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Environmental-Based Characterization of SoC-Based
Instrumentation Systems for Stratified Testing

N.-J. Park, K. M. George, Nohpill Park, Minsu Choi, Yong-Bin Kim, and Fabrizio Lombardi

Abstract—This paper proposes a novel environmental-based
method for evaluating the good yield rate (GYR) of sys-
tems-on-chip (SoC) during fabrication. Testing and yield eval-
uation at high confidence are two of the most critical issues for
the success of SoC as a viable technology. The proposed method
relies on different features of fabrication, which are quantified by
the so-called Fabrication environmental parameters (EPs). EPs
can be highly correlated to the yield, so they are analyzed using
statistical methods to improve its accuracy and ultimately direct
the test process to an efficient execution. The novel contributions
of the proposed method are: 1) to establish an adequate theoretical
foundation for understanding the fabrication process of SoCs
together with an assurance of the yield at a high confidence level
and 2) to ultimately provide a realistic approach to SoC testing
with an accurate yield evaluation. Simulations are provided to
demonstrate that the proposed method significantly improves
the confidence interval of the estimated yield as compared with
existing testing methodologies such as random testing (RT).

Index Terms—System on a chip, fault coverage, defect level, fab-
rication environmental parameter (EP), good yield rate (GYR),
random testing (RT), stratified testing (ST).

NOMENCLATURE

EP (Fabrication) environmental parameter.
GYR Good yield rate.
IP Intellectual property.
KGY Known-good-yield.
RT Random testing.
ST Stratified testing.
SoC System-on-chip.
MCM Multichip module.
ANOVA Analysis of variance.

I. INTRODUCTION

THE increasing demand on high operational speed, density,
and customization for high-performance computing has

motivated the development and design of new instrumentation
and measurement systems. Due to its many advantages [1]–[10],
SoC is emerging as one of the key technology for the develop-
ment of high-performance instrumentation [11]. The rapid ad-
vances for manufacturing complex integrated circuits have been
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made possible by the complex integration of a large number of
components and devices. Today, a complete system can be in-
tegrated and assembled on a single chip (e.g., SoC). The minia-
turized size as well as performance benefits (such as low power
consumption, high speed and thermal dissipation) have made
possible a rapidly expanding market for SoC.

SoCs are generally manufactured by integrating a set of em-
bedded IP cores; these cores are designed and procured from dif-
ferent core providers and integrated with in-house custom-logic
designs on a single chip. The embedded core-based manufac-
turing of such a system necessitates new methods and proce-
dures for testing, repair and yield management due to the un-
availability of a priori information about the embedded IP cores
and their relation with the custom logic design.

For an SoC it is imperative to adequately assure and im-
prove the fabrication yield with multiple IP cores at integration
[27]–[29]. For an efficient integration of embedded IP cores, few
variables can reveal the relevant information pertaining to the
manufacturing yield of the IP cores throughout the fabrication
and design flow [30]. Furthermore, to facilitate seamless inte-
gration of IP cores into in-house custom-logic designs, the IP
cores can have configurable features [31] to create a flexible en-
vironment for the integration and manufacturing process as the
ultimate objective is to attain a high yield.

The main objective of the proposed method is two-fold: 1)
to provide a better understanding of the integration and fabri-
cation of SoCs for acceptable yield at a high confidence level
and 2) to propose an efficient test approach for evaluating the
GYR. The proposed method relies on a set of features which can
be experimentally established in the fabrication process; these
features affect the yield and test quality, and are extracted and
quantified; in this paper they are referred to as the EPs. EPs
can be highly correlated to the GYR. The correlation between
EPs can be used together with other fabrication-related param-
eters to develop an estimate of the GYR and an effective strat-
ified-based test process for the SoCs. Moreover, the proposed
approach can also be used to assure an adequate level of yield of
the SoCs. However, the correlation in the environmental-based
parameters (such as for example temperature, stress and pres-
sure) and related estimators (such as yield and defect level) is
not readily available to designers; therefore, their applicability
to test methodologies (such as sampling-based ST) must be as-
sessed. To address these issues a new and adequate measure,
referred to as the GYR, is introduced in this paper. GYR is used
to efficiently guide the fabrication process-related techniques
(such as ST and yield assurance) at a high confidence level.

