
 
 

ISIATasker: Task Allocation for 
Instant-Sensing-Instant-Actuation 
Mobile Crowd Sensing 
 
Houchun Yin, Zhiwen Yu, Liang Wang, Jiangtao Wang, Lei Han, and Bin Guo 
 
Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  
Yin, H., Yu, Z., Wang, L., Wang, J., Han, L. and Guo, B., 2021. ISIATasker: Task Allocation 
for Instant-Sensing-Instant-Actuation Mobile Crowd Sensing. IEEE Internet of Things Journal. 
https://dx.doi.org/10.1109/JIOT.2021.3095160   
 
DOI 10.1109/JIOT.2021.3095160 
ISSN 2327-4662 
 
Publisher: IEEE 
 
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 

https://doi.org/10.1109/JIOT.2021.3095160
https://doi.org/10.1109/JIOT.2021.3095160
https://doi.org/10.1109/JIOT.2021.3095160


This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3095160, IEEE Internet of
Things Journal

1

ISIATasker: Task Allocation for
Instant-Sensing-Instant-Actuation Mobile Crowd

Sensing
Houchun Yin, Zhiwen Yu, Senior Member, IEEE, Liang Wang, Jiangtao Wang, Lei Han, Bin Guo, Senior Mem-

ber, IEEE

Abstract—Task allocation is a key issue in Mobile Crowd
Sensing (MCS), which affects the sensing efficiency and quality.
Previous studies focus on the allocation of tasks that have already
been published to the platform, but there are some very urgent
tasks that need to be executed once they were detected. Existing
studies for either delay-tolerant or time-sensitive tasks have a
certain time delay from task publishing to execution, so it is
impossible to achieve task detection then execution seamlessly.
Thus, we first define the Instant Sensing and then Instant
Actuation (ISIA) problem in MCS and propose a new model to
solve it. We aim to allocate POIs where ISIA tasks are most likely
to be detected to workers with similar sensing types so that these
tasks can be executed once they are detected. This paper presents
a two-phase task allocation framework called ISIATasker. In
the sensing locations clustering and sensor selection phase, we
cluster independent sensing locations into several POIs and then
select the optimal cooperative sensor set for each POI to assist
workers in completing sensing. In the POIs allocation phase, we
propose a method called PA-DDQN based on deep reinforcement
learning to plan an optimal path for each worker, thus maximize
the overall sensing type matching degree and POI coverage
to enable instant sensing and then instant actuation. Finally,
extensive experiments are conducted based on real-world datasets
to demonstrate that the matching degree and POI coverage of
ISIATasker outperforms other baselines.

Index Terms—Mobile Crowd Sensing, task allocation, deep
reinforcement learning, task urgency.

I. INTRODUCTION

W ITH the proliferation of smart mobile devices, Mobile
Crowd Sensing (MCS) [1] [2] has become a new

sensing paradigm. Many MCS application platforms have
been developed for academic research, industrial production
or daily life, such as CrowdOS [3], GeoCrowd [4], Gigwalk
[5], CommonSense [6] and FlierMeet [7]. Workers on these
MCS platforms can sense and collect real-time data with their
mobile devices (e.g., air quality [8], traffic information [9]).

