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Abstract

This paper considers dynamic (multi-stage) signaling games involving an encoder and a decoder who have
subjective models on the cost functions. We consider both Nash (simultaneous-move) and Stackelberg (leader-
follower) equilibria of dynamic signaling games under quadratic criteria. For the multi-stage scalar cheap talk,
we show that the final stage equilibrium is always quantized and under further conditions the equilibria for all
time stages must be quantized. In contrast, the Stackelberg equilibria are always fully revealing. In the multi-
stage signaling game where the transmission of a Gauss-Markov source over a memoryless Gaussian channel
is considered, affine policies constitute an invariant subspace under best response maps for Nash equilibria;
whereas the Stackelberg equilibria always admit linear policies for scalar sources but such policies may be non-
linear for multi-dimensional sources. We obtain an explicit recursion for optimal linear encoding policies for
multi-dimensional sources, and derive conditions under which Stackelberg equilibria are informative.

1 Introduction

Signaling games and cheap talk are concerned with a class of Bayesian games where an informed player (encoder
or sender) transmits information to another player (decoder or receiver). In these problems, the objective functions
of the players are not aligned unlike the ones in the classical communication problems. The single-stage cheap
talk problem was studied by Crawford and Sobel [3], who obtained the surprising result that under some technical
conditions on the cost functions, the cheap talk problem only admits equilibria that involve quantized encoding
policies. This is in contrast to the usual communication/information theoretic case where the goals are aligned. In
this paper, we consider multi-stage signaling games. The details are presented in the following.

A single-stage (static) cheap talk problem can be formulated as follows: An informed player (encoder) knows
the value of the M-valued random variable M and transmits the X-valued random variable X to another player

∗This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), and the
Scientific and Technological Research Council of Turkey (TÜBİTAK). Part of this work was presented at the 2016 IEEE International
Symposium on Information Theory (ISIT), Barcelona, Spain, 2016 [1], and at the 2017 American Control Conference (ACC), Seattle,
WA, 2017 [2].
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(decoder), who generates hisM-valued optimal decision U upon receivingX . The policies of the encoder and decoder
are assumed to be deterministic; i.e., x = γe(m) and u = γd(x) = γd(γe(m)). Let ce(m,u) and cd(m,u) denote the
cost functions of the encoder and the decoder, respectively, when the action u is taken for the corresponding message
m. Then, given the encoding and decoding policies, the encoder’s induced expected cost is Je

(
γe, γd

)
= E [ce(m,u)],

whereas, the decoder’s induced expected cost is Jd
(
γe, γd

)
= E

[
cd(m,u)

]
. If the transmitted signal x is also an

explicit part of the cost functions ce and/or cd, then the communication between the players is not costless and the
formulation turns into a signaling game problem. Such problems are studied under the tools and concepts provided
by game theory since the goals are not aligned. Although the encoder and decoder act sequentially in the game as
described above, how and when the decisions are made and the nature of the commitments to the announced policies
significantly affect the analysis of the equilibrium structure. Here, two different types of equilibria are investigated:
the Nash equilibrium, in which the encoder and the decoder make simultaneous decisions, and the Stackelberg
equilibrium, in which the encoder and the decoder make sequential decisions where the encoder is the leader and
the decoder is the follower1. In this paper, the terms Nash game and the simultaneous-move game2 will be used
interchangeably, and similarly, the Stackelberg game and the leader-follower game will be used interchangeably.

In the simultaneous-move game, the encoder and the decoder announce their policies at the same time, and a
pair of policies (γ∗,e, γ∗,d) is said to be a Nash equilibrium [4] if

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) ∀γe ∈ Γe ,

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) ∀γd ∈ Γd ,
(1)

where Γe and Γd are the sets of all deterministic (and Borel measurable) functions from M to X and from X to M,
respectively. As observed from the definition (1), under the Nash equilibrium, each individual player chooses an
optimal strategy given the strategies chosen by the other players.

On the other hand, in a leader-follower game, the leader (encoder) commits to and announces his optimal
policy before the follower (decoder) does, the follower observes what the leader is committed to before choosing and
announcing his optimal policy, and a pair of policies (γ∗,e, γ∗,d) is a Stackelberg equilibrium [4] if

Je(γ∗,e, γ∗,d(γ∗,e)) ≤ Je(γe, γ∗,d(γe)) ∀γe ∈ Γe ,

where γ∗,d(γe) satisfies

Jd(γe, γ∗,d(γe)) ≤ Jd(γe, γd(γe)) ∀γd ∈ Γd .

(2)

As it can be seen from the definition (2), the decoder takes his optimal action γ∗,d(γe) after observing the policy of
the encoder γe. In the Stackelberg game, the leader cannot backtrack on his commitment, but has a leadership role
since he can manipulate the follower by anticipating follower’s actions; Bayesian persuasion games have a similar
spirit [5]. We provide a further literature review on this later.

If an equilibrium is achieved when γ∗,e is non-informative (e.g., the transmitted message and the source are
independent) and γ∗,d uses only the prior information (since the received message is useless), then we call such an
equilibrium a non-informative (babbling) equilibrium, which always exists for cheap talk [3].

Heretofore, only single-stage games are considered. If a game is played over a number of time periods, the game
is called a multi-stage game. In this paper, with the term dynamic, we will refer to multi-stage game setups, which
also has been the usage in the prior literature [6]; even though strictly speaking a single stage setup may also be
viewed to be dynamic [7] since the information available to the decoder is totally determined by encoder’s actions.

1 For the Nash equilibrium, the encoder and the decoder take actions sequentially but do not announce their policies beforehand
(i.e., they announce simultaneously) while they do so for the Stackelberg equilibrium.

2Note that throughout the manuscript, simultaneous-move refers to simultaneous-announcement, see 1.
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Let m[0,N−1] = {m0,m1, . . . ,mN−1} be a collection of random variables to be encoded sequentially (causally)
to a decoder. At the k-th stage of an N -stage game, the encoder knows Ie

k = {m[0,k], x[0,k−1]} with Ie
0 = {m0}, and

transmits xk to the decoder who generates his optimal decision by knowing Id
k = {x[0,k]}. Thus, under the policies

considered, xk = γe
k(I

e
k) and uk = γd

k(I
d
k ). The encoder’s goal is to minimize

Je
(
γe
[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑

k=0

cek(mk, uk)

]
, (3)

whereas the decoder’s goal is to minimize

Jd
(
γe
[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑

k=0

cdk(mk, uk)

]
(4)

by finding the optimal policy sequences γ∗,e
[0,N−1] = {γ∗,e

0 , γ∗,e
1 , · · · , γ∗,e

N−1} and γ∗,d
[0,N−1] = {γ∗,d

0 , γ∗,d
1 , · · · , γ∗,d

N−1},

respectively. Using the encoder cost in (3) and the decoder cost in (4), the Nash equilibrium and the Stackelberg
equilibrium for multi-stage games can be defined similarly as in (1) and (2), respectively.

