18 research outputs found

    Quadratic Multi-Dimensional Signaling Games and Affine Equilibria

    Full text link
    This paper studies the decentralized quadratic cheap talk and signaling game problems when an encoder and a decoder, viewed as two decision makers, have misaligned objective functions. The main contributions of this study are the extension of Crawford and Sobel's cheap talk formulation to multi-dimensional sources and to noisy channel setups. We consider both (simultaneous) Nash equilibria and (sequential) Stackelberg equilibria. We show that for arbitrary scalar sources, in the presence of misalignment, the quantized nature of all equilibrium policies holds for Nash equilibria in the sense that all Nash equilibria are equivalent to those achieved by quantized encoder policies. On the other hand, all Stackelberg equilibria policies are fully informative. For multi-dimensional setups, unlike the scalar case, Nash equilibrium policies may be of non-quantized nature, and even linear. In the noisy setup, a Gaussian source is to be transmitted over an additive Gaussian channel. The goals of the encoder and the decoder are misaligned by a bias term and encoder's cost also includes a penalty term on signal power. Conditions for the existence of affine Nash equilibria as well as general informative equilibria are presented. For the noisy setup, the only Stackelberg equilibrium is the linear equilibrium when the variables are scalar. Our findings provide further conditions on when affine policies may be optimal in decentralized multi-criteria control problems and lead to conditions for the presence of active information transmission in strategic environments.Comment: 15 pages, 4 figure

    Quadratic multi-dimensional signaling games and affine equilibria

    Get PDF
    This paper studies the decentralized quadratic cheap talk and signaling game problems when an encoder and a decoder, viewed as two decision makers, have misaligned objective functions. The main contributions of this study are the extension of Crawford and Sobel's cheap talk formulation to multi-dimensional sources and to noisy channel setups. We consider both (simultaneous) Nash equilibria and (sequential) Stackelberg equilibria. We show that for arbitrary scalar sources, in the presence of misalignment, the quantized nature of all equilibrium policies holds for Nash equilibria in the sense that all Nash equilibria are equivalent to those achieved by quantized encoder policies. On the other hand, all Stackelberg equilibria policies are fully informative. For multi-dimensional setups, unlike the scalar case, Nash equilibrium policies may be of non-quantized nature, and even linear. In the noisy setup, a Gaussian source is to be transmitted over an additive Gaussian channel. The goals of the encoder and the decoder are misaligned by a bias term and encoder's cost also includes a penalty term on signal power. Conditions for the existence of affine Nash equilibria as well as general informative equilibria are presented. For the noisy setup, the only Stackelberg equilibrium is the linear equilibrium when the variables are scalar. Our findings provide further conditions on when affine policies may be optimal in decentralized multi-criteria control problems and lead to conditions for the presence of active information transmission in strategic environments. © 1963-2012 IEEE

    On the Number of Bins in Equilibria for Signaling Games

    Full text link
    We investigate the equilibrium behavior for the decentralized quadratic cheap talk problem in which an encoder and a decoder, viewed as two decision makers, have misaligned objective functions. In prior work, we have shown that the number of bins under any equilibrium has to be at most countable, generalizing a classical result due to Crawford and Sobel who considered sources with density supported on [0,1][0,1]. In this paper, we refine this result in the context of exponential and Gaussian sources. For exponential sources, a relation between the upper bound on the number of bins and the misalignment in the objective functions is derived, the equilibrium costs are compared, and it is shown that there also exist equilibria with infinitely many bins under certain parametric assumptions. For Gaussian sources, it is shown that there exist equilibria with infinitely many bins.Comment: 25 pages, single colum

    Dynamic signaling games with quadratic criteria under Nash and Stackelberg equilibria

    Get PDF
    This paper considers dynamic (multi-stage) signaling games involving an encoder and a decoder who have subjective models on the cost functions. We consider both Nash (simultaneous-move) and Stackelberg (leader-follower) equilibria of dynamic signaling games under quadratic criteria. For the multi-stage scalar cheap talk, we show that the final stage equilibrium is always quantized and under further conditions the equilibria for all time stages must be quantized. In contrast, the Stackelberg equilibria are always fully revealing. In the multi-stage signaling game where the transmission of a Gauss-Markov source over a memoryless Gaussian channel is considered, affine policies constitute an invariant subspace under best response maps for Nash equilibria; whereas the Stackelberg equilibria always admit linear policies for scalar sources but such policies may be nonlinear for multi-dimensional sources. We obtain an explicit recursion for optimal linear encoding policies for multi-dimensional sources, and derive conditions under which Stackelberg equilibria are informative. (C) 2020 Elsevier Ltd. All rights reserved

    Quadratic Signaling Games with Channel Combining Ratio

    Get PDF
    In this study, Nash and Stackelberg equilibria of single-stage and multi-stage quadratic signaling games between an encoder and a decoder are investigated. In the considered setup, the objective functions of the encoder and the decoder are misaligned, there is a noisy channel between the encoder and the decoder, the encoder has a soft power constraint, and the decoder has also noisy observation of the source to be estimated. We show that there exist only linear encoding and decoding strategies at the Stackelberg equilibrium, and derive the equilibrium strategies and costs. Regarding the Nash equilibrium, we explicitly characterize affine equilibria for the single-stage setup and show that the optimal encoder (resp. decoder) is affine for an affine decoder (resp. encoder) for the multi-stage setup. On the decoder side, between the information coming from the encoder and noisy observation of the source, our results describe what should be the combining ratio of these two channels. Regarding the encoder, we derive the conditions under which it is meaningful to transmit a message
    corecore