traffic. However we expect the 

results to be reasonably indicative for other traffic types. The load presented to the 

wireless medium by STA1 is held fixed at 250 pps (packets per second), whereas the 

load presented by STA2 is ramped from zero to full saturation in steps of 50 pps. The 

following table shows the MAC parameters selected for the two STAs in the 

simulations: 

 

Parameters STA1 (Fixed) STA2 (Ramping) 
AIFSN 2 2,3,4,5,6,7,8 
CWmin 7 7 
CWmax 1023 1023 

 

Table 5.2 MAC Parameters for the Two STAs 
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The mechanism for adjusting the AIFS value is through the AIFSN parameter where 

AIFSN indicates the number of slots times following a SIFS duration, i.e. AIFS = 

SIFS + AIFSN × Slot Time. 

 

In the simulations CWmin = 7 is used as opposed to the standard specification of 

CWmin = 31 as the improvement in effective throughput when simulating two STAs is 

quite substantial (i.e. in terms of optimising the throughput) and we have used the 

maximum possible value for CWmax which is 1023. 

 

The following figure shows the performance characteristic of the two wireless STAs, 

STA1 and STA2 in terms of their combined loads (BWload), BWfree and Packet Loss 

Rate (PLR) as a function of STA2‘s offered load when using the legacy DCF, i.e. 

AIFS = DIFS for both STAs. 

 

 
 

Figure 5.1 Legacy DCF for both STAs 
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When the combined load (BWload) of STA1 and STA2 is small, both STAs have 

sufficient BWfree and hence both STAs experience a high QoS (i.e. negligible PLR). 

As the load from STA2 increases both STAs experience a reduced BWfree until a point 

is reached where the QoS experienced by STA2 begins to deteriorate (i.e. the PLR for 

STA2 rises dramatically). As the load presented by STA2 continues to increase, 

quickly a point is reached where it begins to noticeably impact on the performance of 

STA1, i.e. its QoS starts to deteriorate. This point represents the onset of network 

saturation where both STAs no longer have sufficient BWfree and hence both STAs 

experience poor QoS. Here it is clear that when using the legacy DCF, STA2’s offered 

load impacts on the QoS of STA1 as the two STAs contend for the wireless medium 

with the same priority. Consequently, if the legacy DCF were to be deployed in a 

hotspot scenario, for example, it would not be possible to offer a differentiated QoS 

service to the users. Therefore, we propose to adjust the AIFS parameter to illustrate 

how the interaction between the MAC bandwidth components may be controlled in 

order to prioritise STA1 over STA2. 

 

 
 

Figure 5.2 AIFSN = 3 for STA2  Figure 5.3 AIFSN = 4 for STA2 
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Figure 5.4 AIFSN = 5 for STA2  Figure 5.5 AIFSN = 6 for STA2 

 

 
 

Figure 5.6 AIFSN = 7 for STA2  Figure 5.7 AIFSN = 8 for STA2 

 

We can clearly see that as AIFSN increases for STA2 (i.e. as its priority decreases), 

STA1‘s PLR improves and eventually becomes negligible (<10-6) in Figure 5.7. This 

is as a result of STA1 experiencing a significant amount of BWfree resulting in a 

negligible PLR. This indicates that the network resources are no longer equally shared 

between the two stations. It can also be seen that the combined load (BWload) is 

decreasing since STA2 is not transmitting as much given that its access requirements 

is increasing. The shape of PLR1 in Figure 5.6 is due to the fact that the simulation 

run is not long enough despite being run for 10 millions packets. A longer simulation 

run would produce better results for these very low PLR. The above results confirm 

that by varying AIFS it is possible to control the interaction between the MAC 

bandwidth components in order to prioritise a particular STA over another and 

thereby improve its QoS. 
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5.1.2 "Nailing-up" Bandwidth 

 

By the term "nailing-up" we mean that a particular STA is given priority over another 

STA in terms of gaining access to the medium which ultimately results in bandwidth 

being reserved for that particular STA. It should be noted that it is not possible to 

assign a fixed bandwidth to a STA in a wireless network as the CSMA/CA 

mechanism is a bandwidth on demand service. 