Under both equilibria concepts, we consider the setups where the decision makers act optimally for each history
path of the game (available to each decision maker) and the updates are Bayesian; thus the equilibria are to be
interpreted under a perfect Bayesian equilibria concept. Since we assume such a (perfect Bayesian) framework,
the equilibria lead to sub-game perfection and each decision maker performs optimal Bayesian decisions for every
realized play path. For example, more general Nash equilibrium scenarios such as non-credible threats or equilibria
that are not strong time-consistent [7, Definition 2.4.1] may not be considered. We also note that both Nash and
Stackelberg equilibrium concepts find various applications depending on the assumptions on the leader, that is, the
encoder, in view of the commitment conditions [8].

In this paper, the quadratic cost functions are assumed; i.e., cek(mk, uk) = (mk − uk − b)2 and cdk(mk, uk) =
(mk − uk)

2 where b is the bias term as in [3] and [9].

1.1 Literature Review

As noted in [9], for team problems, although it is difficult to obtain optimal solutions under general information
structures, it is apparent that more information provided to any of the decision makers does not negatively affect the
utility of the players. There is also a well-defined partial order of information structures as studied by Blackwell [10]
and [7]. However, for general zero-sum or non-zero-sum game problems, informational aspects are very challenging
to address; more information can have negative effects on some or even all of the players in a system, see e.g. [11].

The cheap talk and signaling game problems are applicable in networked control systems when a communication
channel exists among competitive and non-cooperative decision makers. For example, in a smart grid application,
there may be strategic sensors in the system [12] that wish to change the equilibrium for their own interests through
reporting incorrect measurement values, e.g., to enhance prolonged use in the system. For further applications,
see [12, 13]. All of these applications lead to a new framework where the value of information and its utilization
have a drastic impact on the system under consideration.

The reader is referred to [9] for further discussion and references on single-stage signaling games. On the multi-
stage side, much of the literature has focused on Stackelberg equilibria as we note below. A notable exception is [6],
where the multi-stage extension of the setup of Crawford and Sobel is analyzed for a source which is a fixed random
variable distributed according to some density on [0, 1] (see Theorem 2.6 for a detailed discussion on this very
relevant paper). [14] considers the information design problem (which is originated from the Bayesian persuasion
game [5]) between an encoder and a decoder with non-aligned utility functions under the Stackelberg equilibrium.
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For the case in which the non-alignment between the cost functions of the encoder and the decoder (i.e., the bias
term b) is a function of a Gaussian random variable (r.v.) correlated with the Gaussian source and secret to the
decoder (contrarily to the original case in which it is fixed and known to the decoder [3], which is also studied in [9]
and in this manuscript)3, the Stackelberg equilibrium is investigated in [15–17]. It is shown that the best response
of the transmitter is affine by restricting receiver strategies to be affine when the communication is noiseless [15],
whereas the optimality of linear sender strategies is proved within the general class of policies even with additive
Gaussian noise channels [16]. The multi-stage Gaussian signaling game under general quadratic cost functions is
studied in [17] and it is shown that linear encoder and decoder strategies can achieve the Stackelberg equilibrium
under a finite horizon when the private state of the encoder is a controlled Gauss-Markov process. [18] investigates
the Nash equilibrium of a multi-stage linear quadratic Gaussian game with asymmetric information, and it is shown
that under certain conditions, players’ strategies are linear in their private types. The cheap talk with finite state
and action spaces and multiple round of pre-play communication is investigated where both the encoder and decoder
take costly actions at the end of the pre-play communication in [19], and it is proved that the multiple round of
communication improves information revelation. The dynamic extension to the optimal information disclosure [5]
with a finite state space and a finite number of periods is considered in [20], in which the sender commits to a
policy similar to the Stackelberg case. In our earlier work [9], we considered both Nash equilibria and Stackelberg
equilibria. In this paper, we build on [9], and extend the analysis to the multi-stage case.

1.2 Contributions

(i) We show that in the multi-stage cheap talk game under Nash equilibria, the last stage equilibria are quantized
for scalar i.i.d. and Markov sources with arbitrary conditional probability measures and not fully revealing for
multi-dimensional sources, whereas the equilibrium must be fully revealing in the multi-stage cheap talk game
under Stackelberg equilibria for both scalar and multi-dimensional sources. Further, for scalar i.i.d. sources,
the quantized nature of the Nash equilibrium for all stages is established under mild conditions.

(ii) For the multi-stage signaling game under Nash equilibria, it is shown that affine encoder and decoder policies
constitute an invariant subspace under best response dynamics. We provide conditions for the existence of
informative Stackelberg equilibria for scalar Gauss-Markov sources and scalar Gaussian channels where we
also show that Stackelberg equilibria are always linear for scalar sources and channels, which is not always
the case for multi-dimensional setups. For multi-dimensional setups, a dynamic programming formulation is
presented for Stackelberg equilibria when the encoders are linear.

2 Multi-Stage Cheap Talk

For the purpose of illustration, the system model of the 2-stage cheap talk is depicted in Fig. 1-(a). Before presenting
the technical results related to the multi-stage cheap talk, we provide the result on the static (single-stage) cheap
talk with deterministic encoders from our previous study, which will be utilized in several results later on this paper.

Theorem 2.1. [9, Theorem 3.2] Let the strategy set of the encoder consists of the set of all measurable (determin-
istic) functions from M to X. Then, an equilibrium encoder policy has to be quantized almost surely, that is, it is
equivalent to a quantized policy for the encoder in the sense that the performance of any equilibrium encoder policy
is equivalent to the performance of a quantized encoder policy. Furthermore, the quantization bins are convex.

3Since we assume a fixed and public b in contrast to a private and random b which is correlated with the source as in [15–17], the
results obtained in the former setup cannot be applied directly to the latter one; i.e., the Stackelberg equilibria of these two setups are
different.
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(a) 2-stage cheap talk. (b) 2-stage signaling game.

Figure 1: Signaling game models.

To facilitate our analysis to handle certain intricacies that arise due to the multi-stage setup in this paper, in
the following, we state that the result in Theorem 2.1 also holds when the encoder is allowed to adapt randomized
encoding policies by extending [3, Lemma 1] as follows:

Theorem 2.2. The conclusion of Theorem 2.1 holds if the policy space of the encoder is extended to the set of all
stochastic kernels from M to X for any arbitrary source.4 That is, even when the encoder is allowed to use private
randomization, all equilibria are equivalent to those that are attained by quantized equilibria.

