13 research outputs found

    How to Quantify the Security Level of Embedded Systems? A Taxonomy of Security Metrics

    Get PDF
    Embedded Systems (ES) development has been historically focused on functionality rather than security, and today it still applies in many sectors and applications. However, there is an increasing number of security threats over ES, and a successful attack could have economical, physical or even human consequences, since many of them are used to control critical applications. A standardized and general accepted security testing framework is needed to provide guidance, common reporting forms and the possibility to compare the results along the time. This can be achieved by introducing security metrics into the evaluation or assessment process. If carefully designed and chosen, metrics could provide a quantitative, repeatable and reproducible value that would reflect the level of security protection of the ES. This paper analyzes the features that a good security metric should exhibit, introduces a taxonomy for classifying them, and finally, it carries out a literature survey on security metrics for the security evaluation of ES. In this review, more than 500 metrics were collected and analyzed. Then, they were reduced to 169 metrics that have the potential to be applied to ES security evaluation. As expected, the 77.5% of them is related exclusively to software, and only the 0.6% of them addresses exclusively hardware security. This work aims to lay the foundations for constructing a security evaluation methodology that uses metrics so as to quantify the security level of an ES

    Measuring Security: A Challenge for the Generation

    Get PDF
    This paper presents an approach to measuring computer security understood as a system property, in the category of similar properties, such as safety, reliability, dependability, resilience, etc. First, a historical discussion of measurements is presented, beginning with views of Hermann von Helmholtz in his 19th century work “Zählen und Messen”. Then, contemporary approaches related to the principles of measuring software properties are discussed, with emphasis on statistical, physical and software models. A distinction between metrics and measures is made to clarify the concepts. A brief overview of inadequacies of methods and techniques to evaluate computer security is presented, followed by a proposal and discussion of a practical model to conduct experimental security measurements

    Requirements for IT Security Metrics - an Argumentation Theory Based Approach

    Get PDF
    The demand for measuring IT security performance is driven by regulatory, financial, and organizational factors. While several best practice metrics have been suggested, we observe a lack of consistent requirements against which IT security metrics can be evaluated. We address this research gap by adopting a methodological approach that is based on argumentation theory and an accompanying literature review. As a result, we derive five key requirements: IT security metrics should be (a) bounded, (b) metrically scaled, (c) reliable, valid and objective, (d) context-specific and (e) computed automatically. We illustrate and discuss the context-specific instantiation of requirements by using the practically used vulnerability scanning coverage and mean-time-to-incident discovery metrics as examples. Finally we summarize further implications of each requirement

    A process model for implementing information systems security governance

    Get PDF
    Purpose; ; ; ; ; The frequent and increasingly potent cyber-attacks because of lack of an optimal mix of technical as well as non-technical IT controls has led to increased adoption of security governance controls by organizations. The purpose of this paper, thus, is to construct and empirically validate an information security governance (ISG) process model through the plan “do “check “act (PDCA) cycle model of Deming.; ; ; ; ; Design/methodology/approach; ; ; ; ; This descriptive research using an interpretive paradigm follows a qualitative methodology using expert interviews of five respondents working in the ISG domain in United Arab Emirates (UAE) to validate the theoretical model.; ; ; ; ; Findings; ; ; ; ; The findings of this paper suggest the primacy of the PDCA Deming cycle for initiating ISG through a risk-based approach assisted by industry-wide best practices in ISG. Regarding selection of ISG frameworks, respondents preferred to have ISO 27K supported by NIST as the core framework with other relevant ISG frameworks/standards forming the peripheral layer. The implementation focus of the ISG model is on mapping ISO 27K/NIST IT controls relevant IT controls selected from ISG frameworks from a horizontal and vertical perspective. Respondents asserted the automation of measurement and control mechanism through automation to assist in the feedback loop of the PDCA cycle.; ; ; ; ; Originality/value; ; ; ; ; The validated model helps academics and practitioners gain insight into the methodology of the phased implementation of an information systems governance process through the PDCA model, as well as the positioning of ITG and ITG frameworks in ISG. Practitioners can glean valuable insights from the empirical section of the research where experts detail the success factors, the sequential steps and justification of these factors in the ISG implementation process

    A process model for implementing information systems security governance.

