60,932 research outputs found

    Using NLP tools in the specification phase

    Get PDF
    The software quality control is one of the main topics in the Software Engineering area. To put the effort in the quality control during the specification phase leads us to detect possible mistakes in an early steps and, easily, to correct them before the design and implementation steps start. In this framework the goal of SAREL system, a knowledge-based system, is twofold. On one hand, to help software engineers in the creation of quality Software Requirements Specifications. On the other hand, to analyze the correspondence between two different conceptual representations associated with two different Software Requirements Specification documents. For the first goal, a set of NLP and Knowledge management tools is applied to obtain a conceptual representation that can be validated and managed by the software engineer. For the second goal we have established some correspondence measures in order to get a comparison between two conceptual representations. This information will be useful during the interaction.Postprint (published version

    Formalization and Validation of Safety-Critical Requirements

    Full text link
    The validation of requirements is a fundamental step in the development process of safety-critical systems. In safety critical applications such as aerospace, avionics and railways, the use of formal methods is of paramount importance both for requirements and for design validation. Nevertheless, while for the verification of the design, many formal techniques have been conceived and applied, the research on formal methods for requirements validation is not yet mature. The main obstacles are that, on the one hand, the correctness of requirements is not formally defined; on the other hand that the formalization and the validation of the requirements usually demands a strong involvement of domain experts. We report on a methodology and a series of techniques that we developed for the formalization and validation of high-level requirements for safety-critical applications. The main ingredients are a very expressive formal language and automatic satisfiability procedures. The language combines first-order, temporal, and hybrid logic. The satisfiability procedures are based on model checking and satisfiability modulo theory. We applied this technology within an industrial project to the validation of railways requirements

    Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

    Get PDF
    One of the most essential processes within the software project life cycle is the REP (Requirements Engineering Process) because it allows specifying the software product requirements. This specification should be as consistent as possible because it allows estimating in a suitable manner the effort required to obtain the final product. REP is complex in itself, but this complexity is greatly increased in big, distributed and heterogeneous projects with multiple analyst teams and high integration between functional modules. This paper presents an approach for the systematic conciliation of functional requirements in big projects dealing with a web model-based approach and how this approach may be implemented in the context of the NDT (Navigational Development Techniques): a web methodology. This paper also describes the empirical evaluation in the CALIPSOneo project by analyzing the improvements obtained with our approach.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    A Systematic Review of Tracing Solutions in Software Product Lines

    Get PDF
    Software Product Lines are large-scale, multi-unit systems that enable massive, customized production. They consist of a base of reusable artifacts and points of variation that provide the system with flexibility, allowing generating customized products. However, maintaining a system with such complexity and flexibility could be error prone and time consuming. Indeed, any modification (addition, deletion or update) at the level of a product or an artifact would impact other elements. It would therefore be interesting to adopt an efficient and organized traceability solution to maintain the Software Product Line. Still, traceability is not systematically implemented. It is usually set up for specific constraints (e.g. certification requirements), but abandoned in other situations. In order to draw a picture of the actual conditions of traceability solutions in Software Product Lines context, we decided to address a literature review. This review as well as its findings is detailed in the present article.Comment: 22 pages, 9 figures, 7 table
    corecore