Proof. [3, Lemma 1] proves that all equilibria with a randomized encoder have finitely many partitions when the
source has bounded support. Theorem 2.1 extends this result to a countable number of partitions (i.e., distinct
decoder actions must differ by at least 2|b|) for any source with an arbitrary probability measure, but assuming
a deterministic encoder. The proof methods in both of [3, Lemma 1] and Theorem 2.1 can be combined, which
implies that equilibria must be quantized.

Theorem 2.2 will be used crucially in the following analysis; since in a multi-stage game, at a given time stage,
the source variables from the earlier stages can serve as private randomness for the encoder. As a prelude to the
more general Markov source setup, we first analyze the multi-stage cheap talk game with an i.i.d. scalar source.

2.1 Multi-Stage Game with an i.i.d. Source

Theorem 2.3. In the N -stage repeated cheap talk game, the equilibrium policies for the final stage encoder must

be quantized for any collection of policies
(
γe
[0,N−2], γ

d
[0,N−2]

)
and for any real-valued source model with arbitrary

probability measure P (dmN−1).

Proof. Here, we prove the result for the 2-stage setup, the extension to multiple stages is merely technical, as we
comment on at the end of the proof. Let ce1(m1, u1) be the second stage cost function of the encoder. Then the
expected cost of the second stage encoder Je

1 is

Je
1 =

∫
P (dm0, dm1, dx0, dx1) c

e
1(m1, u1)

4P is a stochastic kernel from M to X if P (·|m) is a probability measure on B(X) for every m ∈ M, and P (A|·) is a Borel measurable
function of m for every A ∈ B(X).
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=

∫
P (dx0)

∫
P (dm1|x0)P (dm0|m1, x0)

× ce1(m1, γ
d
1 (x0, γ

e
1(m0,m1, x0))) .

(5)

Since P (dm1|x0) = P (dm1) and P (dm0|m1, x0) = P (dm0|x0) for an i.i.d. source, the inner integral of (5) can be
considered as an expression for a given x0. Thus, given the second stage encoder and decoder policies γe

1(m0,m1, x0)
and γd

1 (x0, x1), it is possible to define policies which are parametrized by the common information x0 almost surely
so that γ̂e

x0
(m0,m1) , γe

1(m0,m1, x0) and γ̂d
x0
(x1) , γd

1 (x0, x1).
Now fix the first stage policies γe

0 and γd
0 . Suppose that the second stage encoder does not use m0; i.e., γ̂

e′
x0
(m1)

is the policy of the second stage encoder. For the policies γ̂e′
x0
(m1) and γ̂d

x0
(x1), by using the second stage encoder

cost function Hx0(m1, u1) , E[(m1−u1− b)2|x0] and the bin arguments from Theorem 2.1, it can be deduced that,
due to the continuity of Hx0(m1, u1) in m1, the equilibrium policies for the second stage must be quantized for any
collection of policies (γe

0 , γ
d
0 ) and for any given x0. Now let the second stage encoder use m0; i.e., γ̂

e
x0
(m0,m1) is

the deterministic policy of the second stage encoder, which can be regarded as an equivalent randomized encoder
policy (as a stochastic kernel from M1 to X1) where m0 is a real valued random variable independent of the source,
m1. From Theorem 2.2, the equilibrium is achievable with an encoder policy which uses only m1; i.e., γ̂

e∗
x0
(m1) is

an encoder policy at the equilibrium and thus the equilibria are quantized.
For the N -stage game, the common information of the final stage encoder and decoder becomes x[0,N−2], and
m[0,N−2] is a vector valued random variable independent of the final stage source mN−1.

Assumption 2.1. The source mk is so that the single-stage cheap-talk game satisfies the following:
(i) There exists a finite upper bound on the number of quantization bins that any equilibrium admits.
(ii) There exist finitely many equilibria corresponding to a given number of quantization bins.

A number of comments on Assumption 2.1 is in order: This assumption is not unrealistic, e.g., all sources with
bounded support, and sources with sufficiently light tail such as the exponential distribution satisfies this property,
provided that their associated densities are one-sided and the sign of b is negative [21]. A sufficient condition for
Assumption 2.1 is that the source admits a bounded support (which would require by [3, Lemma 1] that there exists
an upper bound on the number of bins in any equilibrium), and that a monotonicity condition [3, conditions (M),
or equivalently (M′)] holds, which characterize the behavior of equilibrium policies. Note though that this condition
is much more than what is needed in Assumption 2.1, since it entails the uniqueness of equilibria for a given
number of bins: The uniqueness of equilibria even for team problems with b = 0 requires restrictive log-concavity
conditions [22, p. 1475], [23].

Theorem 2.4. Under Assumption 2.1, all stages must have quantized equilibria with finitely many bins in the
N -stage repeated cheap talk game.

Proof. Consider first the 2-stage setup; i.e., given that the second stage has a quantized equilibrium by Theorem 2.3,
the quantized nature of the first stage will be established. Let F (m0, x0) be a cost function for the first stage
encoder if it encodes message m0 as x0. Since the second stage equilibrium cost does not depend on m0 (since
m0 is a random variable independent of the source m1 as shown in Theorem 2.3), F (m0, x0) can be written

as F (m0, x0) =
(
m0 − γd

0 (x0)− b
)2

+ G(x0) where G(x0) , Em1

[(
m1 − γ∗,d

1 (x0, γ
∗,e
1 (m1, x0))− b

)2 ∣∣∣x0

]
is the

expected cost of the second stage encoder, and γ∗,e
1 and γ∗,d

1 are the second stage encoder and decoder policies at
the equilibrium, respectively. Note that the second stage encoder cost can G(x0) take finitely many different values
by Assumption 2.1-(ii). Now define the equivalence classes Txp

for every xp ∈ X as Txp
= {x ∈ X : G(x) = G(xp)};

i.e., the equivalence classes Txp
keep the first stage encoder actions that result in the same second stage cost in the
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same set. Note that there are finitely many equivalence classes Txp
since G(x0) can take finitely many different

values.
If the number of bins of the first stage equilibrium is less than or equal to the number of the equivalence

classes Txp
, then the proof is complete; i.e., the first stage equilibrium is already quantized with finitely may bins.

Otherwise, one of the equivalence classes Txp
has at least two elements; say xα

0 and xβ
0 , which implies G(xα

0 ) = G(xβ
0 ).