Task allocation is a key problem in mobile crowd sensing
[10]. Existing studies can be divide into two categories [11]
based on the urgency of tasks: delay-tolerant task and time-
sensitive task. Delay-tolerant task do not need to be executed
quickly. Workers can piggyback to achieve execution during
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their daily routes [12] [13] [14]. The MCS platform also does
not need to know the privacy information of workers, so it
usually doesn’t invade the personal privacy while producing a
lower sensing cost. However, since workers only execute tasks
they just pass by, the allocation result mainly depends on the
workers’ daily routes, and it is difficult to ensure that tasks
can be surely executed. Conversely, time-sensitive task need
to be executed quickly, so nearby workers are required to move
specifically for task execution [15] [16] [17]. MCS platform
needs to recruit nearby workers who are willing to move
quickly for the task, this cause a higher incentive cost while
ensuring tasks can be timely executed. Summarize studies
above, we can find that existing studies [18] [19] [20] focus on
either delay-tolerant or time-sensitive task allocation follows
several same phases, including task detection, task publishing,
receiving and execution, as shown in Fig.1. Wang et al. [21]
mentioned that through task detection and publishing phase,
task publishers detect some problems in urban areas and
report them to the MCS platform, which is called urban
context sensing. Through task receiving and execution phase,
MCS participants receive tasks and execute them according
to the allocation results of the platform, which is called
urban context actuation. Between urban context sensing
and actuation, we mainly allocate the sensing tasks that have
been uploaded to the platform according to some methods.
Obviously, the task allocation process of MCS platform will
cause some time delays from sensing to actuation. However,
there is a kind of task even more urgent than time-sensitive
task in the city. When these tasks are detected, workers need to
Instant Sensing and then Instant Actuation (ISIA) seamlessly,
which are called ISIA tasks. To show the key concepts and
ideas of ISIA task, a realistic scenario is given as follows.

task publisher MCS worker

MCS platform

task publishing task receiving

task detection task execution

urban context sensing task allocation urban context actuation

Fig. 1: Traditional task processing
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There are numerous sensing locations in the city, requiring
workers move to these locations for check (e.g. transmission
lines, manhole covers, etc). These locations may have some
urgent problems that need to be solved immediately (e.g.
poles collapse, missing manhole covers, etc), which we call
ISIA task. These ISIA tasks, if not be executed in time, often
lead to severe consequences even the lose of lives. Therefore,
detecting them and then immediately fixing them become a
crucial mission. However, existing studies whether for delay-
tolerant or time-sensitive mode allocate the tasks that have
been published on the platform, and there is still a time delay
from sensing to actuation. The ISIA task we proposed is more
urgent. We hope to actuate as soon as it is detected. It means
that there is no time delay from sensing to actuation. But
the resulting time consumption of traditional task processing
shown in Fig.1 is still not tolerable for ISIA tasks.

In order to deal with ISIA tasks, our main challenge is to
recruit a group of workers to effectively cover the sensing
area when ISIA tasks are undetected. We propose a new task
processing mode, as shown in Fig.2. Different from previous
studies, the mode we proposed moves the action phase of
MCS platform to the stage before the beginning of sensing
and actuation cycle, which makes the MCS platform pre-
allocates workers based on the historical access data. During
sensing and actuation cycle, workers directly interact with the
sensors based on the allocation result, and then use their own
sensing ability to execute some tasks to avoid the process of
task uploading so as to enable instant sensing and then instant
actuation. In this way, sensors directly transmit the real-time
data to the workers without passing through the MCS plat-
form. The short-distance transmission through Bluetooth, WiFi
or other wireless communication methods will not produce
higher network delay, and can ensure data transmission more
stable and fast [22]. What’s more, the running of allocation
algorithms on MCS platform will cause some time delay.
But under our mode, workers with corresponding abilities can
actuate directly without the need for central controller to run
algorithms during each sensing and actuation cycle, which
saves the time and cost of allocation process.

Sensor nodes

Reporting

Actuation

Sensing

MCS Platform

Pre-recruitment
&

Pre-allocation

ISIA cycle

MCS workers

Fig. 2: ISIA task processing

Compared with the previous time sensitive problem, the
ISIA problem we proposed mainly has the following chal-
lenges:
• The time tolerance of ISIA task is lower than traditional

time-sensitive task. Previous studies considered sensing
and actuation separately, which resulted in the lag of task
execution. Our difference is that we want such tasks to

be executed once they are detected, that is, to achieve the
synchronization of sensing and actuation. Therefore, we
need to consider sensing and actuation simultaneously,
which is more complicated than before. In addition, we
need to pre-recruit and pre-allocate workers in the case of
undetected tasks. How to use historical data to mine the
preferences of workers and the characteristics of sensing
locations is also a key challenge, which directly affects
the quality of sensing results.