This paper is organized as follows. In Section II, the current
literature as related to SoC testing is reviewed; previous works

0018-9456/$20.00 © 2005 IEEE
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are also introduced. The principles and the characterization of
the proposed method are described in Section III. Performance
evaluation of the proposed environmental-based testing method
and its comparison with a random sampling-based test method
are presented in Section IV. In the final section, discussion and
conclusions are presented.

II. REVIEW AND PRELIMINARY

Today’s high density and complexity of IC technology
such as MCM and SoC allow the design of complex digital
instrumentation systems. These systems require an extensive
test process to assure proper fabrication and reliable products;
different methods have been proposed to address testing of
these systems [16]–[25]. However, it is almost impossible to
test these chips exhaustively due to the excessive time overhead
and severe limitations in both controllability and observability
(inclusive of electrical access for example). This severely
restricts the use of conventional approaches [12], [15], [16]
for manufacturing test of today’s technologies such as MCM
and SoC. Novel approaches musy be adopted to guarantee the
quality of the incoming bare (unpackaged) chips prior to either
module assembly or IP core integration. Together with other
features (such as the structural integrity and performance of the
assembled devices or chips), isolation and repair of defective
parts have been advocated [15].

Exhaustive testing for defect and/or fault detection is too
costly and impractical when manufacturing SoCs [16]–[19]. A
different method that partially avoids many of the disadvan-
tages of exhaustive testing, is based on sampling, i.e., chips
are tested from a randomly sampled set, hence, such method
is referred to as random sampling-based testing. A stratified
method has been proposed for testing MCM systems [16]. Its
advantages are the improvement in quality level and cost-effec-
tiveness. This approach referred to as the lowest yield-stratum
first-testing (LYSFT) considers the unevenness of KGY of
stratification as a criterion for testing the chips on a MCM for
quality enhancement. An MCM is composed of a number of
sets (or strata) of chips with a KGY. Each stratum is procured
from a separate manufacturer [16]. Stratified-based testing
and yield assurance of MCMs are, however, fundamentally
different from SoC due to the unavailability of a priori yield
information, or the so-called unknown-good-yield problem [5].

As an SoC is designed and manufactured using deeply em-
bedded IP cores on a single chip, in practice it is not possible
to rely on conventional testing and yield evaluation methods.
There is no a priori information or data available on the yield of
the fabricated IPs due to the different integration and manufac-
turing processes of the cores. This is also different from previous
technologies in which the KGY of chips [application-specific IC
(ASIC) or MCM] for example is extracted from physical-level
information. Also, due to higher density and complexity at deep
submicron level, conventional fabrication methods are facing
tremendous challenges for manufacturing SoCs. SoC manufac-
turing has encountered substantial problems for attaining an ac-
ceptable yield at high confidence level for a realistic testing
technique. For SoCs, conventional testing methods are imprac-
tical and costly; methods based on Very Large Scale Integration

(VLSI) for ASIC and MCM are not effective because they may
not capture the new processes involved in SoC manufacturing.
Moreover, wafer or chip level information has limited relevance
due to the different integration processes of the IP cores and the
lack of known physical-level features on the yield. For example,
custom optimized ASICs have a well-exercised yield; MCMs
have been characterized using a KGY. Since there is no signifi-
cant information available during the integration and testing of
the embedded IP cores, past work on correlation between fab-
rication and related features (such as yield and defect level), is
not fully applicable.