 

We use the same test scenario as described in section 5.1.1 but instead both STAs are 

ramping from zero to full saturation. The following table shows the MAC parameters 

selected for the two STAs in the simulations: 

 

Parameters STA1 STA2 
AIFSN 2 2,4,6,8,10 
CWmin 7 7 
CWmax 1023 1023 

 

Table 5.3 MAC Parameters for the Two STAs 
 

The following figure shows the performance characteristics of STA1 and STA2 in 

terms of their throughput and PLR as a function of the offered load when using the 

legacy DCF, i.e. AIFS = DIFS for both STAs. 
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Figure 5.8 Legacy DCF for both STAs 
 

When using the legacy DCF both STAs experience the same throughput and PLR as 

the two STAs contend for the wireless medium with the same priority. Therefore, We 

propose to adjust the AIFS parameter to prioritise STA1 over STA2 and to monitor the 

throughput and PLR experienced by both STAs. 

 

 
 

Figure 5.9 AIFSN = 4 for STA2  Figure 5.10 AIFSN = 6 for STA2 
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Figure 5.11 AIFSN = 8 for STA2  Figure 5.12 AIFSN = 10 for STA2 

 

We can clearly see that as AIFSN increases for STA2 (i.e. as its priority decreases) 

both STAs are experiencing different throughputs and PLRs. Indeed the throughput of 

STA1 is increasing up to the point of medium saturation (i.e. until there is no more 

bandwidth available) and its PLR is decreasing and eventually becomes negligible. In 

Figure 5.12 STA1 is the only station transmitting (see non-overlapping contention 

processes scenario described below) which means that STA1 and the whole network 

saturates together hence the abrupt rise of PLR1. Whereas for STA2 its throughput is 

decreasing with a large PLR (rendering the performance unusable). The reason for 

this is that the two STAs are not equally sharing the available bandwidth in the 

wireless medium since STA1 has priority over STA2 when accessing the medium 

hence giving the opportunity for STA1 to use as much bandwidth as it requires. Hence 

this shows that it is possible to "nail-up" bandwidth for a STA by varying the AIFS 

parameter. The following example explains how this is done. 

 

In Figure 5.12, STA1 is able to use up all the bandwidth available in the wireless 

network due to the setting of the AIFSN parameter, i.e. when AIFSN = 10 for STA2 

this gives STA1 exclusive access to the medium. Indeed if STA1 were to pick 7, the 

highest possible value for its backoff counter (BC) (i.e. random number drawn 

between 0 and CWmin = 7) STA1 would have to wait for AIFS1 plus 7 slots before 

transmitting, i.e. 190µs: 
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1 1
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AIFST = SIFS + AIFSN ×Time Slot

=

=  sµ
    (equation 5.1) 

 

1
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140

BC minT = CW ×Time Slot

=

=  sµ
     (equation 5.2) 

 

1 1 1

50+140
190

tx AIFS BCT = T +T

=

=  sµ
      (equation 5.3) 

 

Whereas if STA2 were to simultaneously pick 0, the lowest possible value for its BC, 

STA2 would have to wait for AIFS2 before transmitting, i.e. 210µs. Therefore the two 

STAs will never directly contend with one another in order to access the medium, i.e. 

this is a non-overlapping contention processes scenario. 

 

 
 

Figure 5.13 Non-overlapping Contention Processes Scenario 
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On the other hand if AIFSN for STA2 were set to 9 in this particular scenario, both 

STAs would attempt to transmit at the same time which would result in a collision 

requiring both STAs to double the size of their respective contention windows(CWs) 

and reattempt access. 

 

5.1.3 Region of QoS Differentiation 

 

In order to identify the region of QoS differentiation we need to look at the capacities 

as experienced by both STAs. We define the term capacity as being the maximum 

offered load of a STA that satisfies a given QoS requirement, e.g. PLR < 10-4. 

 

We use the same test scenario as described in section 5.1.1 but instead STA1 is 

ramping from zero to full saturation and STA2 is held fixed at 400 pps. The following 

table shows the MAC parameters selected for the two STAs in the simulations: 

 

 

Parameters STA1 STA2 
AIFSN 2 4,6,8 
CWmin 7 7 
CWmax 1023 1023 

 

Table 5.4 MAC Parameters for the Two STAs 
 

The following figure shows the performance characteristics of STA1 and STA2 in 

terms of their throughput and PLR as a function of STA1‘s offered load. 
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Figure 5.14 Regions of QoS Differentiation 
 

We assume a PLR of less than 10-4 (typical PLR requirement) as the QoS requirement 

in the following. We can see that in region 1 both STAs experience the same capacity 

as the total offered load is less than the available capacity, i.e. there is sufficient 

bandwidth available to support both STAs offered loads therefore there is no need for 

QoS differentiation. In region 2 the medium starts to saturate and the effects of QoS 

differentiation become apparent. In region 2 the capacity of STA1 is greater than that 

of STA2, i.e. 570 pps and 380 pps respectively. Here the total offered load is 

approximately equal to the available capacity, therefore some of the available 

bandwidth has been taken from STA2 and given to STA1. In region 3 the total offered 

load exceeds the available capacity, i.e. there is insufficient bandwidth to support both 

offered loads and consequently both STAs no longer meet their QoS requirements of 

PLR � 10-4, therefore the differentiation mechanism is no longer of any use. 