• In order to enable instant sensing and then instant actua-
tion, we not only need to maximize the coverage of the
sensing area so as to find as many ISIA tasks as possible,
but also need to maximize the matching degree between
workers and the sensing types of tasks so as to make
the ISIA tasks can be executed immediately to achieve a
higher sensing quality. However, these two optimization
objectives are conflicting and our another challenge is
how to get an optimal balance.

Given the basic concepts in the analysis above, we propose
a novel MCS task allocation framework, called ISIATasker,
which jointly consider the sensing and actuation seamlessly.
ISIATasker mainly consists of two phase. First, we propose
a clustering method SPCP to cluster the densely distributed
sensing locations into some POIs, each POI can be sensed by
a worker. Because of the variety types of tasks, a greedy-based
sensor selection method SSFP is proposed to select cooperative
sensors carried by crowds, so as to make up for the lack of
workers’ sensing ability. Second, in order to enable instant
sensing and the instant actuation, we need to maximize the
POI coverage and the matching degree between workers and
tasks at the same time. Therefore, a task allocation method
PA-DDQN based on deep reinforcement learning is proposed,
which defines a reward function to balances the two conflicting
optimization objectives of POI coverage and matching degree.
In summary, the main contributions of our work are as follows:

1) We are the first to propose the ISIA (Instant Sensing
and then Instant Actuation) problem in mobile crowd
sensing. Then we designed a novel MCS task allocation
framework called ISIATasker, which jointly consider the
sensing and actuation. While existing works focus on the
allocation of tasks has been published to the platform, we
are the first to consider the effective coverage of sensing
area when ISIA tasks are undetected to enable an instant
sensing and then instant actuation.

2) We designed a two-phase task allocation algorithm to
implement ISIATasker, which consists of three key al-
gorithms particular for solving ISIA problem. First, we
propose a clustering method named SPCP based on
Pearson correlation coefficient to cluster sensing locations
into POIs and a greedy-based method SSFP for sensor
selection. Second, in order to maximize the POI coverage
and obtain a best match between workers and tasks to
achieve instant sensing and then instant actuation, we
proposed a method based on DDQN called PA-DDQN
to allocate an optimal POI set for each worker.

3) We conduct extensive experiments based on real-world
dateset: Chengdu city check-in dataset and camera
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dataset. The results show that the performance of our
method outperforms other baselines.

II. RELATED WORKS

Many MCS platforms (e.g., [3], [6], [7]) have been de-
veloped and widely used in recent years. For example, the
WeSense application in CrowdOS [3] platform is a well-known
MCS platform, which has attracted a lot of users to publish or
execute tasks on it. As a core part of many MCS platforms,
task allocation has attracted much attention and been widely
studied. According to the urgency of MCS tasks, the existing
studies can be divided into two categories [11]: delay-tolerant
or time-sensitive task allocation.

Some studies focus on delay-tolerant tasks [13] [14] [23].
Since there is no requirement for such tasks to be executed
quickly, we only need to assign workers who can finally exe-
cute these tasks during their daily routes. For example, Zhang
et al. [12] proposed a greedy-based piggyback crowdsensing
framework called CrowdRecruiter, which aims to recruit the
minimum number of workers to minimize total incentive cost
while still meeting coverage constraint. Xiong et al. [13]
propose a novel framework, CrowdTasker, for piggyback mo-
bile crowdsensing to achieve near-maximal coverage quality
without exceeding incentive budget. Wang et al. [14] propose
a user recruitment strategy based on semi-Markov model to
calculate the utility of workers for tasks, so as to recruit the
optimal K users to complete tasks. Song et al. [23] convert
QoI-Aware multitask-Oriented participant selection problem
to a nonlinear knapsack problem and then propose a dynamic
participant selection (DPS) strategy to solve it.