Let corresponding bins of the actions xα
0 and xβ

0 be Bα
0 and Bβ

0 , respectively. Also let mα
0 and mβ

0 represent any

point in Bα
0 and Bβ

0 , respectively; i.e., m
α
0 ∈ Bα

0 and mβ
0 ∈ Bβ

0 . The decoder chooses an action uα
0 = γd

0 (x
α
0 ) when

the encoder sends xα
0 = γe

0(m
α
0 ), and an action uβ

0 = γd
0 (x

β
0 ) when the encoder sends xβ

0 = γe
0(m

β
0 ) in order to

minimize his total cost; further, we can assume that uα
0 < uβ

0 without loss of generality. Due to the equilibrium

definitions from the view of the encoder, F (mα
0 , x

α
0 ) < F (mα

0 , x
β
0 ) and F (mβ

0 , x
β
0 ) < F (mβ

0 , x
α
0 ). These inequalities

imply that

(mα
0 − uα

0 − b)2 +G(xα
0 ) < (mα

0 − uβ
0 − b)2 +G(xβ

0 )

⇒ (uα
0 − uβ

0 )(u
α
0 + uβ

0 − 2(mα
0 − b)) < 0 ,

(mβ
0 − uβ

0 − b)2 +G(xβ
0 ) < (mβ

0 − uα
0 − b)2 +G(xα

0 )

⇒ (uβ
0 − uα

0 )(u
α
0 + uβ

0 − 2(mβ
0 − b)) < 0 .

Thus, we have uα
0 + uβ

0 − 2(mα
0 − b) > 0 and uα

0 + uβ
0 − 2(mβ

0 − b) < 0, that reduce to mα
0 <

uα
0 +uβ

0

2 + b < mβ
0 .

Since uα = E[m|m ∈ Bα] and uβ = E[m|m ∈ Bβ] at the equilibrium, uα
0 <

uα
0 +uβ

0

2 + b < uβ
0 ⇒ uβ

0 − uα
0 > 2|b| is

obtained. Hence, there must be at least 2|b| distance between the actions of the first stage decoder which are in the
same equivalence class. Therefore, the cardinality of any equivalence class Txp

is finite due to Assumption 2.1-(i).
Further, there are finitely many equivalence classes Txp

as shown above. These two results imply that the first stage
equilibrium must be quantized with finitely many bins. Thus, due to Assumption 2.1-(ii), there are finitely many
equilibria in the first stage; i.e., the first stage encoder cost can take finitely many values.

For the N -stage game, we apply the similar recursion from the final stage to the first stage. It is already proven
that the last two stage encoder cost can take finitely many values; thus, the same methods can be applied to show
the quantized structure (with finitely many bins) of the equilibria for all stages.

Remark 2.1. It is important to note that the first stage encoder minimizes his expected cost Je
0 = E[F (m0, x0)] by

minimizing his cost F (m0, x0) for every realizable m0; this property will be later used as well.

2.2 Multi-Stage Game with a Markov Source: Nash Equilibria

Here, the source Mk is assumed to be real valued Markovian for k ≤ N − 1. The following result generalizes
Theorem 2.3, which only considered i.i.d. sources.

Theorem 2.5. In the N -stage cheap talk game with a Markov source, the equilibrium policies for the final stage

encoder must be quantized for any collection of policies
(
γe
[0,N−2], γ

d
[0,N−2]

)
and for any real-valued source model

with arbitrary probability measure.

Proof. Here, we prove the results for the 2-stage games as the extension is merely technical. Similar to that in
Theorem 2.3, the expected cost of the second stage encoder can be written as (5). After following similar arguments,

the second stage encoder policy becomes γ̂e
x0
(m0,m1)

(a)
= γ̂e

x0
(g(m1, r),m1) = γ̃e

x0
(m1, r) where (a) holds since any

stochastic kernel from a complete, separable and metric space to another one, P (dm0|m1), can be realized by some
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measurable function m0 = g(m1, r) where r is a [0, 1]-valued independent random variable (see [24, Lemma 1.2], or
in [25, Lemma 3.1]). Hence, the equilibria are quantized by Theorem 2.3.

As it can be observed from Theorem 2.4, to be able to claim that the equilibria for all stages are quantized, we
require very strong conditions. In fact, in the absence of such conditions, the equilibria for a Markov source can be
quite counterintuitive and even fully revealing as we observe in the following theorem due to [6].

Theorem 2.6. [6] For a Markov source, there exist multi-stage cheap talk games with fully revealing equilibria.

An example is presented in Golosov et. al. [6], where an individual source is transmitted repeatedly (thus
the Markov source is a constant source) for a sufficiently small bias value. For such a source, the terminal stage
conditional measure can be made atomic via a careful construction of equilibrium policies for earlier time stages; i.e.,
the defined separable groups/types and discrete/quantized stage-wise equilibria through multiple stages can lead to
a fully informative equilibrium for the complete game. Next, Nash equilibria of the multi-stage multi-dimensional
cheap talk are analyzed. Since there may be discrete, non-discrete or even linear Nash equilibria in the single-
stage multi-dimensional cheap talk by [9, Theorem 3.4], the equilibrium policies are more difficult to characterize;
however, we state the following:

Theorem 2.7. (i) The Nash equilibrium cannot be fully revealing in the static (single-stage) multi-dimensional
cheap talk when the source has positive measure for every non-empty open set.

(ii) The final stage Nash equilibria cannot be fully revealing in the multi-stage multi-dimensional cheap talk for
i.i.d. and Markov sources when the conditional distribution P (dmN−1|mN−2) has positive measure for every
non-empty open set.

Proof. (i) Similar to the single-stage scalar case Theorem 2.1, in an equilibrium, define two cells Cα and Cβ , any
points in those cells as mα ∈ Cα and mβ ∈ Cβ , and the actions of the decoder as uα and uβ when the encoder
transmits mα and mβ, respectively. Let F (m,u) , ‖m−u−b‖2. Due to the equilibrium definitions from the view
of the encoder; F (mα,uα) < F (mα,uβ) and F (mβ ,uβ) < F (mβ,uα). Hence, there exists a hyperplane defined
by F (z,uα) = F (z,uβ) ⇒ ‖(z− b)− uα‖2 = ‖(z− b)− uβ‖2. The hyperplane defined by the points z divides the
space into two subspaces: let Zα that contains uα and Zβ that contains uβ be those subspaces. Cβ and Zα are
disjoint subspaces since F (z + δ(uβ − uα),uα) ≥ F (z + δ(uβ − uα),uβ) for any δ > 0. Similarly, Cα and Zβ are
disjoint subspaces, too. Thus, the hyperplane defined by the points z must lie between uα and uβ which implies
that the length of b along the d , uβ − uα direction should not exceed half of the distance between uα and uβ;
i.e., ‖bd‖ ≤ ‖d‖/2, where bd is the projection of b along the direction of d. Since d can be any vector at a fully
revealing equilibrium by the assumption on the source (i.e., the source has positive measure for every non-empty
open set), ‖bd‖ ≤ ‖d‖/2 cannot be satisfied unless b = 0. Thus, there cannot be a fully revealing equilibrium in
the static multi-dimensional cheap talk.
(ii) The proof is the multi-dimensional extension of Theorem 2.3 for i.i.d. sources, and Theorem 2.5 for Markov
sources.

