1,458 research outputs found

    A Survey of Quality of Service in Mobile Computing Environments

    Get PDF
    Accepted versio

    QUALITY-OF-SERVICE PROVISIONING FOR SMART CITY APPLICATIONS USING SOFTWARE-DEFINED NETWORKING

    Get PDF
    In the current world, most cities have WiFi Access Points (AP) in every nook and corner. Hence upraising these cities to the status of a smart city is a more easily achievable task than before. Internet-of-Things (IoT) connections primarily use WiFi standards to form the veins of a smart city. Unfortunately, this vast potential of WiFi technology in the genesis of smart cities is somehow compromised due to its failure in meeting unique Quality-of-Service (QoS) demands of smart city applications. Out of the following QoS factors; transmission link bandwidth, packet transmission delay, jitter, and packet loss rate, not all applications call for the all of the factors at the same time. Since smart city is a pool of drastically unrelated services, this variable demand can actually be advantageous to optimize the network performance. This thesis work is an attempt to achieve one of those QoS demands, namely packet delivery latency. Three algorithms are developed to alleviate traffic load imbalance at APs so as to reduce packet forwarding delay. Software-Defined Networking (SDN) is making its way in the network world to be of great use and practicality. The algorithms make use of SDN features to control the connections to APs in order to achieve the delay requirements of smart city services. Real hardware devices are used to imitate a real-life scenario of citywide coverage consisting of WiFi devices and APs that are currently available in the market with neither of those having any additional requirements such as support for specific roaming protocol, running a software agent or sending probe packets. Extensive hardware experimentation proves the efficacy of the proposed algorithms

    Deliverable DJRA1.3: Tool prototype for creating and stitching multiple network resources for virtual infrastructures

    Get PDF
    This document describes the prototype FEDERICA Slice Tool developed for the virtualization of network elements in FEDERICA and for creating and stitching network resources over this virtual infrastructure. An SNMP-based resource discovery prototype is also introduced as a new functionality to be integrated in the tool.The deliverable also presents aviability study for the use of traffic prioritization in the FEDERICA infrastructure and some network performance measurements on a real slice within FEDERICA.This document reports the final results of JRA1.2 Activity in the development of a tool prototype for creating sets ofvirtual resourcesinFEDERICA.The prototype goal is to simplify and automate part of the work for NOC.The tool may also serve,with different privileges, a FEDERICA user to operate on his/her slice. The tool described here was designed with the objective of providing an interactive application with a graphical interface to operate on resources for the NOC and the end users (researchers). The tool simplify the creation and configuration of resources in a slice and it is a mandatory step to ensure scalability of the NOC effort. It offers an interactive Graphical User Interface that translates the users’ actions to commands in the substrate (networknodesandV-nodes)andslice elements(VirtualMachines).User accounts may be created for the NOC and for researchers, each with specific privileges to enable different sets of capabilities. The NOC account has full access to all the resources in the substrate, while each user’account has full access only to the virtual resources in his/her slice. The tool has been developed using the Java programming language as Open Source code and relies on the open source Globus¼ Toolkit. Testing has been performed in a laboratory environment and on some FEDERICA substrate equipment (1switch, 2VMwareServers) in their standard configuration. For testing the router, web services and GUI an additional computer was used, using a public IP address.Postprint (published version

    Loosely-Tied Distributed Architecture for Highly Scalable E-Learning System

    Get PDF

    Re-engineering jake2 to work on a grid using the GridGain Middleware

    Get PDF
    With the advent of Massively Multiplayer Online Games (MMOGs), engineers and designers of games came across with many questions that needed to be answered such as, for example, "how to allow a large amount of clients to play simultaneously on the same server?", "how to guarantee a good quality of service (QoS) to a great number of clients?", "how many resources will be necessary?", "how to optimize these resources to the maximum?". A possible answer to these questions relies on the usage of grid computing. Taking into account the parallel and distributed nature of grid computing, we can say that grid computing allows for more scalability in terms of a growing number of players, guarantees shorter communication time between clients and servers, and allows for a better resource management and usage (e.g., memory, CPU, core balancing usage, etc.) than the traditional serial computing model. However, the main focus of this thesis is not about grid computing. Instead, this thesis describes the re-engineering process of an existing multiplayer computer game, called Jake2, by transforming it into a MMOG, which is then put to run on a grid

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled
    • 

    corecore