Other studies focus on time-sensitive tasks [15] [16] [24].
These tasks are quite urgent and need to be executed quickly,
which requires nearby workers to move to the sensing area in
the shortest time for task execution. For example, Yucel et al.
[24] propose a stable matching theory for MCS task allocation,
so as to get a stable matching between two groups of entities
according to workers’ preference. This paper defines two sta-
ble conditions for user satisfaction, and verifies their matching
stability for time-sensitive tasks. Yang et al. [15] proposed a
distributed worker selection framework. They use a POI-based
mobility prediction model to predict the probability of a task
completed by a worker and then propose a greedy-based offline
algorithm, which selects the most appropriate group of workers
to maximize the probability of tasks to be completed. Li et
al. [16] focus on the dynamic participant selection problem
for large-scale heterogeneous sensing tasks. The optimization
objective is to minimize the sensing cost under coverage
constraints. They proposed an online method with caching
mechanism for task whose sensing time is earlier than arrival
time. [20] first define Min-Max Task (MMT) planning problem
in MCS systems, considering time-sensitive and heterogeneity
of sensing tasks. To address MMT problem, they propose a
Memetic based Bidirectional General Variable Neighborhood
algorithm. Wang et al. [25] consider a scenario where a mobile
crowdsourcing task is too complex but can be divided into
a number of easier subtasks, which have interdependency
between them. They investigate an important problem, namely

task graph scheduling in mobile crowdsourcing (TGS-MC),
aim to minimize the task completion time and overall idle time
with the consideration of worker reliability. [26] propose an
effective prediction-based participant recruitment framework
and divide participants into two categories: PAYG and PAYM
with different incentive method, and aim to minimize the total
cost.

These studies all allocate tasks that have already been
published to the platform. But when ISIA tasks are detected,
we need to enable instant sensing and then instant actuation,
and the mode of publishing and receiving tasks through
MCS platform is not applicable. In this paper, we propose a
novel task allocation framework called ISIATasker. The work
differs from studies above in the following three aspects:
1) Difference in basic problem. We first propose the instant
sensing and then instant actuation (ISIA) problem in MCS to
jointly consider sensing and actuation, and design a two-phase
framework to solve this problem. 2)Difference in definition
of optimization problem. Different from previous studies, we
focus on the problem of POIs allocation when ISIA tasks are
undetected. In order to achieve ISIA, we need to maximize
both POI coverage and worker-task sensing type matching
degree. And we define a reward function to transform the
original problem into maximizing the total reward. 3) Differ-
ence in core algorithm. Some recent researches [27] [28] use
deep learning methods to solve the related problems in Mobile
Crowd Sensing, and can get a better result than traditional
methods. Inspired by these papers, we propose a DDQN-based
method called PA-DDQN, which allocates an optimal POI set
for each worker to maximize the quality of instant sensing and
then instant actuation to address ISIA problem.

III. PROBLEM FORMULATION

In this section, we formulate the ISIA problem. Some main
notations are illustrated in TABLE I.

TABLE I: Main Notation Used Throughout the Paper

Symbol Meaning

L Sensing location set
S Sensor set
W Worker set
LC POI set
β Number of sensing data types
Γ(li) Γ(si) Sensing data type of li and si
Sc(si) Sensor si’s sensing coverage
∆(li) Number of sensors required for location li
Covw Wireless coverage of mobile device
Xwi Worker wi’s sensing ability vector
Xlcj POI lcj ’s sensing requirement vector
x(lcj) Number of sensing location in POI lcj
d(wi, lcj) Distance between worker wi and POI lcj
D(wi, LC) Total distance of worker wi

