2,870 research outputs found

    Modelling and control of chaotic processes through their Bifurcation Diagrams generated with the help of Recurrent Neural Network models: Part 1—simulation studies

    Get PDF
    Many real-world processes tend to be chaotic and also do not lead to satisfactory analytical modelling. It has been shown here that for such chaotic processes represented through short chaotic noisy time-series, a multi-input and multi-output recurrent neural networks model can be built which is capable of capturing the process trends and predicting the future values from any given starting condition. It is further shown that this capability can be achieved by the Recurrent Neural Network model when it is trained to very low value of mean squared error. Such a model can then be used for constructing the Bifurcation Diagram of the process leading to determination of desirable operating conditions. Further, this multi-input and multi-output model makes the process accessible for control using open-loop/closed-loop approaches or bifurcation control etc. All these studies have been carried out using a low dimensional discrete chaotic system of Hénon Map as a representative of some real-world processes

    Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this paper, the problem of stability analysis for a class of impulsive stochastic Cohen–Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive stochastic Cohen–Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.This work was supported by the Natural Science Foundation of CQ CSTC under grant 2007BB0430, the Scientific Research Fund of Chongqing Municipal Education Commission under Grant KJ070401, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany

    Regular graphs maximize the variability of random neural networks

    Full text link
    In this work we study the dynamics of systems composed of numerous interacting elements interconnected through a random weighted directed graph, such as models of random neural networks. We develop an original theoretical approach based on a combination of a classical mean-field theory originally developed in the context of dynamical spin-glass models, and the heterogeneous mean-field theory developed to study epidemic propagation on graphs. Our main result is that, surprisingly, increasing the variance of the in-degree distribution does not result in a more variable dynamical behavior, but on the contrary that the most variable behaviors are obtained in the regular graph setting. We further study how the dynamical complexity of the attractors is influenced by the statistical properties of the in-degree distribution

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    Toward a dynamical systems analysis of neuromodulation

    Get PDF
    This work presents some first steps toward a more thorough understanding of the control systems employed in evolutionary robotics. In order to choose an appropriate architecture or to construct an effective novel control system we need insights into what makes control systems successful, robust, evolvable, etc. Here we present analysis intended to shed light on this type of question as it applies to a novel class of artificial neural networks that include a neuromodulatory mechanism: GasNets. We begin by instantiating a particular GasNet subcircuit responsible for tuneable pattern generation and thought to underpin the attractive property of “temporal adaptivity”. Rather than work within the GasNet formalism, we develop an extension of the well-known FitzHugh-Nagumo equations. The continuous nature of our model allows us to conduct a thorough dynamical systems analysis and to draw parallels between this subcircuit and beating/bursting phenomena reported in the neuroscience literature. We then proceed to explore the effects of different types of parameter modulation on the system dynamics. We conclude that while there are key differences between the gain modulation used in the GasNet and alternative schemes (including threshold modulation of more traditional synaptic input), both approaches are able to produce tuneable pattern generation. While it appears, at least in this study, that the GasNet’s gain modulation may not be crucial to pattern generation , we go on to suggest some possible advantages it could confer
    corecore