2.3 Multi-Stage Cheap Talk under Stackelberg Equilibria

Here, the cheap talk game is analyzed under the Stackelberg formulation for both scalar and multi-dimensional
sources. In this case, admittedly the problem is less interesting.

Theorem 2.8. An equilibrium has to be fully revealing in the multi-stage Stackelberg cheap talk game regardless of
the source model.

8



Proof. The last stage decoder cost Jd
N−1(γ

e
N−1, γ

d
N−1) = E[‖mN−1 − uN−1‖2|Id

N−1] is minimized by choosing

the optimal action u∗
N−1 = γ∗,d

N−1(I
d
N−1) = E[mN−1|Id

N−1]. For the previous stage, the decoder can minimize

Jd
N−2(γ

∗,e
N−1, γ

e
N−2, γ

∗,d
N−1, γ

d
N−2) = E[‖mN−2−uN−2‖2+J∗,d

N−1(γ
∗,e
N−1, γ

∗,d
N−1)|I

d
N−2] by choosing his policy as u∗

N−2 =

γ∗,d
N−2(I

d
N−2) = E[mN−2|Id

N−2]. Similarly, the optimal decoder actions become u∗
k = γ∗,d

k (Id
k ) = E[mk|Id

k ] =

E[mk|x[0,k]]. Then, due to the Stackelberg assumption, the total encoder cost becomes Je(γe
[0,N−1], γ

∗,d
[0,N−1]) =

E

[
N−1∑
k=0

‖mk − uk‖2
]
+N‖b‖2 by the smoothing property of the expectation. Thus, as in the static game setup [9,

Theorem 3.3], the goals of the players become essentially the same, and the result follows.

3 Multi-Stage Quadratic Gaussian Signaling Games

The multi-stage signaling game setup is similar to the multi-stage cheap talk setup except that there exists an
additive Gaussian noise channel between the encoder and the decoder at each stage, and the encoder has a soft
power constraint. For the purpose of illustration, the system model of the 2-stage signaling game is depicted in
Fig. 1-(b). Here, source is assumed to be an n-dimensional Markovian source with initial Gaussian distribution; i.e.,
M0 ∼ N (0,ΣM0) and Mk+1 = GMk +Vk where G is an n× n matrix (g denotes the scalar case equivalent of G)
and Vk ∼ N (0,ΣVk

) is an i.i.d. Gaussian noise sequence. The channels between the encoder and the decoder are
assumed to be i.i.d. additive Gaussian channels; i.e., Wk ∼ N (0,ΣWk

), and Wk and Vl are independent. At the k-
th stage of the N -stage game, the encoder knows the values of Ie

k = {m[0,k],y[0,k−1]} (a noiseless feedback channel is

assumed) and the decoder knows the values of Id
k = {y[0,k]} with yk = xk+wk. Thus, under the policies considered,

xk = γe
k(I

e
k) and uk = γd

k(I
d
k ). The encoder’s goal is to minimize (3) with cek (mk,xk,uk) = ‖mk−uk−b‖2+λ‖xk‖2,

whereas, the decoder’s goal is to minimize (4) with cdk (mk,uk) = ‖mk−uk‖2, by finding the optimal policy sequences

γ∗,e
[0,N−1] and γ∗,d

[0,N−1], respectively, where the lengths of the vectors are defined in L2 norm and b is the bias vector.

Note that a power constraint with an associated multiplier λ is appended to the cost function of the encoder, which
corresponds to power limitation for transmitters in practice. If λ = 0, this corresponds to the setup with no power
constraint at the encoder.

3.1 Nash Equilibrium Analysis of Multi-Stage Quadratic Gaussian Signaling Games5

In multi-stage quadratic Gaussian signaling games, affine policies constitute an invariant subspace under best
response maps for Nash equilibria for both scalar (n = 1) and vector (n > 1) Gauss-Markov sources.

Theorem 3.1. (i) If the encoder uses affine policies at all stages, then the decoder will be affine at all stages.

(ii) If the decoder uses affine policies at all stages, then the encoder will be affine at all stages.

Proof. (i) Let the encoder policies be xk = γe
k(m[0,k],y[0,k−1]) =

∑k
i=0 Ak,i mi+

∑k−1
i=0 Bk,i yi +Ck where Ak,i and

Bk,i are n × n matrices, and Ck is n × 1 vector for k ≤ N − 1 and i ≤ k. Then, the optimal decoder actions are
u∗
k = E[mk|Id

k ] = E[mk|y[0,k]] for k ≤ N − 1. Notice that y[0,k] is multivariate Gaussian since yk = xk +wk. This

proves that γ∗,d
k (Id

k ) is an affine function of y[0,k] due to the joint Gaussianity of mk and y[0,k].
(ii) For a fixed affine decoder, the optimal encoder can be computed algebraically (for a detailed derivation, see [26,
Theorem 3.5.1]).

5In our related paper [9], for Theorem 4.1 and Section V.B, we incidentally used the information theoretic lower bounds for the
Nash equilibrium analysis. However, due to the assumption on the optimal decoder action; i.e., u = E[m|y], the information theoretic
arguments are actually valid for the Stackelberg case (see [26] for details).
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While it provides a structural result on the plausibility of affine equilibria, Theorem 3.1 does not lead to a
conclusion about the existence of an informative equilibrium. It may be tempting to apply fixed point theorems
(such as Brouwer’s fixed point theorem [4]) to establish the existence of informative equilibria; however, that there
always exist a non-informative equilibrium for the cheap talk game also applies to the signaling game [9]. Later
on, we will make information theoretic arguments (in Theorem 3.3) for the existence of informative equilibria for
the Stackelberg setup, but this is not feasible for the Nash setup. However, the informativeness analysis of the
2-stage signaling-game can be accomplished by analyzing the fixed points of the invariant set of affine policies in
Theorem 3.1 as follows (for a proof, due to space constraints, see [26]):

Theorem 3.2. For the 2-stage signaling game setup under affine encoder and decoder assumptions,

(i) If λ > max
{

(g2+1)σ2
M0

σ2
W0

,
σ2
M1

σ2
W1

}
, then there does not exist an informative affine equilibrium.

(ii) If
σ2
M1

σ2
W1

< λ ≤
(g2+1)σ2

M0

σ2
W0

, then the second stage message m1 is not used in the game.

