378 research outputs found

    The Impact of LSI (Large Scale Integration) on System Packaging

    Get PDF
    System packaging of LSI circuit

    Environmental-Based Characterization of SoC-Based Instrumentation Systems for Stratified Testing

    Get PDF
    This paper proposes a novel environmental-based method for evaluating the good yield rate (GYR) of systems-on-chip (SoC) during fabrication. Testing and yield evaluation at high confidence are two of the most critical issues for the success of SoC as a viable technology. The proposed method relies on different features of fabrication, which are quantified by the so-called Fabrication environmental parameters (EPs). EPs can be highly correlated to the yield, so they are analyzed using statistical methods to improve its accuracy and ultimately direct the test process to an efficient execution. The novel contributions of the proposed method are: 1) to establish an adequate theoretical foundation for understanding the fabrication process of SoCs together with an assurance of the yield at a high confidence level and 2) to ultimately provide a realistic approach to SoC testing with an accurate yield evaluation. Simulations are provided to demonstrate that the proposed method significantly improves the confidence interval of the estimated yield as compared with existing testing methodologies such as random testing (RT)

    High Confidence Testing for Instrumentation System-on-Chip with Unknown-Good-Yield

    Get PDF
    SoCs are in general built with embedded IP cores, each of which is procured from different IP providers with no prior information on known-good-yield (KGY). In practice, partial testing is a practical choice for assuring the yield of the product under the stringent time-to-market requirements. Therefore, a proper sampling technique is a key to high confidence testing and cost effectiveness. Based on previous research, this paper proposes a novel statistical testing technique for increasingly hybrid integrated systems fabricated on a single silicon die with no a-priori empirical yield data. This problem is referred to as the unknown-good-yield (UKGY) problem. The proposed testing method, referred to as regressive testing (RegT) in this paper, exploits another way around by using parameters (referred to as assistant variables (AV)) that are employed to evaluate the yields of randomly sampled SoCs and thereby estimating the good yield by using a regression analysis method with regard to confidence intervals. Numerous simulations are conducted to demonstrate the efficiency and effectiveness of the proposed RegT in comparison to characterization-based testing methods

    Materials for high-density electronic packaging and interconnection

    Get PDF
    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production

    Development and Packaging of Microsystems Using Foundry Services

    Get PDF
    Micro-electro-mechanical systems (MEMS) are a new and rapidly growing field of research. Several advances to the MEMS state of the art were achieved through design and characterization of novel devices. Empirical and theoretical model of polysilicon thermal actuators were developed to understand their behavior. The most extensive investigation of the Multi-User MEMS Processes (MUMPs) polysilicon resistivity was also performed. The first published value for the thermal coefficient of resistivity (TCR) of the MUMPs Poly 1 layer was determined as 1.25 x 10(exp -3)/K. The sheet resistance of the MUMPs polysilicon layers was found to be dependent on linewidth due to presence or absence of lateral phosphorus diffusion. The functional integration of MEMS with CMOS was demonstrated through the design of automated positioning and assembly systems, and a new power averaging scheme was devised. Packaging of MEMS using foundry multichip modules (MCMs) was shown to be a feasible approach to physical integration of MEMS with microelectronics. MEMS test die were packaged using Micro Module Systems MCM-D and General Electric High Density Intercounect and Chip-on-Flex MCM foundries. Xenon difluoride (XeF2) was found to be an excellent post-packaging etchant for bulk micromachined MEMS. For surface micromachining, hydrofluoric acid (HF) can be used

    Advanced information processing system for advanced launch system: Hardware technology survey and projections

    Get PDF
    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS)

    JTEC Panel report on electronic manufacturing and packaging in Japan

    Get PDF
    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies

    OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY

    Get PDF
    ABSTRACT Title of Dissertation: OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY Zhen Shi, Doctor of Philosophy, 2004 Dissertation directed by: Associate Professor Peter A. Sandborn Department of Mechanical Engineering For electronic systems it is not uncommon for 60% or more of the recurring cost to be associated with testing. Performing tradeoffs associated with where in a process to test and what level of test, diagnosis and rework to perform are key to optimizing the cost and yield of an electronic system's assembly. In this dissertation, a methodology that uses a real-coded genetic algorithm has been developed to minimize the yielded cost of electronic products by optimizing the locations of test, diagnosis and rework operations and their characteristics. This dissertation presents a test, diagnosis, and rework analysis model for use in electronic systems assembly. The approach includes a model of functional test operations characterized by fault coverage, false positives, and defects introduced in test; in addition, rework and diagnosis operations (diagnostic test) have variable success rates and their own defect introduction mechanisms. The model accommodates multiple rework attempts on a product instance. For use in practical assembly processes, the model has been extended by defining a general form of the relationship between test cost and fault coverage. The model is applied within a framework for optimizing the location(s) and characteristics (fault coverage/test cost and rework attempts) of Test/Diagnosis/Rework (TDR) operations in a general assembly process. A new search algorithm called Waiting Sequence Search (WSS) is applied to traverse a general process flow to perform the cumulative calculation of a yielded cost objective function. Real-Coded Genetic Algorithms (RCGAs) are used to perform a multi-variable optimization that minimizes yielded cost. Several simple cases are analyzed for validation and general complex process flows are used to demonstrate the applicability of the algorithm. A real multichip module (MCM) manufacturing and assembly process is used to demonstrate that the optimization methodology developed in this dissertation can find test and rework solutions that have lower yielded cost than solutions calculated by manually choosing the test strategies and characteristics. The optimization methodology with Monte Carlo methods included for the process flow under uncertain inputs is also addressed in this dissertation. It is anticipated that this research will improve the ability of manufacturing engineers to place TDR operations in a process flow. The ability to optimize the TDR operations can also be used as a feedback to a Design for Test (DFT) analysis of the electronic systems showing which portion of the system should be redesigned to accommodate testing for a higher level of fault coverage, and where there is less need for test

    Design and simulation of a multichip module

    Get PDF
    Electronic packaging has undergone basic changes in the last few years to keep up with an ever increasing demand for speed and miniaturization. Multichip Modules (MCM) represent a class of advanced packaging technologies. This thesis examines various MCM technologies and their relative advantages and disadvantages. Further, the design process for an MCM is presented in detail. The physical design and simulation for the performance ( electrical and thermal) is also detailed. A design example ties together all the issues that are relevant to the design of an MCM
    • …
    corecore