 

This is to be expected as the introduction of a differentiated service scheme cannot 

create additional bandwidth, instead the available resources are allocated to the 

competing STAs on a priority basis. 
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Next we propose to prioritise STA1 over STA2 and to monitor the effects on the 

region of QoS differentiation. 

 

 
 

Figure 5.15 AIFSN = 4 for STA2  Figure 5.16 AIFSN = 6 for STA2 

 

 
 

Figure 5.17 AIFSN = 8 for STA2 

 

We can clearly see that as AIFSN increases for STA2, the region of effective QoS 

differentiation expands and the capacity of STA1 increases from 460 pps to 860 pps 

whereas STA2 capacity stays fixed at 380 pps. This is an interesting result which 

shows the direct effect of varying AIFS on QoS differentiation. Indeed this 

demonstrates how AIFS can be altered in order to guarantee a different set of 

capacities with QoS requirements. We can also deduce that it is necessary to know the 

offered load of a particular STA or class of service in order to set the AIFSN values 

correspondingly. 
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This could be applied to a hotspot scenario, where an operator would need some 

indication of the expected traffic load from a user in order to allocate priority 

bandwidth with QoS requirements to that user. Since the traffic load will be 

continually varying there will also be a requirement to continually update the AIFSN 

values. 
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5.2 Effects of varying CWmin 

5.2.1 QoS Support 

 

We use the same scenario as described in section 5.1.1 (i.e. STA1 is held fixed at 250 

pps and STA2 is ramping from zero to full saturation) but instead we propose to 

reduce the priority of STA2 by increasing its CWmin value. The following table shows 

the MAC parameters selected for the two STAs in the simulations: 

 

Parameters STA1 (Fixed) STA2 (Ramping) 
AIFSN 2 2 
CWmin 7 7, 15, 31 
CWmax 1023 1023 

 

Table 5.5 MAC Parameters for the Two STAs 
 

The following figures show the performance characteristics of STA1 and STA2 in 

terms of their combined BWload, BWfree and PLR as a function of STA2‘s offered load. 
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Figure 5.18 CWmin = 7 for both STAs 
 

 
 

Figure 5.19 CWmin = 15 for STA2  Figure 5.20 CWmin = 31 for STA2 

 

We can clearly see that as CWmin increases for STA2 (i.e. as its priority decreases), 

STA1‘s PLR improves and becomes negligible (<10-6) in Figure 5.20. This is due to 

the same reason as described in section 5.1.1, i.e. STA1 experiences a significant 

amount of BWfree resulting in a negligible PLR. We can also notice that CWmin is a 

coarser parameter on QoS provisioning than AIFS as the amount of BWfree available 

for STA1 is greater than when using AIFS and the decrease in the combined load is 
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also more pronounced. The above results confirm that by varying CWmin it is possible 

to control the interaction between the MAC bandwidth components in order to 

prioritise a particular STA over another and thereby improve its QoS. 

 

5.2.2 "Nailing-up" Bandwidth 

 

We use the same scenario as described in section 5.1.2. (i.e. both STAs are ramping 

from zero to full saturation) but instead we propose to reduce the priority of STA2 by 

increasing its CWmin. The following table shows the MAC parameters selected for the 

two STAs in the simulations: 

 

Parameters STA1 STA2 
AIFSN 2 2 
CWmin 7 7,15,31,63,127 
CWmax 1023 1023 

 

Table 5.6 MAC Parameters for the Two STAs 
 

The following figures show the performance characteristics of STA1 and STA2 in 

terms of their throughput and PLR as a function of the offered load. 
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Figure 5.21 CWmin = 7 for both STAs 
 

 
 

Figure 5.22 CWmin = 15 for STA2  Figure 5.23 CWmin = 31 for STA2 
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Figure 5.24 CWmin = 63 for STA2  Figure 5.25 CWmin = 127 for STA2 

 

We can clearly see that as CWmin increases for STA2 (i.e. as its priority decreases) 

both STAs are experiencing different throughputs and PLRs. Indeed the throughput of 