(iii) If
(g2+1)σ2

M0

σ2
W0

< λ ≤
σ2
M1

σ2
W1

, the equilibrium is informative if and only if σ2
M1

≥ 4b2 and

max

{
σ2
M1

−2b2−
√

σ2
M1

√
σ2
M1

−4b2

2σ2
W1

,
(
g2 + 1

) σ2
M0

σ2
W0

}
< λ <

σ2
M1

−2b2+
√

σ2
M1

√
σ2
M1

−4b2

2σ2
W1

.

The above analysis can be carried over to the N -stage signaling game; however, this would involve (3N2+5N)/2
equations and as many unknowns.

3.2 Stackelberg Equilibrium Analysis of Multi-Stage Quadratic Gaussian Signaling

Games

Here, the signaling game is analyzed under the Stackelberg concept.

3.2.1 Multi-Stage Stackelberg Equilibria for Scalar Gauss-Markov Sources

The conditions for informative Stackelberg equilibria with scalar sources are characterized below. The proof is in
Appendix A.

Theorem 3.3. If λ ≥ maxk≤N−1
σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i, there does not exist an informative (affine or non-linear)

equilibrium in the N -stage scalar signaling game under the Stackelberg assumption; i.e., the only equilibrium is the
non-informative one. Otherwise, an equilibrium has to be always linear.

Now consider the multi-stage Stackelberg signaling game with a discounted infinite horizon and a discount

factor β ∈ (0, 1); i.e., Je(γe, γd) = E

[∑∞

i=0 β
i
(
(mi − ui − b)

2
+ λx2

i

)]
and Jd(γe, γd) = E

[∑∞

i=0 β
i (mi − ui)

2
]
.

The proof is in Appendix B.

Corollary 3.1. If λ ≥ maxk=0,1,...
σ2
Mk

σ2
Wk

1
1−βg2 where βg2 < 1, there does not exist an informative (affine or non-

linear) equilibrium in the infinite horizon discounted multi-stage Stackelberg signaling game for scalar Gauss-Markov
sources.
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3.2.2 Multi-Stage Stackelberg Equilibria for Vector Gauss-Markov Sources

Linear policies are optimal for scalar sources as shown in Section 3.2.1. Before analyzing the multi-dimensional setup,
it will be appropriate to review the optimality of linear policies in Gaussian setups for the classical communication
theoretic setup when the bias term is absent: Optimality of linear coding policies for scalar Gaussian source-channel
pairs with noiseless feedback has been known since 1960s, see e.g. [27]. Optimal linear encoders for single-stage
setups have been studied in [28, 29]. When the source and the channel are multi-dimensional, linear policies may
not be optimal; see [30], [7, Chapter 11] and [31] for a detailed discussion and literature review. It is evident from
Theorem 3.1 that when the encoder is linear, the optimal decoder is linear. In this case, a relevant problem is to find
the optimal Stackelberg policy among the linear or affine class. In the following, a dynamic programming approach
is adapted to find such Stackelberg equilibria. Building on the optimality of linear innovation encoders, we restrict
the analysis to such encoders; i.e., we consider a sub-optimal scenario. Our analysis builds on and generalizes the
arguments in [31, Theorem 3] and [32]. The proof is in Appendix C.

Theorem 3.4. Suppose that G, ΣM0 and Σvk
are diagonal. Suppose further that the innovation is given by

m̃k , mk − E[mk|y[0,k−1]] with m̃0 = m0, and that the encoder linearly encodes the innovation. Then, an optimal

such linear policy can be computed through dynamic programming with value functions Vk (Σm̃k
) , tr (KkΣm̃k

+ Lk)
that satisfy the terminal condition VN (Σm̃N

) = 0 with diagonal Kk matrices for k ≤ N − 1.

4 Concluding Remarks

In this paper, we studied Nash and Stackelberg equilibria for multi-stage quadratic cheap talk and signaling
games. We established qualitative (e.g. on full revelation, quantization nature, linearity, informativeness and
non-informativeness) and quantitative properties (on linearity or explicit computation) of Nash and Stackelberg
equilibria under misaligned objectives.

A Proof of Theorem 3.3

Similar to that in Theorem 2.8, the optimal decoder actions are u∗
k = γ∗,d

k (Id
k ) = E[mk|Id

k ] = E[mk|y[0,k]], and the

total encoder cost becomes Je(γe
[0,N−1], γ

d
[0,N−1]) = E

[
N−1∑
k=0

E[(mk − E[mk|Id
k ])

2 + b2 + λx2
k|I

d
k ]

]
. This is an instance

of problems studied in [33], and can be reduced to a team problem where both the players are minimizing the same
cost. The linearity of the optimal policies can be deduced from [33]. Here, we adapt the proof in [33] to our setup.
From the chain rule, I(mk; y[0,k]) = I(mk; y[0,k−1]) + I(mk; yk|y[0,k−1]). By following similar arguments to those
in [33] and [7, Theorem 11.3.1],

I(mk; yk|y[0,k−1]) = h(yk|y[0,k−1])− h(yk|mk, y[0,k−1])

≤ h(yk)− h(yk|γ
e
k(mk, y[0,k−1]))

= I
(
γe
k(mk, y[0,k−1]); yk

)
= I(xk; yk) ≤ sup I(xk; yk)

=
1

2
log2

(
1 +

Pk

σ2
Wk

)
, Ĉk where Pk = E[x2

k] .

It can be seen that mk−E[mk|mk−1] is orthogonal to the random variables mk−1, y[0,k−1] where y[0,k−1] is included
due to the Markov chain mk ↔ mk−1 ↔ (y[0,k−1]). By using this orthogonality, it follows that

E[(mk − E[mk|y[0,k−1]])
2] = E[(mk − E[mk|mk−1])

2]
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+ E[(E[mk|mk−1]− E[mk|y[0,k−1]])
2]

(a)
= E[(mk − E[mk|mk−1])

2] + E

[(
E[mk|mk−1]

− E[E[mk|mk−1]|y[0,k−1]]
)2]

(b)
= σ2

Vk−1
+ g2E[(mk−1 − E[mk−1|y[0,k−1]])

2]

(c)

≥ σ2
Vk−1

+ g2σ2
Mk−1

2−2Ck−1 , (6)

where Ck , sup I(mk; y[0,k]). Here, (a) holds due to the iterated expectation rule and the Markov chain property, (b)
holds since E[mk|mk−1] = E[gmk−1+vk−1|mk−1] = gmk−1, and (c) holds due to [7, Lemma 11.3.1]. From [7, Lemma
11.3.2], I(mk; y[0,k−1]) is maximized with linear policies, and the lower bound of (6), E[(mk − E[mk|y[0,k−1]])

