280 research outputs found

    Next-Generation Mobile Satellite Networks

    Get PDF

    Energy efficient hybrid satellite terrestrial 5G networks with software defined features

    Get PDF
    In order to improve the manageability and adaptability of future 5G wireless networks, the software orchestration mechanism, named software defined networking (SDN) with Control and User plane (C/U-plane) decoupling, has become one of the most promising key techniques. Based on these features, the hybrid satellite terrestrial network is expected to support flexible and customized resource scheduling for both massive machinetype- communication (MTC) and high-quality multimedia requests while achieving broader global coverage, larger capacity and lower power consumption. In this paper, an end-to-end hybrid satellite terrestrial network is proposed and the performance metrics, e. g., coverage probability, spectral and energy efficiency (SE and EE), are analysed in both sparse networks and ultra-dense networks. The fundamental relationship between SE and EE is investigated, considering the overhead costs, fronthaul of the gateway (GW), density of small cells (SCs) and multiple quality-ofservice (QoS) requirements. Numerical results show that compared with current LTE networks, the hybrid system with C/U split can achieve approximately 40% and 80% EE improvement in sparse and ultra-dense networks respectively, and greatly enhance the coverage. Various resource management schemes, bandwidth allocation methods, and on-off approaches are compared, and the applications of the satellite in future 5G networks with software defined features are proposed

    An analytical framework in LEO mobile satellite systems servicing batched Poisson traffic

    Get PDF
    The authors consider a low earth orbit (LEO) mobile satellite system (MSS) that accepts new and handover calls of multirate service-classes. New calls arrive in the system as batches, following the batched Poisson process. A batch has a generally distributed number of calls. Each call is treated separately from the others and its acceptance is decided according to the availability of the requested number of channels. Handover calls follow also a batched Poisson process. All calls compete for the available channels under the complete sharing policy. By considering the LEO-MSS as a multirate loss system with ‘satellite-fixed’ cells, it can be analysed via a multi-dimensional Markov chain, which yields to a product form solution (PFS) for the steady-state distribution. Based on the PFS, they propose a recursive and yet efficient formula for the determination of the channel occupancy distribution, and consequently, for the calculation of various performance measures including call blocking and handover failure probabilities. The latter are much higher compared to the corresponding probabilities in the case of the classical (and less bursty) Poisson process. Simulation results verify the accuracy of the proposed formulas. Furthermore, they discuss the applicability of the proposed model in software-defined LEO-MSS

    Recent trends in IP/NGEO satellite communication systems: transport, routing, and mobility management concerns

    Get PDF
    科研費報告書収録論文(課題番号:17500030/研究代表者:加藤寧/インターネットと高親和性を有する次世代低軌道衛星ネットワークに関する基盤研究

    QoS Provisioning for Multi-Class Traffic in Wireless Networks

    Get PDF
    Physical constraints, bandwidth constraints and host mobility all contribute to the difficulty of providing Quality of Service (QoS) guarantees in wireless networks. There is a growing demand for wireless networks to support all the services that are available on wired networks. These diverse services, such as email, instant messaging, web browsing, video conferencing, telephony and paging all place different demands on the network, making QoS provisioning for wireless networks that carry multiple classes of traffic a complex problem. We have developed a set of admission control and resource reservation schemes for QoS provisioning in multi-class wireless networks. We present three variations of a novel resource borrowing scheme for cellular networks that exploits the ability of some multimedia applications to adapt to transient fluctuations in the supplied resources. The first of the schemes is shown to be proportionally fair: the second scheme is max-min fair. The third scheme for cellular networks uses knowledge about the relationship between streams that together comprise a multimedia session in order to further improve performance. We also present a predictive resource reservation scheme for LEO satellite networks that exploits the regularity of the movement patterns of mobile hosts in LEO satellite networks. We have developed the cellular network simulator (CNS) for evaluating call-level QoS provisioning schemes. QoS at the call-level is concerned with call blocking probability (CBP), call dropping probability (CDP), and supplied bandwidth. We introduce two novel QoS parameters that relate to supplied bandwidth—the average percent of desired bandwidth supplied (DBS), and the percent of time spent operating at the desired bandwidth level (DBT)

    Space-Based Information Infrastructure Architecture for Broadband Services

    Get PDF
    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced

    On Channel Sharing Policies in LEO Mobile Satellite Systems

    Get PDF
    We consider a low earth orbit (LEO) mobile satellite system with "satellite-fixed" cells that accommodates new and handover calls of different service-classes. We provide an analytical framework for the efficient calculation of call blocking and handover failure probabilities under two channel sharing policies, namely the fixed channel reservation and the threshold call admission policies. Simulation results verify the accuracy of the proposed formulas. Furthermore, we discuss the applicability of the policies in software-defined LEO satellites
    corecore