STA1 is increasing up to medium saturation (i.e. until there is no more bandwidth 

available) and its PLR is decreasing. Whereas for STA2 its throughput is decreasing 

and its PLR is increasing. This is due to the same reason as described in section 5.1.2, 

i.e. the two STAs are not equally sharing the available bandwidth in the wireless 

medium since STA1 has priority over STA2 when accessing the medium hence giving 

STA1 the opportunity to use up more bandwidth than STA2. Therefore it is also 

possible to "nail-up" bandwidth for a STA by varying CWmin but it should be noted 

that the differentiation is not as pronounced, i.e. STA2’s throughput is not forced to 

zero as when varying AIFS. On the other hand we can see that the point of onset of 

severe PLR for STA1 occurs later (but does not become negligible) compared with the 

case when AIFS is varied. We can also see that the gain in throughput for STA1 is not 

as effective since some of the available bandwidth is being wasted when using 

excessively high values for CWmin. 
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5.2.3 Region of QoS Differentiation 

 

We use the same scenario as described in section 5.1.3 but instead we propose to 

prioritise STA1 over STA2 and to monitor the effects on the region of QoS 

differentiation. The following table shows the MAC parameters selected for the two 

STAs in the simulations: 

 

Parameters STA1 STA2 
AIFSN 2 2 
CWmin 7 15,31,63 
CWmax 1023 1023 

 

Table 5.7 MAC Parameters for the Two STAs 
 

The following figures show the performance characteristics of STA1 and STA2 in 

terms of their throughput and PLR as a function of the offered load. 

 

 
 

Figure 5.26 CWmin = 15 for STA2  Figure 5.27 CWmin = 31 for STA2 
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Figure 5.28 CWmin = 63 for STA2 

 

We can see from these results that CWmin has the same effect as AIFS on QoS 

differentiation therefore the same conclusions can be drawn. We can see that as 

CWmin increases for STA2, the region of QoS differentiation also expands, i.e. the 

capacity of STA1 increases but the difference with AIFS is that STA2 capacity 

simultaneously decreases which makes the region of differentiation even wider. It 

should also be noted that STA1 capacity improves faster than when using AIFS which 

confirms that CWmin is a coarser parameter on QoS differentiation than AIFS. 

 



Chapter 5 Simulation Results 
 

 
81 

5.3 Combining AIFS and CWmin 

 

We use the same test scenario as described in section 5.1.2. (i.e. both STAs are 

ramping from zero to full saturation) but instead we propose to reduce the priority of 

STA2 by increasing both AIFS and CWmin and to monitor the throughput and PLR 

experienced by both STAs. The following table shows the MAC parameters selected 

for the two STAs in the simulations: 

 

Parameters STA1 STA2 
AIFSN 2 6 
CWmin 7 31 
CWmax 1023 1023 

 

Table 5.8 MAC Parameters for the Two STAs 
 

The following figures show the STA differentiation obtained by varying just AIFS or 

CWmin and then by varying both AIFS and CWmin. The performance characteristics of 

STA1 and STA2 in terms of their throughput and PLR as a function of the offered load 

is shown. 

 

 
 

Figure 5.29 AIFS = 6 for STA2  Figure 5.30 CWmin = 31 for STA2 
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Figure 5.31 AIFS = 6 and CWmin = 31 for STA2 

 

We can clearly see the advantage of combining both AIFS and CWmin over varying 

either AIFS or CWmin on its own on the STA differentiation. We can see in Figure 

5.31 that STA1 has a higher throughput since STA2’s throughput is forced to zero and 

we can also see that the onset of severe PLR for STA1 happens at a higher offered 

load than in Figure 5.29 and 5.30. 

 

From the previous results it appears that CWmin is a coarser tuning parameter when 

differentiating between STAs whereas AIFS appears to be a finer tuning parameter. 

The combination of varying both AIFS and CWmin is next employed to establish a 

class-based differentiated service QoS scheme, e.g. a Gold class, a Silver class and a 

Bronze class of service. 
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5.4 Class-based Differentiated Service (CBDS) QoS Scheme 

 

A CBDS QoS scheme should be set up in such a way that at all times, all STAs 

belonging to a higher priority class (irrespective of the number of STAs, traffic types, 

network load conditions, etc.) will always experience a better service than STAs 

belonging to lower priority classes. We show how the AIFS and CWmin parameters 

can be set so as to establish such a QoS scheme. 

 

We propose to examine a scenario which comprises three QoS classes with three 

STAs having different priorities within each class. Here, we define the QoS condition 

as being that all STAs in a given class experience a higher throughput than STAs in a 

class of lower priority. All STAs generate packets with packet size equal to 512 bytes 

and an exponentially distributed inter-arrival time, i.e. Poisson traffic. The load 

presented to the wireless medium by all STAs is ramped from zero to full saturation 

in steps of 50 pps. 

