4,628 research outputs found
In silico case studies of compliant robots: AMARSI deliverable 3.3
In the deliverable 3.2 we presented how the morphological computing ap-
proach can significantly facilitate the control strategy in several scenarios,
e.g. quadruped locomotion, bipedal locomotion and reaching. In particular,
the Kitty experimental platform is an example of the use of morphological
computation to allow quadruped locomotion. In this deliverable we continue
with the simulation studies on the application of the different morphological
computation strategies to control a robotic system
Rolling Locomotion Control of a Biologically Inspired Quadruped Robot Based on Energy Compensation
We have developed a biologically inspired reconfigurable quadruped robot which can perform walking and rolling locomotion and transform between walking and rolling by reconfiguring its legs. This paper presents an approach to control rolling locomotion with the biologically inspired quadruped robot. For controlling rolling locomotion, a controller which can compensate robot’s energy loss during rolling locomotion is designed based on a dynamic model of the quadruped robot. The dynamic model describes planar rolling locomotion based on an assumption that the quadruped robot does not fall down while rolling and the influences of collision and contact with the ground, and it is applied for computing the mechanical energy and a plant in a numerical simulation. The numerical simulation of rolling locomotion on the flat ground verifies the effectiveness of the proposed controller.
The simulation results show that the quadruped robot can perform periodic rolling locomotion with the proposed energy-based controller. In conclusion, it is shown that the proposed control approach is effective in achieving the periodic rolling locomotion on the flat ground
Review of Quadruped Robots for Dynamic Locomotion
This review introduces quadruped robots: MITCheetah, HyQ, ANYmal, BigDog, and
their mechanical structure, actuation, and control
Autonomous Locomotion Mode Transition Simulation of a Track-legged Quadruped Robot Step Negotiation
Multi-modal locomotion (e.g. terrestrial, aerial, and aquatic) is gaining
increasing interest in robotics research as it improves the robots
environmental adaptability, locomotion versatility, and operational
flexibility. Within the terrestrial multiple locomotion robots, the advantage
of hybrid robots stems from their multiple (two or more) locomotion modes,
among which robots can select from depending on the encountering terrain
conditions. However, there are many challenges in improving the autonomy of the
locomotion mode transition between their multiple locomotion modes. This work
proposed a method to realize an autonomous locomotion mode transition of a
track-legged quadruped robot steps negotiation. The autonomy of the
decision-making process was realized by the proposed criterion to comparing
energy performances of the rolling and walking locomotion modes. Two climbing
gaits were proposed to achieve smooth steps negotiation behaviours for energy
evaluation purposes. Simulations showed autonomous locomotion mode transitions
were realized for negotiations of steps with different height. The proposed
method is generic enough to be utilized to other hybrid robots after some
pre-studies of their locomotion energy performances
Dynamically Stable 3D Quadrupedal Walking with Multi-Domain Hybrid System Models and Virtual Constraint Controllers
Hybrid systems theory has become a powerful approach for designing feedback
controllers that achieve dynamically stable bipedal locomotion, both formally
and in practice. This paper presents an analytical framework 1) to address
multi-domain hybrid models of quadruped robots with high degrees of freedom,
and 2) to systematically design nonlinear controllers that asymptotically
stabilize periodic orbits of these sophisticated models. A family of
parameterized virtual constraint controllers is proposed for continuous-time
domains of quadruped locomotion to regulate holonomic and nonholonomic outputs.
The properties of the Poincare return map for the full-order and closed-loop
hybrid system are studied to investigate the asymptotic stabilization problem
of dynamic gaits. An iterative optimization algorithm involving linear and
bilinear matrix inequalities is then employed to choose stabilizing virtual
constraint parameters. The paper numerically evaluates the analytical results
on a simulation model of an advanced 3D quadruped robot, called GR Vision 60,
with 36 state variables and 12 control inputs. An optimal amble gait of the
robot is designed utilizing the FROST toolkit. The power of the analytical
framework is finally illustrated through designing a set of stabilizing virtual
constraint controllers with 180 controller parameters.Comment: American Control Conference 201
Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation
An originally chaotic system can be controlled into various periodic
dynamics. When it is implemented into a legged robot's locomotion control as a
central pattern generator (CPG), sophisticated gait patterns arise so that the
robot can perform various walking behaviors. However, such a single chaotic CPG
controller has difficulties dealing with leg malfunction. Specifically, in the
scenarios presented here, its movement permanently deviates from the desired
trajectory. To address this problem, we extend the single chaotic CPG to
multiple CPGs with learning. The learning mechanism is based on a simulated
annealing algorithm. In a normal situation, the CPGs synchronize and their
dynamics are identical. With leg malfunction or disability, the CPGs lose
synchronization leading to independent dynamics. In this case, the learning
mechanism is applied to automatically adjust the remaining legs' oscillation
frequencies so that the robot adapts its locomotion to deal with the
malfunction. As a consequence, the trajectory produced by the multiple chaotic
CPGs resembles the original trajectory far better than the one produced by only
a single CPG. The performance of the system is evaluated first in a physical
simulation of a quadruped as well as a hexapod robot and finally in a real
six-legged walking machine called AMOSII. The experimental results presented
here reveal that using multiple CPGs with learning is an effective approach for
adaptive locomotion generation where, for instance, different body parts have
to perform independent movements for malfunction compensation.Comment: 48 pages, 16 figures, Information Sciences 201
- …