The proposed method employs a set of features which ex-
perimentally appear in the fabrication process and directly af-
fect the yield and test quality. These features are extracted and
quantified; they are referred in this paper as the EPs. EPs can be
also highly correlated and through an extensive statistical anal-
ysis, they can be used to derive a stratified-based test process
and to assess the yield of the SoC. Then, the GYR is used as a
criterion to effectively guide the ST while retaining a high cov-
erage. An accurate GYR is established by using the proposed
method in which highly correlated EPs are categorized at dif-
ferent levels through a characterization of different EPs and a
statistical analysis of their correlations. This process can iden-
tify the stratification criteria for selecting (or sampling) the chips
(as components of the SoC) and testing them by providing sta-
tistical information on whether or not an EP has a significant
impact on the GYR. This is possible because SoCs from the
same wafer are fabricated under an homogeneous environment,
i.e., no significant variations occur within a wafer. Therefore,
sampling is conducted at SoC-level and EPs are used to guide
the sampling-based testing process through a novel character-
ization process; this process effectively relies on a statistical
test hypothesis technique that employs the ANOVA method.
Different measures such as the level in each EP for a given
SoC fabrication condition, or the stratification variables for sam-
pling-based testing to estimate the GYR, are employed. Having
identified a proper stratification structure, a post-stratified sam-
pling-based test process is conducted to estimate the unbiased
estimator of GYR by using a ratio estimation technique. This
paper will provide an efficient theoretical framework to realize a
new SoC-specific testing method and to enhance the confidence
level of the estimated GYR with high accuracy. Ultimately, the
efficient testing of the SoC as final product will be assessed by
assemblying the IP cores.

III. PROPOSED ENVIRONMENTAL-BASED TESTING

The proposed ST method firstly identifies and selects a set of
EPs that are highly correlated with GYR, using a multiway clas-
sification technique. Next, it builds a stratified sampling-based
testing framework in which the EPs are divided into levels as test
criterion. Finally, an unbiased estimator is derived for the GYR
with minimum variance as a solution for evaluating the yield of
an SoC at fabrication. As an example, a numerical experiment
is provided to show that the proposed method significantly im-
proves the confidence interval of the estimated yield compared
with conventional RT.
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Fig. 1. Proposed environmental-based testing.

Fig. 2. Sample treatment table for two-way classification method.

The proposed procedure to estimate the GYR, is shown in
Fig. 1; it consists of different steps which will be outlined in
more detail in the following sections. The proposed method has
the following unique features as corresponding to each of these
steps: through an environmental-based method the EPs and their
levels which could be correlated with the GYR, are identified;
through a statistical analysis the acceptance test of the EPs and
outcome with respect to the correlation with the GYR are estab-
lished; the stratification conditions for sampling-based testing
of the SoCs are then identified; with high accuracy the GYR is
estimated through a ratio procedure.

A. Environmental Characterization

The environmental characterization of an SoC is dependent
on many parameters, and referred to as EPs. An EP can be iden-
tified at physical level (such as temperature or pressure) as well
as at technology level (line width, power consumption for ex-
ample). The interaction among EPs can affect different mea-
sures (such as GYR) during the fabrication of a SoC.

A two-way classification method is proposed for identifying
the EPs which can be highly correlated with the GYR. This can

Fig. 3. Interaction between two EPs, A and B.

be extended to a multi-way classification without loss of gener-
ality [26]. In this paper, for simplicity a two-way classification
process is presented for justifying the technical rationale.

Each level represents a range of values for EP in the environ-
mental characterization. For instance, suppose two EPs are se-
lected, i.e., the temperature (denoted by
in level form) and the pressure (denoted by

in level form). So, there are so-called treatments
(i.e., each treatment is a coparameter of and ). Within
each treatment a set of SoCs is sampled, i.e., represents
the sampled SoCs within the range of the th level of , the
th level of ; and the th sample in the th treatment, where

. A sample treatment table can be
generated. For example, the levels of each EP can be given as
follows: Levels of (temperature): (100 C), (105 C),

(110 C), ; Levels of (pressure): (100 N/m ),
(105 N/m ), (110 N/m ), .
A sample treatment table is shown in Table II, where

the total sample size is (where is the number of
SoCs or sample size selected in each treatment). Note that

is the mean
GYR in each treatment;

is the mean GYR in each level of
is the mean

GYR in each level of
is the total mean GYR from the sampled SoCs.

A novel feature of the proposed ST is the capability to quan-
tify interactions among pairs of EPs (and possibly resulting in
an inconsistent deviation from the expected GYR value, if any).
This is illustrated in Fig. 3 for and ; these plots represent
the expected response (such as GYR), under the joint effect of

and . In Fig. 3, the lower two curves are consistent while
the top curve (Level 2 of ) is not. Any curve(s) inconsistent
with the others (e.g., the Level 2 of ) indicates that there exists
dependency between and . In this case, sampling for each
treatment should be constructed with replacement.