 

We consider two cases. In the first case we use CWmin to set the boundaries between 

the classes and we use AIFS to fine tune, i.e. differentiate between the STAs within a 

class. Whereas in the second case we do the opposite, i.e. we use AIFS to set up the 

class boundaries and CWmin to fine tune within a class. 

 

Case 1: 

 

The following table shows the MAC parameters used in the simulation to set the class 

boundaries and to differentiate between the STAs: 

 

 Gold class 
(CWmin = 7) 

Silver class 
(CWmin = 15) 

Bronze class 
(CWmin = 31) 

STA1 AIFSN = 2 AIFSN = 2 AIFSN = 2 
STA2 AIFSN = 4 AIFSN = 4 AIFSN = 4 
STA3 AIFSN = 6 AIFSN = 6 AIFSN = 6 

 

CWmax = 1023 for all STAs. 

Table 5.9 Case 1 Parameters 
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The following figure shows the performance characteristics of the wireless STAs in 

terms of their throughput as a function of the offered load. 

 

 
 

Figure 5.32 Case 1 Throughput 
 

We can see from this figure that the QoS condition defined above is not respected, 

STA1 belonging to the Silver class (STAS1) experiences a better throughput than STA2 

and STA3 of the Gold class (STAG2 and STAG3). This is also the case for the Silver 

class, STA1 belonging to the Bronze class (STAB1) experiences a better throughput 

than STAS2 and STAS3. 

 

When plotting the PLR we can see that the same problem appears, i.e. the QoS 

condition is not respected. 
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Figure 5.33 Case 1 PLR 
 

We can also see that all 9 STAs are experiencing a poor PLR. 

 

To remedy to this problem we could use a larger value of CWmin for the Silver and 

Bronze classes, i.e. CWmin = 31 and CWmin = 127 respectively but this is not an 

optimal solution as we cannot ensure that the QoS condition will be respected in every 

case. Moreover, in the case where there are more than three QoS classes we would 

run out of CWmin values. A better approach to solving the problem is to use AIFS to 

set the class boundaries and CWmin to differentiate between the STAs within a class. 

This leads us to the second case. 
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Case 2: 

 

The following table shows the MAC parameters used in the simulation to set the class 

boundaries and to differentiate between the STAs: 

 

 Gold class 
(AIFSN = 2) 

Silver class 
(AIFSN = 34) 

Bronze class 
(AIFSN = 66) 

STA1 CWmin = 7 CWmin = 7 CWmin = 7 
STA2 CWmin = 15 CWmin = 15 CWmin = 15 
STA3 CWmin = 31 CWmin = 31 CWmin = 31 

 

Table 5.10 Case 2 Parameters 
 

The AIFSN values have been chosen in order to ensure that the QoS condition is 

always satisfied, i.e. the scheme has been designed as a worst-case scenario. If STAG3 

were to pick 31, the highest possible value for its BC, STAG3 would have to wait for 

its AIFS plus 31 slots (i.e. 670µs1) before transmitting. Whereas if STAS1 were to pick 

0, the lowest possible value for its BC, STAS1 would have to wait for at least its AIFS, 

i.e. 680µs. This is the same idea as the non-overlapping contention processes scenario 

described in Figure 5.13. This scenario has also been applied to determine AIFS for 

the Bronze class. This approach ensures that the QoS condition will always be 

respected. 

 

The following figure shows the performance characteristics of the wireless STAs in 

terms of their throughput as a function of the offered load. 

 

                                                
1 See equations 5.1, 5.2 and 5.3 
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Figure 5.34 Case 2 Throughput 
 

The following figure shows the performance characteristics of the wireless STAs in 

terms of their PLR as a function of the offered load. 
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Figure 5.35 Case 2 PLR 
 

We can see from the above figures that the QoS condition is now respected, the Gold 

STAs always get better service (i.e. in terms of throughput and PLR) than the Silver 

and Bronze STAs. This is also true for the Silver STAs which also get a better service 

than the Bronze STAs. It is also important to notice that the priorities within the 

classes are also respected. Therefore these results confirm that using AIFS to set the 

class boundaries and CWmin to differentiate between the STAs within a class is the 

better approach. 

 

It should also be noted that this CBDS QoS scheme provides significant 

improvements for high priority STAs, however these improvements are typically 

achieved at the cost of reduced performance for lower priority STAs (as one would 

expect in a differentiated service scheme). 