LC(wi) Worker wi’s sensing and actuation path
Pr All location-sensor pairs
Prv Valid location-sensor pairs
t(lcj) Time consumption at lcj
T (wi) Total time consumption of worker wi

ta Time of sensing at a sensing location
tb Time of actuation at a sensing location
P (wi, LC) Total matching degree of worker wi and POI set LC
|LCcov| Number of POIs covered by workers
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Different from previous studies such as [14] [24] [29], we
focus on the the allocation of POIs when ISIA tasks are
not detected. There are a large number of sensing locations
L = {l1, l2, ...ln} in the urban area. These sensing locations
have β types of sensing data (e.g., traffic conditions, air qual-
ity) and a probability of the problem (ISIA task) occurrences.
The sensing type of li is defined as Γ(li). In addition, there
are some sensors S = {s1, s2, ...sq} carried by crowds in
the city. The sensing type of si is defined as Γ(si) while
sensing coverage is defined as Sc(si). When si is within
the wireless coverage of mobile devices carried by worker, it
can transmit sensing information of current location to worker
for judging whether there is an ISIA task. The number of
monitoring sensors required for each sensing location is ∆(li).
The set of workers is denoted as W = {w1, w2, ...wp}. The
wireless coverage of the mobile device carried by each worker
is Covw. Each worker wi has a maximum traveling time
constraint Ti and may have up to β types of sensing ability.
The multi-ability constraint of a worker is expressed as vector
Xwi = [χ1wi , χ2wi , ...χβwi ]. χjwi = 0 means the worker
doesn’t have the jth ability.

In our problem, we aim to assign a worker with relevant
ability to execute ISIA task. So we cluster L into new POI set
LC = {lc1, lc2, ......lcm} according to the types and spatial
distribution of sensing locations. Then we assign each POI
a worker whose ability best match the types of possible ISIA
tasks, so that when tasks occur within the POI, nearby workers
can actuate immediately. Each lci contain x(lci) sensing loca-

tions {l1, l2, ...lx}, and
m∑
i=1

x(lci) = n. By counting the num-

ber of sensing locations of different types, the requirement vec-
tor of each POI is expressed as Xlci = [χ1lci , χ2lci , ...χβlci ].
χjlci = 0 means the POI doesn’t have the jth requirements.
For worker wi, the distance to next POI lcj is denoted by
d(wi, lcj). We use LC(wi) = {lc1, lc2, ...lcγ} to denote the
order of γ locations checked by each worker, so the total

distance can be formulated as D(wi, LC) =
γ∑
j=1

d(wi, lcj).

We define an time slice from the end of check at the previous
location to the end of check at the next location lcj as a
cycle. This process consuming time period t(lcj). The total
time consumption T (wi) of wi to execute LC(wi) can be

formulated as T (wi) =
γ∑
j=1

t(lcj). Obviously, t(lcj) is com-

posed of moving time(MT ) period, sensing time(ST ) period
and actuation time(AT ) period. Moving time is determined
by the distance d(wi, lcj), sensing time is determined by
the number of sensing locations in lcj , and actuation time
is determined by the number of urgent tasks in lcj . If no
urgent tasks are found, then no actuation time is required.
For simplicity, we suppose that moving speed of each worker
is v, checking a sensing location consumes a constant time
period ta, and executing an urgent task consumes a constant
time period tb. Furthermore, we need to select an appropriate
sensor set for each POI to assist worker for sensing. We select
the optimal sensor set in the area of all sensing locations
{l1, l2, ...lx} in lci and denote all location-sensor pairs as
Pr = lci × S = {(lj , sk)|lj ∈ lci, sk ∈ S}. Based on the

type of sensing locations and sensors, the valid location-sensor
pairs are selected from Pr and denoted as Prv = lci × S =
{(lj , sk)|lj ∈ lci, sk ∈ S, and Γ(sk) = Γ(lj)}.