The theoretical model of the two-way classification method
(as used in the proposed approach) can be expressed statistically
as follows.

Let be the observed GYR of a tested SoC sample within
the th level of , the th level of , and the th sample of SoC
in the th treatment with ,
hence

(1)
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where is the total mean GYR from the sampled SoCs; is the
in the th treatment of is the in the th treatment

of is the interaction between the th treatment and the th
treatment.

Let be the residual, i.e., the difference between the ob-
served and estimated GYRs, and this can be expressed as

(2)

As in each is the deviation from the corre-
sponding mean value

(3)

and

(4)

B. Statistical Analysis

By using the model and the equations given previously, a sta-
tistical acceptance method such as the F-test can be conducted
next. The F-test is based on a sum of the squares technique and
is used to determine whether to accept an EP, i.e., based on the
environmental characterization whether the EP is highly corre-
lated with the GYR under a specified significance level (denoted
by ); this is the probability of making an erroneous decision
when selecting an EP (in generally, its value is rather low). To
conduct the F-test two new expressions must be derived. The
first equation is the difference (denoted by ) between
the observed GYR and the total mean of the GYR
from the sampled SoCs, i.e.

(5)

By squaring and summing both sides, then

(6)

where SST is the sum
of the squares (i.e., the variation of each sampled SoC);

SSA is the sum of the squares (it
represents the variation of ); SSB
is the sum of the squares (it represents the variation of

); SS (A * B)
is the sum of the squares which represents the inter-
action between and ; this process is denoted by

SSE is the sum of
the squares to represent the residual, i.e., it is the probability of

TABLE I
TEST HYPOTHESIS

accepting the EP if it is highly correlated with GYR after the
F-test.

A test hypothesis must be made to conduct the F-test based on
the previous expressions; in this case, the hypothesis is that there
exists at least a nonzero EP level; otherwise, there exists a joint
effect by the interaction between the two EPs. The summary of
the test hypothesis is given in Table I.

The test hypothesis is based on the ANOVA of the two-way
classification. The statistical parameters are shown in Table II.

In Table II, if each F-value does not satisfy the significance
probability (i.e., SProb), then the respective EP is rejected;
moreover if the interaction between and (i.e., )
does not satisfy the significance probability (i.e., ),
then has no statistical correlation with GYR. Using this
method, the EPs, and their levels which could be highly corre-
lated to the GYR, can be found together with the interactions
among EPs. This information will be used to provide a better
understanding of the SoC fabrication process, and to establish
a criterion for stratified sampling-based testing. Note that an
ultimate objective in yield modeling and analysis is to obtain
the true value of the yield (given a confidence interval and a
confidence level). However, in practice, the true yield value can
not be readily obtained.

The proposed estimation-based method is an alternative. A
point estimator has a variance which is the confidence interval
with respect to various confidence levels, and then theoretically
the true value is supposed to be within this confidence interval.
Therefore, theoretically, it is obvious that the proposed strati-
fied-sampling-based ST is superior to RT

(7)

This indicates that the proposed ST can offer a tighter GYR
interval than RT and, thus, ST is more efficient than RT.

C. Stratification for Sampling-Based Testing

In the proposed method, a stratified sampling is employed
for testing SoCs. A sampling-based testing approach for SoCs
is different from a conventional method because the GYR is the
ratio estimator under the assumption that the variance of GYRs
of the sampled SoCs (denoted by ) is homogeneous in each
stratum. The variance is asymptotically given by

(8)

where is the mean of is the total number of sampled
SoCs; is the total number of sampled SoCs, and

is the total number of strata. If is large enough, then the
variance of is

(9)
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TABLE II
ANOVA RESULTS FOR THE TWO-WAY CLASSIFICATION

TABLE III
ACCURACY COMPARISON FOR PROPOSED METHOD VERSUS RANDOM SAMPLING-BASED TESTING

Next, the sampled SoCs from the treatments in the environ-
mental characterization are rearranged to build a new framework
with the EPs which were accepted by the F-test.

