25 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    Get PDF
    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    QoI-Aware Unified Framework for Node Classification and Self-Reconfiguration Within Heterogeneous Visual Sensor Networks

    Get PDF
    Due to energy and throughput constraints of visual sensing nodes, in-node energy conservation is one of the prime concerns in visual sensor networks (VSNs) with wireless transceiving capability. To cope with these constraints, the energy efficiency of a VSN for a given level of reliability can be enhanced by reconfiguring its nodes dynamically to achieve optimal configurations. In this paper, a unified framework for node classification and dynamic self-reconfiguration in VSNs is proposed. The proposed framework incorporates quality-of-information (QoI) awareness using peak signal-to-noise ratio-based representative metric to support a diverse range of applications. First, for a given application, the proposed framework provides a feasible solution for the classification of visual sensing nodes based on their field-of-view by exploiting the heterogeneity of the targeted QoI within the sensing region. Second, with the dynamic realization of QoI, a strategy is devised for selecting suitable configurations of visual sensing nodes to reduce redundant visual content prior to transmission without sacrificing the expected information retrieval reliability. The robustness of the proposed framework is evaluated under various scenarios by considering: 1) target QoI thresholds; 2) degree of heterogeneity; and 3) compression schemes. From the simulation results, it is observed that for the second degree of heterogeneity in targeted QoI, the unified framework outperforms its existing counterparts and results in up to 72% energy savings with as low as 94% reliability

    Allocating Heterogeneous Tasks in Participatory Sensing with Diverse Participant-Side Factors

    Get PDF
    This paper proposes a novel task allocation framework, PSTasker, for participatory sensing (PS), which aims to maximize the overall system utility on PS platform by coordinating the allocation of multiple tasks. While existing studies mainly optimize the task allocation from the perspective of the task organizer (e.g., maximizing coverage or minimizing incentive cost), PSTasker further considers diverse factors on the participants' side, including user work bandwidth, user availability, devices' sensor configuration, task completion likelihood, and mobility pattern. Furthermore, by considering the heterogeneity in three dimensions (i.e., task, time and space), it adopts a novel model to measure task sensing quality and overall system utility. In PSTasker, it first calculates the utlity of a given task allocation plan by jointly fusing different participant-side factors into one unified estimation function, and then employs an iterative greedy process to optimize the task allocation. Extensive evaluations based on real-world mobility traces demonstrate that PSTasker outperforms the baseline methods under various settings
    corecore