    Get PDF
    Purpose: The frequent and increasingly potent cyber-attacks due to lack of an optimal mix of technical as well as non-technical IT controls, has led to increased adoption of security governance controls by organizations. The paper thus seeks to construct and empirically validate an information security governance process model through the Plan-Do-Check-Act cycle model of Deming. Design/methodology/approach: This descriptive research using an interpretive paradigm follows a qualitative methodology using expert interviews of five respondents working in the information security governance (ISG) domain in United Arab Emirates to validate the theoretical model. Findings: Our findings suggest the primacy of the Plan-Do-Check-Act Deming cycle for initiating ISG through a risk-based approach assisted by industry-wide best practices in ISG. Regarding selection of ISG frameworks, respondents preferred to have ISO 27K supported by NIST as the core framework with other relevant ISG frameworks/standards forming the peripheral layer. The implementation focus of the ISG model is on mapping ISO 27 K/NIST IT controls relevant IT controls selected from ISG frameworks from a horizontal and vertical perspective. Respondents asserted the automation of measurement and control mechanism through automation to assist in the feedback loop of the PDCA cycle. Originality/value: The validated model helps academics and practitioners gain insight into the methodology of the phased implementation of an information systems governance process through the PDCA model, as well as the positioning of ITG and ITG frameworks in ISG. Practitioners can glean valuable insights from the empirical section of the research where experts detail the success factors, the sequential steps, and justification of these factors in the ISG implementation process

    State of the art and future perspectives on security metrics and their applications

    Get PDF
    In modern society, security issues of IT Systems are intertwined with interdisciplinary aspects, from social life to sustainability, and threats endanger many aspects of every- one’s daily life. To address the problem, it’s important that the systems that we use guarantee a certain degree of security, but to achieve this, it is necessary to be able to give a measure to the amount of security. Measuring security is not an easy task, but many initiatives, including European regulations, want to make this possible. One method of measuring security is based on the use of security metrics: those are a way of assessing, from various aspects, vulnera- bilities, methods of defense, risks and impacts of successful attacks then also efficacy of reactions, giving precise results using mathematical and statistical techniques. I have done literature research to provide an overview on the meaning, the effects, the problems, the applications and the overall current situation over security metrics, with particular emphasis in giving practical examples. This thesis starts with a summary of the state of the art in the field of security met- rics and application examples to outline the gaps in current literature, the difficulties found in the change of application context, to then advance research questions aimed at fostering the discussion towards the definition of a more complete and applicable view of the subject. Finally, it stresses the lack of security metrics that consider interdisciplinary aspects, giving some potential starting point to develop security metrics that cover all as- pects involved, taking the field to a new level of formal soundness and practical usability

    Automating Cyber Analytics

    Get PDF
    Model based security metrics are a growing area of cyber security research concerned with measuring the risk exposure of an information system. These metrics are typically studied in isolation, with the formulation of the test itself being the primary finding in publications. As a result, there is a flood of metric specifications available in the literature but a corresponding dearth of analyses verifying results for a given metric calculation under different conditions or comparing the efficacy of one measurement technique over another. The motivation of this thesis is to create a systematic methodology for model based security metric development, analysis, integration, and validation. In doing so we hope to fill a critical gap in the way we view and improve a system’s security. In order to understand the security posture of a system before it is rolled out and as it evolves, we present in this dissertation an end to end solution for the automated measurement of security metrics needed to identify risk early and accurately. To our knowledge this is a novel capability in design time security analysis which provides the foundation for ongoing research into predictive cyber security analytics. Modern development environments contain a wealth of information in infrastructure-as-code repositories, continuous build systems, and container descriptions that could inform security models, but risk evaluation based on these sources is ad-hoc at best, and often simply left until deployment. Our goal in this work is to lay the groundwork for security measurement to be a practical part of the system design, development, and integration lifecycle. In this thesis we provide a framework for the systematic validation of the existing security metrics body of knowledge. In doing so we endeavour not only to survey the current state of the art, but to create a common platform for future research in the area to be conducted. We then demonstrate the utility of our framework through the evaluation of leading security metrics against a reference set of system models we have created. We investigate how to calibrate security metrics for different use cases and establish a new methodology for security metric benchmarking. We further explore the research avenues unlocked by automation through our concept of an API driven S-MaaS (Security Metrics-as-a-Service) offering. We review our design considerations in packaging security metrics for programmatic access, and discuss how various client access-patterns are anticipated in our implementation strategy. Using existing metric processing pipelines as reference, we show how the simple, modular interfaces in S-MaaS support dynamic composition and orchestration. Next we review aspects of our framework which can benefit from optimization and further automation through machine learning. First we create a dataset of network models labeled with the corresponding security metrics. By training classifiers to predict security values based only on network inputs, we can avoid the computationally expensive attack graph generation steps. We use our findings from this simple experiment to motivate our current lines of research into supervised and unsupervised techniques such as network embeddings, interaction rule synthesis, and reinforcement learning environments. Finally, we examine the results of our case studies. We summarize our security analysis of a large scale network migration, and list the friction points along the way which are remediated by this work. We relate how our research for a large-scale performance benchmarking project has influenced our vision for the future of security metrics collection and analysis through dev-ops automation. We then describe how we applied our framework to measure the incremental security impact of running a distributed stream processing system inside a hardware trusted execution environment