2] ≥

σ2
Vk−1

+ g2σ2
Mk−1

2−2Ck−1 , σ2
Mk

2−2C̃k , is achievable through linear policies where sup I(mk; y[0,k−1]) , C̃k =

1
2 log2

(
σ2
Mk

σ2
Vk−1

+g2σ2
Mk−1

2−2Ck−1

)
. Thus, we have the following recursion on upper bounds on mutual information for

the N -stage signaling game:

Ck = sup I(mk; y[0,k]) = C̃k + Ĉk

=
1

2
log2

(
σ2
Mk

σ2
Vk−1

+ g2σ2
Mk−1

2−2Ck−1

)
+

1

2
log2

(
1 +

Pk

σ2
Wk

)

for k ≤ N − 1 with C0 = 1
2 log2

(
1 + P0

σ2
W0

)
. Let the lower bound on E

[(
mk − E[mk|y[0,k]]

)2]
be ∆k; i.e.,

E

[(
mk − E[mk|y[0,k]]

)2]
≥ σ2

Mk
2−2Ck , ∆k. Then the following recursion holds for the N -stage signaling game:

∆k =
σ2
Vk−1

+ g2∆k−1

1 + Pk

σ2
Wk

for k = 1, 2, . . . , N − 1

with ∆0 =
σ2
M0

1+
P0

σ2
W0

. Since ∆k = σ2
Mk

2−2Ck by definition, ∆k ≤ σ2
Mk

for k ≤ N − 1. In an equilibrium, since the

decoder always chooses uk = E[mk|y[0,k]] for k ≤ N − 1, the total encoder cost for the first stage can be lower

bounded by Je,lower
0 =

∑N−1
i=0

(
∆i + λPi + b2

)
. Now observe the following:

∂∆l

∂Pk
=





0 if l < k

g2

(
1 +

Pl

σ2
Wl

)−1
∂∆l−1

∂Pk
−

1

σ2
Wl

∂Pl

∂Pk

×
(
σ2
Vl−1

+ g2∆l−1

)(
1 +

Pl

σ2
Wl

)−2 if l ≥ k
,

where ∂Pl

∂Pk
= 0 for l < k due to the information structure of the encoder. Then,

∂Je,lower
0

∂PN−1
≥ λ −

σ2
MN−1

σ2
WN−1

can be

obtained. If λ >
σ2
MN−1

σ2
WN−1

, then
∂Je,lower

0

∂PN−1
> 0, which implies that Je,lower

0 is an increasing function of PN−1. For this
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case, in order to minimize Je,lower
0 , PN−1 must be chosen as 0; i.e., P ∗

N−1 = 0. Then, for λ >
σ2
MN−1

σ2
WN−1

,

∂Je,lower
0

∂PN−2
= λ

(
1 +

∂PN−1

∂PN−2

)
+

N−1∑

i=N−2

∂∆i

∂PN−2

= λ

(
1 +

∂PN−1

∂PN−2

)
+


g2

(
1 +

PN−1

σ2
WN−1

)−1

+ 1


 ∂∆N−2

∂PN−2

−
(
σ2
VN−2

+ g2∆N−2

)(
1 +

PN−1

σ2
WN−1

)−2
1

σ2
WN−1

∂PN−1

∂PN−2

(a)
= λ+

∂∆N−2

∂PN−2

(
g2 + 1

)
≥ λ−

σ2
MN−2

σ2
WN−2

(
g2 + 1

)
.

Here, (a) holds since P ∗
N−1 = 0 for λ >

σ2
MN−1

σ2
WN−1

. If λ > max
{σ2

MN−1

σ2
WN−1

,
σ2
MN−2

σ2
WN−2

(
g2 + 1

)}
, then

∂Je,lower
0

∂PN−2
> 0, which

implies that Je,lower
0 is an increasing function of PN−2. For this case, in order to minimize Je,lower

0 , PN−2 must be
chosen as 0. By following the similar approach and assumptions on λ, since P ∗

N−1 = P ∗
N−2 = · · · = P ∗

k+1 = 0, we
have the following:

∂Je,lower
0

∂Pk
= λ+

N−1∑

i=k

∂∆i

∂Pk
= λ+

∂∆k

∂Pk

N−1∑

i=k

i∏

j=k+1

g2

= λ−
σ2
Vk−1

+ g2∆k−1

σ2
Wk

(
1 +

Pk

σ2
Wk

)−2 N−1∑

i=k

i∏

j=k+1

g2

≥ λ−
σ2
Mk

σ2
Wk

N−k−1∑

i=0

g2i ,

where
∏l

i=k = 1 if k > l. If λ >
σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i, then

∂Je,lower
0

∂Pk
> 0, which implies that Je,lower

0 is an increasing

function of Pk. For this case, in order to minimize Je,lower
0 , Pk must be chosen as 0.

By combining all the results above, it can be deduced that if λ > maxk≤N−1
σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i, the lower bound

Je,lower
0 of the encoder costs Je

0 is minimized by choosing P ∗
0 = P ∗

1 = · · · = P ∗
N−1 = 0; that is, the encoder does not

signal any output. Hence, the encoder engages in a non-informative equilibrium and the minimum cost becomes

Je
0 = Je,lower

0 =
(∑N−1

i=0 σ2
Mi

)
+Nb2.

B Proof of Corollary 3.1

For the infinite horizon case, it can be observed

inf
γe

lim sup
N→∞

Je(γe
[0,N−1], γ

d
[0,N−1])
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≥ lim sup
N→∞

inf
γe
[0,N−1]

N−1∑

i=0

βi
(
∆i + λPi + b2

)
.

Thus, lim supN→∞ infγe
[0,N−1]

∑N−1
i=0 βi

(
∆i + λPi + b2

)
is achieved at a non-informative equilibrium if λ >

lim supN→∞ maxk≤N−1
σ2
Mk

σ2
Wk

∑N−k−1
i=0 βig2i =

σ2
Mk

σ2
Wk

1
1−βg2 for βg2 < 1. Hence, if λ ≥ maxk=0,1,...

σ2
Mk

σ2
Wk

1
1−βg2 , then the

lower bound Je,lower
0 of the encoder costs Je

0 is minimized by choosing P0 = P1 = · · · = 0, and the minimum cost

becomes Je
0 = Je,lower

0 =
∑∞

i=0 β
i
(
σ2
Mi

+ b2
)
at this non-informative equilibrium.