 



Chapter 5 Simulation Results 
 

 
89 

This CBDS QoS scheme could be usefully applied to a real world scenario, e.g. a 

hotspot service where the operator could offer its customers different levels of 

services, i.e. Gold, Silver and Bronze. A customer who pays a premium for the Gold 

service will have the highest priority in terms of receiving service over the other 

customers using lower (and usually cheaper) services. 
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5.5 Guidelines for Designing a CBDS QoS Scheme 

 

If this CBDS QoS scheme were to be applied to a larger scale scenario, e.g. a hotspot 

scenario, the following guidelines should be taken into account. 

 

In a class we can have up to 8 possible different priorities since there are 8 possible 

values available for the CWmin parameter, (i.e. 7, 15, 31, 63, 127, 255, 511 and 1023) 

otherwise we can have as many STAs with same priorities in a class. The CBDS QoS 

scheme can also have as many classes of service as needed as there are no limitations 

with the AIFSN values. 

 

In order to guarantee that all STAs belonging to a higher priority class will always 

experience a better service than lower priority class STAs, the CBDS QoS scheme 

should be designed on a worst-case scenario basis, i.e. the boundaries between the 

classes should be set according to the non-overlapping contention processes scenario 

as described in Figure 5.13. The following tables summarize all possible AIFSN 

values that can be used for the Silver and Bronze class boundaries. 

 

The following AIFSN values have been calculated using the equations 5.1, 5.2 and 

5.3 with the AIFSN value for the Gold class set to 2. 

 

Gold Priorities 
(CWmin values) 

Silver class 
(AIFSN values) 

7 10 
15 18 
31 34 
63 66 

127 130 
255 258 
511 514 
1023 1026 

 

Table 5.11 AIFSN values for the Silver class 
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Bronze class (AIFSN values): 

 

Silver 
class 

Silver 
Priorities 

10 18 34 66 130 258 514 1026 

7 18 26 42 74 138 266 522 1034 
15 26 34 50 82 146 274 530 1042 
31 42 50 66 98 162 290 546 1058 
63 74 82 98 130 194 322 578 1090 
127 138 146 162 194 258 386 642 1154 
255 266 274 290 322 386 514 770 1282 
511 522 530 546 578 642 770 1026 1538 

1023 1034 1042 1058 1090 1154 1282 1538 2050 
 

Table 5.12 AIFSN values for the Bronze class 
 

Worked example on how to use the tables: 

 

Suppose we have 3 different priorities within the Gold class, i.e. the lowest priority 

STA will have its CWmin set to 31. Therefore the AIFSN value for the Silver class 

should be set to 34 (see table 5.11) in order to design the CBDS QoS scheme for a 

worst-case scenario (i.e. the boundaries between the classes should be set such that 

there are no overlapping contention processes between the STAs belonging to 

different classes). 

 

Suppose we now have 4 different priorities in the Silver class, i.e. the lowest priority 

STA will have its CWmin set to 63. Therefore the AIFSN value for the Bronze class 

should be set to 98, i.e. read off from the column "34" which intercept with the row 

"63" (see table 5.12). 

 

We can see from these tables that if there are too many different priorities in higher 

priority classes, the AIFSN values for the lower priority classes can reach excessively 

high values making the CBDS QoS scheme impractical for the lower priority classes. 

This problem could be resolved by not designing the QoS scheme around a worst-case 

scenario and therefore smaller values of AIFSN could be used for lower priority 

classes, but unfortunately this approach would not be able to guarantee that high 

priority STAs would always get a better service than lower priority STAs. 
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Consequently this would be a significant problem in the case of a hotspot scenario 

where a service provider wants to offer many different levels of service to its 

customers. 

 

A major consideration in designing any such CBDS QoS scheme is that it is traffic 

load dependent; the performance of a STA depends to a large extent on other STAs 

traffic loads, i.e. if high priority STAs want to use most of the available bandwidth, 

lower priority STAs will ultimately suffer. In order to minimise this problem the QoS 

scheme parameters (i.e. AIFS and CWmin) should be updated in a real-time manner 

based on the number of STAs, STAs priorities, traffic types and network load 

conditions, etc. 
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5.6 Summary and Conclusions 

 

From the simulation tests conducted in this study we have identified that when STAs 

no longer have sufficient BWfree, STAs experience poor QoS. It is clear that different 

STAs (depending on their traffic load) require different amounts of BWfree to be 

available in order to support their QoS requirements. In order to solve this problem 

we have shown that by varying AIFS or CWmin it is possible to control the interaction 

between the MAC bandwidth components in order to prioritise a particular STA over 

another and thereby improve its QoS. 

