1,545 research outputs found

    Scalable QoS-aware Mobility for Future Mobile Operators

    Get PDF
    Telecom operators and Internet service providers are heading for a new shift in communications paradigms. The forthcoming convergence of cellular and wireless data networks is often manifested in an “all IP approach” in which all communications are based on an end-to-end IP protocol framework. The approach to network design becomes user and service-centered, so that continuous reachability of mobile users and sustained communication capabilities are default requirements for a prospective architecture. In this article, we describe a network architecture which is able to provide seamless communication mobility, triggered either by the user or by the network, across multiple technologies. The architecture allows for media independent handovers and supports optimized mobility and resource management functions. The main focus of the article is on major technical highlights of mobility and quality-of-service (QoS) management subsystems for converged networks.Publicad

    Service Platform for Converged Interactive Broadband Broadcast and Cellular Wireless

    Get PDF
    A converged broadcast and telecommunication service platform is presented that is able to create, deliver, and manage interactive, multimedia content and services for consumption on three different terminal types. The motivations of service providers for designing converged interactive multimedia services, which are crafted for their individual requirements, are investigated. The overall design of the system is presented with particular emphasis placed on the operational features of each of the sub-systems, the flows of media and metadata through the sub-systems and the formats and protocols required for inter-communication between them. The key features of tools required for creating converged interactive multimedia content for a range of different end-user terminal types are examined. Finally possible enhancements to this system are discussed. This study is of particular interest to those organizations currently conducting trials and commercial launches of DVB-H services because it provides them with an insight of the various additional functions required in the service provisioning platforms to provide fully interactive services to a range of different mobile terminal types

    Investigation of an intelligent personalised service recommendation system in an IMS based cellular mobile network

    Get PDF
    Success or failure of future information and communication services in general and mobile communications in particular is greatly dependent on the level of personalisations they can offer. While the provision of anytime, anywhere, anyhow services has been the focus of wireless telecommunications in recent years, personalisation however has gained more and more attention as the unique selling point of mobile devices. Smart phones should be intelligent enough to match user’s unique needs and preferences to provide a truly personalised service tailored for the individual user. In the first part of this thesis, the importance and role of personalisation in future mobile networks is studied. This is followed, by an agent based futuristic user scenario that addresses the provision of rich data services independent of location. Scenario analysis identifies the requirements and challenges to be solved for the realisation of a personalised service. An architecture based on IP Multimedia Subsystem is proposed for mobility and to provide service continuity whilst roaming between two different access standards. Another aspect of personalisation, which is user preference modelling, is investigated in the context of service selection in a multi 3rd party service provider environment. A model is proposed for the automatic acquisition of user preferences to assist in service selection decision-making. User preferences are modelled based on a two-level Bayesian Metanetwork. Personal agents incorporating the proposed model provide answers to preference related queries such as cost, QoS and service provider reputation. This allows users to have their preferences considered automatically

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform
    • 

    corecore