    On Security Management: Improving Energy Efficiency, Decreasing Negative Environmental Impact, and Reducing Financial Costs for Data Centers

    Get PDF
    Security management is one of the most significant issues in nowadays data centers. Selection of appropriate security mechanisms and effective energy consumption management together with caring for the environment enforces a profound analysis of the considered system. In this paper, we propose a specialized decision support system with a multilevel, comprehensive analysis scheme. As a result of the extensive use of mathematical methods and statistics, guidelines and indicators returned by the proposed approach facilitate the decision-making process and conserve decision-maker’s time and attention. In the paper we utilized proposed multilevel analysis scheme to manage security-based data flow in the example data center. Determining the most secure, energy-efficient, environmental friendly security mechanisms, we implemented the role-based access control method in Quality of Protection Modeling Language (QoP-ML) and evaluated its performance in terms of mentioned factors

    Evaluation of Efficiency of Cybersecurity

    Get PDF
    Uurimistöö eesmärgiks on uurida, kuidas tõhus küberjulgeolek on olnud edukas. Uurimistöö kasutab parima võimaliku tulemuse saamiseks mitmesuguseid uurimismeetodeid ja kirjanduse ülevaade on süstemaatiline. Kuid uurimistöö järeldus on see, et uuring ei suuda kinnitada või tagasi lükata peamist töö hüpoteesi. Uuring ei õnnestunud, sest puuduvad korralikud teooriad, mis näitavad ohutuse ja küberjulgeoleku nähtusi ning puuduvad head näitajad, mis annaksid küberohutuse tõhususe kohta kehtivaid ja ratsionaalseid tulemusi, kui hästi on küberkuritegevuse abil õnnestunud küberkuritegevuse tõhusaks võitmiseks ja küberkuritegude tõhusaks vähendamiseks. Seepärast on küberjulgeoleku teadusteooria ja julgeoleku teadusteooria vähearenenud 2018. aastal. Uuringud on teinud küberjulgeoleku ja turvalisuse arendamise põhilisi avastusi. Edasiste põhiuuringute suund on luua üldine turbeteooria, mis kirjeldab ohtlike muutujate ohtlike muutujate kavatsust, ressursse, pädevust ja edusamme ohtlike muutujate ja aksioomide puhul, kus ohtlike muutujate mõõtmisel saab teha selle sisse loodetavas ja teooria kirjeldab, millised on tõhusad meetmed, et vältida ja leevendada ning millised ei ole ja lõpuks kehtestada nõuetekohased mõõdikud, et mõõta turvalisuse ja küberjulgeoleku tõhusust loodetavus ja kehtivusega.The purpose of the thesis is to research how effectively cybersecurity has succeeded on its mission. The thesis used multiple research methods to get best possible answer and the literature review has been systematic. However, the conclusion of the research was that the study is unable to either confirm or reject the main working hypothesis. The study is unable to do it because of the lack of proper theories to describe what are the phenomena in secu-rity and cybersecurity and the lack of proper metrics to give valid and sound conclusion about the effective of cybersecurity and how well have cybersecurity succeed on its mis-sion to effectively prevent and mitigate cybercrime. Therefore, the science of security and science of cybersecurity are underdeveloped in 2018. The research has made basic discov-eries of development of cybersecurity and security. A direction of further basic research is to establish a general theory of security which describes threat variables, threat variables intention, resources, competence and progress of the threat variables and axioms where measurement of threat variables can be made with reliability and the theory would describe which are effective measures to prevent and mitigate and which are not and finally, estab-lish proper metrics to measure efficiency of security and cybersecurity with reliability and validity

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue
    corecore