 

We have shown that it is possible to "nail-up" bandwidth for a STA by the appropriate 

setting of the 802.11e parameters (AIFS and CWmin) thereby considerably improving 

QoS support for STAs or classes of service. We also identified the 802.11e operation 

region where QoS differentiation through the 802.11e mechanism is effective. We 

have observed that this region is load dependent which suggests that the 802.11e 

parameters will have to be continually updated to meet the changing load. It is also 

obvious from the results that it is easier to differentiate between STAs when 

combining AIFS and CWmin and that CWmin is a coarser tuning parameter when 

differentiating between STAs whereas AIFS appears to be a finer tuning parameter. 

 

By combining the effects of these two 802.11e parameters on QoS provisioning we 

have devised a set of design rules for establishing a CBDS QoS scheme comprising 

three QoS classes (e.g. a Gold class, a Silver class and a Bronze class of service). We 

have shown that AIFS should be used to set the class boundaries and CWmin to 

differentiate between stations within a class. The set of design rules ensures that at all 

times all STAs belonging to a higher priority class (irrespective of the number of 

STAs, traffic types, network load conditions, etc.) should always experience a better 

service than STAs belonging to lower priority classes. 

 

Finally, an additional consideration in any such QoS scheme is that it is traffic load 

dependent which suggests that if the 802.11e mechanism is to be successfully 

deployed in a WLAN network (e.g. hotspot scenario) the 802.11e parameters will 

have to be adjusted in response to the continually changing load conditions. 
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Chapter 6 
 
 

Conclusions 
 
 
 
6.1 General Conclusions 
 

In this thesis we have reviewed the proposed 802.11e QoS standard that is currently 

undergoing final revisions by the IEEE for approval sometime in 2004. As 802.11e 

WLAN equipment is not yet available, performance studies can only be based upon 

simulation. Consequently we have developed a computer simulation model that 

faithfully implements the latest draft of the 802.11e standard [7]. The simulator was 

developed in C/C++ and essentially implements the 802.11e MAC mechanism. We 

simulated the contention-based channel access EDCA mechanism only and have 

implemented FIFO buffers in every STA which allowed us to calculate throughput, 

packet delay, jitter and packet loss which are important QoS metrics when measuring 

and monitoring the level of QoS experienced by STAs. The simulator was tested 

using performance results from published papers on the 802.11e standard to ensure 

correct implementation of the standard by the simulator. After being completely 

satisfied with the correct operation of the simulator, traffic-engineering tests were 

carried out with regard to throughput and packet loss. The objective here was to 

identify the effects of varying the 802.11e parameters on performance. From the range 

of tuneable parameters that 802.11e offers, we have identified the two most important 

parameters for QoS provisioning, namely AIFS which is the minimum time interval 

between the wireless medium becoming idle and the start of transmission of a frame 

and the CW size from which a random number is drawn as part of the access 

mechanism. 
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As a result of these simulation tests a good understanding of the effects of these two 

parameters on performance was achieved. 

 

In order to gain an insight into the operation of the 802.11e MAC mechanism we have 

identified a set of MAC bandwidth components that present a useful and intuitive 

descriptive framework of the MAC mechanism. At any given time the wireless 

medium can be either busy (STAs are transmitting frames) or idle (the wireless 

medium is not in use). Based on this observation we define the MAC bandwidth 

components that describe the MAC operation. First, the load bandwidth (BWload) 

corresponds to the bandwidth used for frame transmission and which determines the 

throughput of a STA. Next, the idle bandwidth (BWidle) corresponds to the unused 

bandwidth on the wireless medium (i.e. when no frames are being transmitted). The 

BWidle subdivided into two components: The access bandwidth (BWaccess) which 

corresponds to the idle bandwidth required by STAs when accessing the medium prior 

to starting frame transmission and the free bandwidth (BWfree) which corresponds to 

the remaining unused idle bandwidth that will determine the QoS experienced by the 

STAs. 

 

From the simulation tests conducted in this study we have identified that when STAs 

no longer have sufficient BWfree, STAs experience poor QoS. It is clear that different 

STAs (depending on their traffic load) require different amounts of BWfree to be 

available in order to support their QoS requirements. In order to solve this problem 

we have shown that by varying AIFS or CWmin it is possible to control the interaction 

between the MAC bandwidth components in order to prioritise a particular STA over 

another and thereby improve its QoS. 

