26 research outputs found

    Distributed Failure Restoration for Asynchronous Transfer Mode (ATM) Tactical Communication Networks

    Get PDF
    Asynchronous Transfer Mode (A TM) is an attractive choice for future military communication systems because it can provide high throughput and support multi-service applications. Furthermore its use is consistent with the 'off the shelf technology policy that is currently operated by the Defence Engineering Research Agency of Great Britain. However, A TM has been developed as a civil standard and is designed to operate in network infrastructures with very low failure rates. In contrast, tactical networks are much less reliable. Indeed tactical networks operate on the premise that failures, particularly node failures, are expected. Hence, efficient, automatic failure restoration schemes are essential if an A TM based tactical network is to remain operational. The main objective of this research is the proposal and verification of one or more new restoration algorithms that meet the specific requirements of tactical networks. The aspects of ATM networks that influence restoration algorithms' implementation are discussed. In particular, the features of A TM networks such as the concept of Virtual Paths Virtual Channels and OAM (Operation And Maintenance) mechanisms that facilitate implementation of efficient restoration techniques. The unique characteristics of tactical networks and their impact on restoration are also presented. A significant part of the research was the study and evaluation of existing approaches to failure restoration in civil networks. A critical analysis of the suitability of these approaches to the tactical environment shows no one restoration algorithm fully meets the requirements of tactical networks. Consequently, two restoration algorithms for tactical A TM networks, DRA-TN (Dynamic Restoration Algorithm for Tactical Networks) and PPR-TN (Pre-planned Restoration Algorithm for Tactical Networks), are proposed and described in detail. Since the primary concern of restoration in tactical networks is the recovery of high priority connections the proposed algorithms attempt to restore high-priority connections by disrupting low-priority calls. Also, a number of additional mechanisms are proposed to reduce the use of bandwidth, which is a scarce resource in tactical networks. It is next argued that software simulation is the most appropriate method to prove the consistency of the proposed algorithms, assess their performance and test them on different network topologies as well as traffic and failure conditions. For this reason a simulation software package was designed and built specifically to model the proposed restoration algorithms. The design of the package is presented in detail and the most important implementation issues are discussed. The proposed restoration algorithms are modelled on three network topologies under various traffic loads, and their performance compared against the performance of known algorithms proposed for civil networks. It is shown that DRA-TN and PPR-TN provide better restoration of higher priority traffic. Furthermore, as the traffic load increases the relative performance of the DRA-TN and PPR-TN algorithms increases. The DRA-TN and PPR-TN algorithms are also compared and their advantages and disadvantages noted. Also, recommendations are given about the applicability of the proposed algorithms, and some practical implementation issues are discussed. The number of problems that need further study are briefly described.Defence Engineering Research Agency of Great Britai

    A methodological approach to BISDN signalling performance

    Get PDF
    Sophisticated signalling protocols are required to properly handle the complex multimedia, multiparty services supported by the forthcoming BISDN. The implementation feasibility of these protocols should be evaluated during their design phase, so that possible performance bottlenecks are identified and removed. In this paper we present a methodology for evaluating the performance of BISDN signalling systems under design. New performance parameters are introduced and their network-dependent values are extracted through a message flow model which has the capability to describe the impact of call and bearer control separation on the signalling performance. Signalling protocols are modelled through a modular decomposition of the seven OSI layers including the service user to three submodels. The workload model is user descriptive in the sense that it does not approximate the direct input traffic required for evaluating the performance of a layer protocol; instead, through a multi-level approach, it describes the actual implications of user signalling activity for the general signalling traffic. The signalling protocol model is derived from the global functional model of the signalling protocols and information flows using a network of queues incorporating synchronization and dependency functions. The same queueing approach is followed for the signalling transfer network which is used to define processing speed and signalling bandwidth requirements and to identify possible performance bottlenecks stemming from the realization of the related protocols

    Concurrent cell rate simulation of ATM telecommunications network.

    Get PDF
    PhDAbstract not availabl

    Prospects for Internet technology

    Get PDF
    This paper surveys the current developments in Internet technology, with a particular emphasis on performance, and the growing need for various guarantees of quality of service. It discusses hardware technologies for increased bandwidth, mechanisms for requesting and providing specific qualities of service, and various scaling issues. Fi-nally it discusses mechanisms needed for (but not the economics of) the Internet in the mass market. To this end, we survey changes in the areas of addressing, and flow management. 1

    Traffic control mechanisms with cell rate simulation for ATM networks.

    Get PDF
    PhDAbstract not availabl

    A route pre-computation algorithm for integrated services networks

    Get PDF
    We provide an algorithm for computing best paths on a graph where edges have a multidimensional cost, one dimension representing delay, the others representing available capacity. Best paths are those which guarantee maximum capacity with least possible delay. The complexity of the algorithm is of the order of O(V3) in the bidimensional case, for a graph withV vertices. The results can be used for routing connections with guaranteed capacity in a communication network

    Multipoint connection management in ATM networks

    Get PDF

    Simulation of packet and cell-based communication networks

    Get PDF
    This thesis investigates, using simulation techniques, the practical aspects of implementing a novel mobility protocol on the emerging Broadband Integrated Services Digital Network standard. The increasing expansion of telecommunications networks has meant that the demand for simulation has increased rapidly in recent years; but conventional simulators are slow and developments in the communications field are outstripping the ability of sequential uni-processor simulators. Newer techniques using distributed simulation on a multi-processor network are investigated in an attempt to make a cell-level simulation of a non-trivial B.-I.S.D.N. network feasible. The current state of development of the Asynchronous Transfer Mode standard, which will be used to implement a B.-I.S.D.N., is reviewed and simulation studies of the Orwell Slotted Ring protocol were made in an attempt to devise a simpler model for use in the main simulator. The mobility protocol, which uses a footprinting technique to simplify hand- offs by distributing information about a connexion to surrounding base stations, was implemented on the simulator and found to be functional after a few 'special case' scenarios had been catered for
    corecore