One of our optimization objective is to allocate a suitable
set of POIs to each worker, so as to maximize the worker-task
matching degree to enable ISIA. Specifically, for each lcj the
probability that the possible task requirements coincide with
a worker’s ability is denoted as p(wi, lcj). Therefore, for γ
POIs, the total matching degree of worker wi is P (wi, LC) =
p(wi,lc1)+p(wi,lc2)+...+p(wi,lcγ)

γ . Besides, in order to find more
tasks as soon as possible, our another optimization objective
is to maximize the POI coverage. In other words, we focus
on how to maximize the total number of POIs denoted as
LCcov(LCcov ⊆ LC) covered by workers, while keeping
the workers’ moving distance under certain constraint. The
optimization problem can be formulated as follows:

give wi ∈W, lcj ∈ LC, lq ∈ L, sk ∈ S (1a)

Maximize

n∑
i=1

P (wi, LC) (1b)

Maximize |LCcov| (1c)

s.t.
∑
lq∈L

|(lq, sk)| ≤ 1,∀sk ∈ S (2a)

∑
wi∈W

|(wi, lcj)| ≤ 1,∀lcj ∈ LC (2b)

t(lcj) =
d(wi, lcj)

v
+ x(lcj)× ta + σ(lcj)× tb (2c)

T (wi) =

γ∑
j=1

t(lcj) =
D(wi, LC)

v
+x(LC)×ta+σ(LC)×tb

(2d)
T (wi) ≤ Ti,∀wi ∈W (2e)

Here, the objective function in 1b is the total matching
degree between workers and POIs. The objective function in
1c is the coverage of POIs. Constraint 2a denotes that each
sensor sk can sensing no more than one sensing location.
Constraint 2b denotes that each POI should be effectively
covered by no more than one worker. Constraint 2c denotes
that a unit check time period is composed of moving time,
sensing time and actuation time. Constraint 2d denotes the
total time consumption of wi to execute LC(wi). Constraint
2e denotes that the total time consumption of worker wi to
actuate should not exceed Ti.

IV. TASK ALLOCATION STRATEGY

A. ISIATasker overview design

As shown in Fig.3. The design of ISIATasker mainly
includes two phase. In the sensing locations clustering and
sensor selection phase, we first cluster a large number of
sensing locations and then take each clustering result as a
POI, which has a possibility of ISIA tasks. The purpose of
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clustering is to make the probability distribution of tasks
detected at each POI more consistent with the ability distri-
bution of workers. Therefore, we have introduced the Pear-
son correlation coefficient into clustering process to measure
the similarity of tasks and workers. Furthermore, for each
POI, we need to select an optimal cooperative sensor set
to assist workers for effective sensing. Workers who receive
sensing information from these sensors can achieve ISIA. We
defined the utility and redundancy of each sensor set, and
adopt a descent greedy-based method for sensor selection.
By circularly deleting sensors with highest redundancy, we
finally retain sensors that have a long-term stable matching
with the sensing locations as the result set, so that we can
use the historical information of these sensors to guide the
next phase of POI allocation. Finally, in the POIs allocation
phase, we need to maximize total POI coverage and matching
degree simultaneously. Based on the historical access data,
we propose a deep reinforcement learning method called PA-
DDQN to maximize the POI coverage and matching degree
for instant sensing and then instant actuation.

Sensing Locations 
Clustering

POI Set

Collaborative Sensor 
Set Selection

Phase One

POIs Allocation

Phase Two

Fig. 3: ISIATasker framework

B. Sensing location clustering and sensor selection

For sensing locations in urban area, some studies adopt the
method of equal-grid division[30] to divide them into small
areas, and then allocate the tasks within each grid. This method
surely can obtain the locally optimal result, but it also has
some disadvantages. The distribution of possible ISIA tasks
in the sensing area is not uniform, for example, the task
distribution near POI is usually denser. The equal-grid division
method will lead to too few tasks in some areas and too many
tasks in others, thus reducing the quality of task allocation. By
contrast, we adopt an improved method based on K-means to
cluster several sensing locations into parent POIs according to
their types and spacial distribution.

As shown in Fig. 4, when the distribution of sensing
locations has obvious spatial aggregation characteristics, we
can use the simple K-means method to cluster these sensing
locations and there is no overlap between these clustering
results. However, in another case, the distribution of sensing
locations is relatively dense, while worker has limited sensing
ability. We need to divide these area into multiple POIs. In
Fig.5(a), simple K-means divides these sensing locations into

two categories according to the spatial distribution. However,
this method does not consider the heterogeneity of sensing
locations, which leads to the mismatch between workers’
ability and the composition of POIs. We found that in this case,
there are some overlapping areas, and the sensing locations in
these overlapping areas have a variety of clustering choices.
Therefore, as shown in Fig. 5(b), we optimize the clustering
process by measuring the correlation between the type of
sensing locations and the ability of workers, so as to maximize
the matching degree between the composition of clustering
results and workers’ ability.

