76 research outputs found

    Quadrilateral meshes with provable angle bounds

    Get PDF
    In this paper, we present an algorithm that utilizes a quadtree data structure to construct a quadrilateral mesh for a simple polygonal region in which no newly created angle is smaller than 18.43∘(=arctan(13)) or greater than 171.86∘(=135∘+2arctan(13)). This is the first known result, to the best of our knowledge, on a direct quadrilateral mesh generation algorithm with a provable guarantee on the angles

    Quadrilateral meshes with provable angle bounds

    Get PDF
    In this paper, we present an algorithm that utilizes a quadtree data structure to construct a quadrilateral mesh for a simple polygonal region in which no newly created angle is smaller than 18.43∘(=arctan(13)) or greater than 171.86∘(=135∘+2arctan(13)). This is the first known result, to the best of our knowledge, on a direct quadrilateral mesh generation algorithm with a provable guarantee on the angles

    Quadrilateral Meshes with Bounded Minimum Angle

    Get PDF
    This paper presents an algorithm that utilizes a quadtree to construct a strictly convex quadrilateral mesh for a simple polygonal region in which no newly created angle is smaller than . This is the first known result, to the best of our knowledge, on quadrilateral mesh generation with a provable guarantee on the minimum angle

    Quadrilateral Meshes with Bounded Minimum Angle

    Get PDF
    This paper presents an algorithm that utilizes a quadtree to construct a strictly convex quadrilateral mesh for a simple polygonal region in which no newly created angle is smaller than . This is the first known result, to the best of our knowledge, on quadrilateral mesh generation with a provable guarantee on the minimum angle

    JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    Get PDF
    An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi/Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a-priori bounds on element size and shape. Grid-quality is further improved through the application of hill-climbing type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies is discussed in detail.Comment: Final revisions, as per: Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117-2140, https://doi.org/10.5194/gmd-10-2117-2017, 201

    A geometric mesh smoothing algorithm related to damped oscillations

    Full text link
    We introduce a smoothing algorithm for triangle, quadrilateral, tetrahedral and hexahedral meshes whose centerpiece is a simple geometric triangle transformation. The first part focuses on the mathematical properties of the element transformation. In particular, the transformation gives rise directly to a continuous model given by a system of coupled damped oscillations. Derived from this physical model, adaptive parameters are introduced and their benefits presented. The second part discusses the mesh smoothing algorithm based on the element transformation and its numerical performance on example meshes.Comment: 35 pages, 16 figure

    Higher-order finite element methods for elliptic problems with interfaces

    Get PDF
    We present higher-order piecewise continuous finite element methods for solving a class of interface problems in two dimensions. The method is based on correction terms added to the right-hand side in the standard variational formulation of the problem. We prove optimal error estimates of the methods on general quasi-uniform and shape regular meshes in maximum norms. In addition, we apply the method to a Stokes interface problem, adding correction terms for the velocity and the pressure, obtaining optimal convergence results.Comment: 26 pages, 6 figures. An earlier version of this paper appeared on November 13, 2014 in http://www.brown.edu/research/projects/scientific-computing/reports/201
    • …
    corecore