D. Estimate of GYR

The true value of (or GYR) can be expressed by

(10)

where is the number of SoCs which have been tested and
diagnosed as fault free, thus, contributing to the GYR; is the
number of strata.

Then, , (i.e., the estimator of ) can be expressed by

(11)

or

(12)

where is the number of SoCs in the GYR for the th stratum.
Intuitively, is an unbiased estimator of such that

(13)

Its variance is then given by [13], [14] as follows:

(14)

Therefore, the estimator of GYR for the proposed method and
its variance can be established. Note that hereafter will be
used as an abbreviation of the GYR.

For stratified sampling-based test, the unbiased estimator of
is given by , and its variance is given by

(15)

For comparison with random sampling-based test, the unbi-
ased estimator of is

(16)

and its variance is

(17)

Using these estimators, the accuracy (denoted by and ,
respectively) versus the actual value can be assessed.

IV. SIMULATION RESULTS

In the initial analysis it was assumed that the sampled SoCs
are manufactured in a fabrication environment as described pre-
viously and the value corresponding to the observed of an
SoC is randomly generated for the EPs. The total number of
SoCs to be tested is 100. In the simulation, the actual value of

(i.e., GYR) is assumed to be 86.7. After having identified the
highly correlated EPs and their levels, then the observed s of
the sampled SoCs can be rearranged into strata.

for the proposed method and random sampling-based
testing can be calculated using the sample SoC variance for
various sizes as shown in Table III.

The numerical simulation model and the steps for the pro-
posed test method can be described as follows.

1) Random generation of GYR samples: Let be the GYR
of each SoC satisfying the condition and
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. 100 randomly generated values are
saved.

2) Stratification of the GYR samples: a three-level stratifica-
tion technique is used, i.e., EP level 1 ,
level 2 and level 3 .

3) GYR estimator and confidence interval of RT:
for each sample size , the GYR estimator of for RT
can be obtained as

(18)

Its confidence interval can be calculated as

(19)

where

(20)

4) The GYR estimator and the confidence interval
of the proposed method are then found as: for each sample
size , the GYR estimator of the proposed method
can be calculated as

(21)

where for each sample size selected

(22)

And is the number of strata and is the sample size
of each stratum. Then, the confidence interval for each
selected sample size, is given by

(23)

where

(24)

The GYR estimators and confidence intervals of RT (the pro-
posed method) for different sample sizes
are shown in the first and second (third and fourth) columns of
Table III, respectively.

Comparison is made with respect to the confidence interval
of the two testing methods (the proposed and a RT) as shown in
Figs. 4 and 5 with respect to the true value of (i.e., GYR) on
the vertical axis. Figs. 4 and 5 show that there is a significant
increase in accuracy compared with random sampling-based
testing; and also it is evident that there is less disagreement be-
tween the true value of and the value as estimated by the pro-
posed method. Such disagreement is higher when the value of

found by random sampling testing is utilized. This indicates

Fig. 4. Confidence interval of RT.

Fig. 5. Confidence interval of proposed testing.

that the proposed method improves both the accuracy of and
its confidence level.

V. DISCUSSION AND CONCLUSION

We have presented an environmental-based characterization
method for testing and assessing the GYR of SoC with high
confidence during fabrication. The EPs have been identified as
criteria to establish the GYR with high confidence. These crite-
rion parameters highly correlated to the GYR can be used as
a guidance to the stratification process in selection and sam-
pling SoCs for testing on a wafer. The proposed environmental-
based ST technique is based on the two statistical techniques
such as a statistical testing hypothesis (referred to as the envi-
ronmental design) and the analysis method ANOVA, in order
to identify the manufacturing parameters that affect the GYR
of the SoCs, and to manage the stratified sampling-based test
method. The experimental simulation results have demonstrated
that there is a significant improvement in confidence interval
by the proposed ST compared with the conventional random
sampling-based testing; a remarkable difference in GYR esti-
mated by ST compared with the one by the random sampling
test has also been observed. This shows ST is an efficient and
effective way to achieve an accurate yield estimation. Therefore,
the proposed environmental-based characterization method will
ultimately provide a sound theoretical yet practical foundation
for testing and assessing the GYR of SoC with high confidence
during fabrication.
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