Fig. 4: Two POIs without overlap

(a) (b)

Fig. 5: Two overlapping POIs

The sensing ability vector of each worker wi can be
expressed as:

Xwi = [χ1wi , χ2wi , ...χβwi ] (3)

Furthermore, we can estimate the similarity between the
composition of a POI lcj and the ability of worker wi by the
Pearson correlation coefficient:

rlcjwi =

β∑
k=1

(χkwi − χwi)(χklcj − χlcj )[
β∑
k=1

(χkwi − χwi)
2

β∑
k=1

(χklcj − χlcj )
2

] 1
2

(4)

Where χwi=
1
β

β∑
k=1

χkwi , χlcj=
1
β

β∑
k=1

χklcj . The absolute

value of rlcjwi is proportional to the similarity between POI and
worker. Higher value of rlcjwi represent the higher matching
degree of POI lcj and wi. Then we introduce the Pearson
correlation coefficient into the clustering process and cluster
the sensing locations by balancing the spatial distribution and
similarity. The total similarity between a clustered POI lcj and
worker set W is defined as Equation 5a, and the matching gain
is defined as Equation 5b:
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Algorithm 1 Sensing location clustering based on Pearson
correlation coefficient (SPCP)
Input:

sensing locations set L = {l1, l2, ...ln};
Output:

POIs set LC = {lc1, lc2, ...lcm};
1: Initialize, I = 0; Randomly select k locations from L as

the initial clustering center L(0) = (l
(0)
1 , ..., l

(0)
k );

2: Cluster the set L. For class centers LI = (l
(I)
1 , ..., l

(I)
k ), lIj

is the center of class lcj ;
3: for each li ∈ L do
4: lcres = lcclosest, maxIncre = 0;
5: for each l(I)j ∈ L(I) do
6: Calculate the distance from li to the center l(I)j of

each class lcj ;
7: Calculate the current correlation coefficient rlcjW ;
8: if distance(li, l

(I)
j ) ≤ Covw then

9: Incre =
∣∣∣rlcj∪liW

∣∣∣− ∣∣∣rlcjW ∣∣∣
10: end if
11: if Incre ≥ maxIncre then
12: maxIncre = Incre
13: lcres = lcj
14: end if
15: end for
16: Classify li into lcres
17: end for
18: Calculate the mean in the current classes LC;
19: Update class center L(I+1) = (l

(I+1)
1 , ..., l

(I+1)
k );

20: if Iterative unconvergence then
21: I = I + 1, go back to 2;
22: end if
23: return LC

r
lcj
W =

∑
wi∈W

rlcjwi (5a)

Incre =
∣∣∣rlcj∪liW

∣∣∣− ∣∣∣rlcjW ∣∣∣ (5b)

Finally, our goal is to maximize the similarity between each
wi ∈ W and lcj ∈ LC, so that enable the composition of
POIs best match the ability of workers. The pseudocode of the
above sensing location clustering process based on K-means
is presented in Algorithm 1.