 

We have shown that it is possible to "nail-up" bandwidth for a STA by the appropriate 

setting of the 802.11e parameters (AIFS and CWmin) thereby considerably improving 

QoS support for STAs or classes of service in IEEE 802.11 networks. We also 

identified the 802.11e operation region where QoS differentiation through the 802.11e 

mechanism is effective. We have observed that this region is load dependent which 

suggests that the 802.11e parameters will have to be continually updated to meet the 

changing load. It is also obvious from the results that it is easier to differentiate 

between STAs when combining AIFS and CWmin and that CWmin is a coarser tuning 
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parameter when differentiating between STAs whereas AIFS appears to be a finer 

tuning parameter. 

 

By combining the effects of these two 802.11e parameters on QoS provisioning we 

have devised a set of design rules for establishing a class-based differentiated service 

QoS scheme comprising three QoS classes (e.g. a Gold class, a Silver class and a 

Bronze class of service). We have shown that AIFS should be used to set the class 

boundaries and CWmin to differentiate between stations within a class. The set of 

design rules ensures that at all times all STAs belonging to a higher priority class 

(irrespective of the number of STAs, traffic types, network load conditions, etc.) 

should always experience a better service than STAs belonging to lower priority 

classes. 

 

An additional consideration in any such QoS scheme is that it is traffic load dependent 

which suggests that if the 802.11e mechanism is to be successfully deployed in a 

WLAN network (e.g. hotspot scenario) the 802.11e parameters will have to be 

continually adjusted in order to respond to the changing load. 

 

Despite these problems, we find that the proposed 802.11e QoS standard (at least in 

the case of the EDCA mechanism) to be attractive because of its simplicity and its 

ability to provide QoS differentiation which is an important improvement over legacy 

DCF. 
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6.2 Future Work 
 

In this thesis we have evaluated the EDCA mechanism for contention-based channel 

access through computer simulation. Future research topics in this area would be to 

also simulate and evaluate the HCCA polling mechanism for contention-free channel 

access and to compare performance results with the EDCA mechanism. 

 

Once the proposed 802.11e QoS standard is ratified and equipment becomes available 

it would be interesting to evaluate the two aspects of the contention-based and 

contention-free channel access methods in a real wireless LAN and to compare the 

performance results with the simulated results. 

 

Although 802.11e provides QoS facilities to users it does not in itself deliver QoS. 

Instead the 802.11e standard should be viewed rather as an enabling technology for 

QoS provisioning that additionally requires some higher-level control/management 

functionality. Moreover we have seen that the EDCA mechanism is traffic load 

dependent, therefore in order for the proposed 802.11e QoS mechanism to be 

effective, the 802.11e parameters will need to be continually adjusted in order to 

ensure QoS guarantees are fulfilled for all traffic loads. Consequently it is necessary 

to develop and implement a Radio Resource Control (RRC) algorithm for automated 

QoS provisioning on IEEE 802.11e compliant WLANs. 

 

In the following figure we propose a scheme for automated QoS provisioning. 
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Figure 6.1 Automated QoS Provisioning Scheme 
 

In order to develop the following RRC algorithm a number of key elements need to be 

taken into consideration. 

 

(1) To determine the nature of the interaction between the various MAC 

bandwidth components, i.e. BWaccess, BWload and BWfree which to a certain 

extent have been dealt with in this work. 

(2) To establish how the offered traffic load maps onto these MAC bandwidth 

components. 

(3) To establish how the MAC bandwidth components determine the output 

traffic characteristics, i.e. throughput and associated QoS metrics. 

(4) To develop a traffic probe for measuring traffic loads and bandwidth 

utilisation (i.e. MAC bandwidth components) on the wireless medium. This 

tool should be non-intrusive and ideally should operate by passively "sniffing" 

packets on the wireless medium. 

(5) To establish how the 802.11e parameters will need to be adjusted in order to 

deliver QoS provisioning. Again, to a certain extent this has been considered 

in this work. 

 

BWload

BWaccess
BWfree

MAC Mechanism

INPUT TRAFFIC OUTPUT TRAFFIC

Traffic 
probe

RRC Algorithm 
measurementscontrol

802.11e 
parameters 

Offered Load Throughput 
and QoS

(1)

(4)

(3)(2)

(5)

(6)



Chapter 6 Conclusions 
 

 
99 

(6) Finally to develop a robust and stable RRC algorithm, i.e. closing the control 

loop whereby the traffic and bandwidth usage information obtained from the 

probe is used to adaptively adjust the 802.11e parameters. 

 

This work has proven to be an extremely useful study as we have gained an important 

insight into the operation of the 802.11e MAC. It also suggests a set of design rules 

for the appropriate setting of the 802.11e parameters in order to establish a class-

based differentiated service QoS scheme for deployment in a WLAN hotspot 

scenario. 
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