C Proof of Theorem 3.4

We will follow an approach similar to that in [31] which restricted the analysis to a team problem and a scalar
channel; [31] in turn builds on [32], which considers continuous time systems. Since the (k + 1)st stage encoder
policy only transmits the linearly encoded innovation by assumption, xk = γe

k(I
e
k) = Akm̃k where Ak is an

n × n matrix for k ≤ N − 1. Then the decoder receives yk = xk + wk = Akm̃k + wk and applies the action
uk = γd

k(I
d
k ) = E[mk|y[0,k]] to minimize his stage-wise cost ‖ek‖2 , E[‖mk − uk‖2] = E[(mk − uk)

T (mk −

uk)] = tr (Σek
) for k ≤ N − 1 where ΣR stands for the covariance matrix of the random variable R; i.e., ΣR ,

E[(R − E[R])(R − E[R])T ]. Due to the orthogonality of m̃k and y[0,k−1], and the iterated expectations rule,

uk = E[mk|y[0,k]] = E
[
m̃k + E[mk|y[0,k−1]]|y[0,k]

]
= E[m̃k|yk]+E[mk|y[0,k−1]], and it follows that ek = mk−uk =

mk − E[m̃k|yk] − E[mk|y[0,k−1]] = m̃k − E[m̃k|yk]. Since E[m̃k|yk] = Σm̃k
AT

k (Σyk
)−1

yk, the stage-wise cost of
the decoder becomes the trace of the following:

Σek
= Σm̃k

− Σm̃k
AT

k

(
AkΣm̃k

AT
k +Σwk

)−1
AkΣm̃k

(a)
= Σ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k

, (7)

where (a) follows by utilizing the matrix inversion lemma, (I + UWV )−1 = I − U(W−1 + V U)−1V , where U =

HT
k , W = I, V = Hk, and Hk , Σ

−1/2
wk

AkΣ
1/2
m̃k

. Since E[mk|y[0,k−1]] and m̃k are orthogonal, E[mk|yk] =

Σm̃k
AT

k (Σyk
)−1

yk. Then the innovation and its covariance matrix can be expressed recursively as follows:

m̃k+1 = Gmk + vk − E[mk+1|y[0,k−1]]− E[mk+1|yk]

= Gm̃k + vk −GΣm̃k
AT

k (Σyk
)
−1

yk ,

Σm̃k+1
= GΣ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k

GT +Σvk
. (8)

Further, the stage-wise cost of the encoder is

E
[
‖mk − uk − b‖2 + λ‖xk‖

2
]
= tr (Σek

) + tr (λΣxk
) + ‖b‖2

= tr
(
Σm̃k

(
I +HT

k Hk

)−1
)
+ tr

(
λHT

k Σwk
Hk

)
+ ‖b‖2 . (9)

Let the value functions be Vk (Σm̃k
) = tr (KkΣm̃k

+ Lk) with Kk being diagonal. In the following we show
that there exist such Vk that satisfy Bellman’s principle of optimality [34, Theorem 3.2.1]. Here, Vk (Σm̃k

) ,

minHk

(
Ck (Σm̃k

, Hk) + Vk+1

(
Σm̃k+1

)
)
, and Ck (Σm̃k

, Hk) , tr (Σek
) + tr (λΣxk

) + ‖b‖2 is the stage-wise cost of
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the k-th stage encoder. Then, since Kk+1 and Lk+1 do not depend on Hk,

Vk (Σm̃k
) = min

Hk

(
Ck (Σm̃k

, Hk) + Vk+1

(
Σm̃k+1

)
)

(a)
= tr (Kk+1Σvk

+ Lk+1) + ‖b‖2 +min
Hk

(
tr
(
λHT

k Σwk
Hk

)
︸ ︷︷ ︸

,C

+ tr
(
Σ

1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

(
I +HT

k Hk

)−1
)

︸ ︷︷ ︸
,P

)
, (10)

where (a) follows by substituting Ck (Σm̃k
, Hk) using (9) and employing (8). The equivalent problem of the min-

imization of P over Hk under the constraint C = µk is considered in [28], and for every µk = C, the optimal Hk

is found as H∗
k = ΠkζkP

T
k , where Πk is a unitary matrix such that ΠT

k (λΣwk
)Πk = diag (τk1 , τk2 , . . . , τkn

) , Π̃k,

Pk is a unitary matrix such that PT
k

(
Σ

1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

)
Pk = diag (νk1 , νk2 , . . . , νkn

), and ζk is another

diagonal matrix. Then the recursion of the innovation’s covariance matrix (8) can be expressed as

Σm̃k+1
= GΣ

1/2
m̃k

(
I + Pkζ

T
k ζkP

T
k

)−1
Σ

1/2
m̃k

GT +Σvk
. (11)

Then, by utilizing H∗
k = ΠkζkP

T
k , ΠT

k Πk = I, Π̃k = ΠT
k (λΣwk

)Πk, and PT
k Pk = I in (10),

Vk (Σm̃k
)
(a)
= tr

(
Kk+1Σvk

+ Lk+1 + bbT
)
+ tr

(
ζTk Π̃kζk

)

+ tr

((
GTKk+1G+ I

)(
I − ζTk

(
I + ζkζ

T
k

)−1
ζk

)
Σm̃k

)
, (12)

where (a) follows from the matrix inversion lemma by choosing U = Pkζ
T
k , W = I, and V = ζkP

T
k in

(I + UWV )−1 = I − U(W−1 + V U)−1V , and the diagonality of Σm̃k
, Pk and ζk: Since G, Σm̃0

, Kk and Σvk
are di-

agonal for k ≤ N−1, it is always possible to find a unitary diagonal P0 such that PT
0

(
Σ

1/2
m̃0

(
GTK1G+ I

)
Σ

1/2
m̃0

)
P0 =

diag (ν01 , ν02 , . . . , ν0n), which makes Σm̃1
diagonal by (11). Similarly, Σm̃k

and Pk are diagonal for k ≤ N − 1. In
order to satisfy (12), since VN (Σm̃N

) = 0, we choose KN = LN = 0. Then, for k ≤ N − 1, {Kk+1, Lk+1} is chosen
according to

Kk =
(
GTKk+1G+ I

)(
I − ζTk

(
I + ζkζ

T
k

)−1
ζk

)
,

Lk = Kk+1Σvk
+ Lk+1 + ζTk Π̃kζk + bbT . (13)

Now we verify that the diagonal Kk matrices satisfy the dynamic programming recursion.
When the channel is scalar, for k ≤ N − 1,

Kk =
(
GTKk+1G+ I

)
× diag

(
λσ2

Wk

1 + λσ2
Wk

, 1, 1, . . . , 1

)
,

Lk = Kk+1Σvk
+ Lk+1 + diag (1, 0, 0, . . . , 0) + bbT .

The optimal linear encoder policy is A∗
k = Σ

1/2
wk

ζkP
T
k Σ

−1/2
m̃k

since Πk = 1 and ζk =

[
1√

λσ2
Wk

, 0, . . . , 0

]
.
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