1,762 research outputs found

    Linking an integrated framework with appropriate methods for measuring QoE

    Get PDF
    Quality of Experience (QoE) has recently gained recognition for being an important determinant of the success of new technologies. Despite the growing interest in QoE, research into this area is still fragmented. Similar - but separate - efforts are being carried out in technical as well as user oriented research domains, which are rarely communicating with each other. In this paper, we take a multidisciplinary approach and review both user oriented and technical definitions on Quality of Experience (including the related concept of User Experience). We propose a detailed and comprehensive framework that integrates both perspectives. Finally, we take a first step at linking methods for measuring QoE with this framework

    QoE Modelling, Measurement and Prediction: A Review

    Full text link
    In mobile computing systems, users can access network services anywhere and anytime using mobile devices such as tablets and smart phones. These devices connect to the Internet via network or telecommunications operators. Users usually have some expectations about the services provided to them by different operators. Users' expectations along with additional factors such as cognitive and behavioural states, cost, and network quality of service (QoS) may determine their quality of experience (QoE). If users are not satisfied with their QoE, they may switch to different providers or may stop using a particular application or service. Thus, QoE measurement and prediction techniques may benefit users in availing personalized services from service providers. On the other hand, it can help service providers to achieve lower user-operator switchover. This paper presents a review of the state-the-art research in the area of QoE modelling, measurement and prediction. In particular, we investigate and discuss the strengths and shortcomings of existing techniques. Finally, we present future research directions for developing novel QoE measurement and prediction technique

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    QoE-ensured Price Competition Model for Emerging Mobile Networks

    Get PDF
    The ubiquitous availability of devices such as smart phones, tablets, and other portable devices enables the collection of massive amounts of distributed data from the daily lives of citizens. These types of emerging mobile networks can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods. In such networks, price competition is the most important factor among the participants (mobile devices, Services Organizers and users) that highly affects their Quality-of-Experience (QoE). In this article, we first explain how a game theory model can depict social behavior, price competition and the evolutionary relationship among devices, Services Organizers (SOs) and users, and then we provide insights into understanding the price competition process of those participants in mobile networks. Finally, we outline several important open research directions

    Assessing quality of experience of IPTV and video on demand services in real-life environments

    Get PDF
    The ever growing bandwidth in access networks, in combination with IPTV and video on demand (VoD) offerings, opens up unlimited possibilities to the users. The operators can no longer compete solely on the number of channels or content and increasingly make high definition channels and quality of experience (QoE) a service differentiator. Currently, the most reliable way of assessing and measuring QoE is conducting subjective experiments, where human observers evaluate a series of short video sequences, using one of the international standardized subjective quality assessment methodologies. Unfortunately, since these subjective experiments need to be conducted in controlled environments and pose limitations on the sequences and overall experiment duration they cannot be used for real-life QoE assessment of IPTV and VoD services. In this article, we propose a novel subjective quality assessment methodology based on full-length movies. Our methodology enables audiovisual quality assessment in the same environments and under the same conditions users typically watch television. Using our new methodology we conducted subjective experiments and compared the outcome with the results from a subjective test conducted using a standardized method. Our findings indicate significant differences in terms of impairment visibility and tolerance and highlight the importance of real-life QoE assessment

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network
    corecore