After clustering process, we need to select an optimal
cooperative sensor set for each POI to assist worker for
effective sensing. The goal of sensor selection is to ensure
that locations can be effectively covered by minimum set of
sensors while maximizing the sensing quality. Each sensing
location has a coverage threshold limit of ∆(li). In order to
measure the sensing quality of the selected sensor set, the
utility of each location-sensor pair is defined as follows:

U(lj , sk) = ω(lj , sk)/d(lj , sk), if d(lj , sk) ≤ Sc(sk)

U(lj , sk) = 0, if d(lj , sk) ≥ Sc(sk)
(6)

Algorithm 2 Sensor set selection for each POI (SSFP)

Input:
A POI lci = {l1, l2, ..., lx}; Sensor set S =
{s1, s2, ...sm};

Output:
The optimal set of sensor Sres = {s1, s2, ...sk};

1: Initialize the location-sensor pool Prv = {(lj , sk)|lj ∈
LCi, sk ∈ S, and Γ(sk) = Γ(lj)};

2: for each lj in lci do
3: Calculate the number of pairs PrNum(lj).
4: end for
5: while each PrNum(lji ) > K do
6: Set maxRe = 0
7: for each sl ∈ S/Sres do
8: if Re(lci)−Re(S/{sl}) > maxRe then
9: maxRe = Re(lci)−Re(S/{sl})

10: OptimalS ← sl
11: end if
12: end for
13: Prv = Prv − Pr(lji , OptimalS)
14: PrNum(lj) = PrNum(lj)− 1
15: end while
16: for each sl ∈ Pr in Prv do
17: Sres = Sres ∪ {sl}
18: end for
19: return Sres

ω is weight factor, represents the number of occurrences
of the matching pair in the past. Thus, our objective at this
phase is to allocate an optimal set of sensors for each POI to
maximize the sensing quality of the task:

U(lci, S) =
x∑
j=1

∑
sk∈SK

U(lj , sk) (7)

SK are K sensors to sensing lj with the highest utility
(K ≥ ∆(lj)). Based on the analysis above, we introduce an
intermediate variable called redundancy to determine whether
a location-sensor pair should be removed from the result set.
For a sensing location, the redundancy of its corresponding
sensor set is formulated as:

Re(lj) =

∑
sk∈SK

U(lj , sk)

U(lj , S)
(8)

Thus, we formulated the total redundancy of POI lci as:

Re(lci) =
n∑
j=1

Re(lj) (9)

If removing a location-sensor pair reduces the most total
redundancy while the sensor group still meets the coverage
requirements, we should remove this pair from the pool.
Finally, a descent greedy method is proposed for sensor
selection, as shown in Algorithm 2. This method initializes
a location-sensor pool that contains all valid pairs Prv . Based
on which we remove a set of pairs to minimize the overall
utility reduction.
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C. POIs allocation

In this section, we need to allocate an optimal POI set for
each worker. When a worker passes through a POI, some
ISIA tasks may be detected. If the worker’s ability don’t
meet the requirements of the task, the actuation will fail.
Therefore, our goal is to maximize the total matching degree
by making workers’ ability best match the requirements of
POIs. In addition, we also need to maximize POI coverage to
ensure that as many ISIA tasks as possible are detected.

Each sensing location has a small probability of problem.
Therefore, the ISIA task uti may occurs in one or more
sensing locations {l1, ..., le} simultaneously. There are β sin-
gle type of problem {Γ1,Γ2, ...,Γβ}. Based on the history
information of sensors deployed in the sensing area, the
probability of a single type Γi task can be formulated as

P (Γi) =

q∑
j=1

e∑
k=1

{Count(sj , lk, O)|Γ(lk) = Γi}

q∑
j=1

e∑
k=1

{Count(sj , lk)|Γ(lk) = Γi}
(10)

Where Count(sj , lk) denotes the total times of sensors
sense locations {l1, ..., le}, Count(uti, sj , lk) denotes the
times that all sensors detects problem occurred in {l1, ..., le}
simultaneously. For ε sensing type in a POI, there may be
E = 2ε type of urgent task uti. In the clustering process,
we control the value of ε ≤ 10. When there is at least one
sensing location have problem, we assume that the POI has
a task that requires the worker to actuation instantly. We use
vector Xuti = [χ1uti , χ2uti , ...χβuti ] to denote the type of
uti, and the probability of uti can be formulated as:

P (uti) =

β∏
j=1

[P (Γj)× χjuti + (1− P (Γj))× (1− χjuti)]

(11)
Finally, the probability that the possible sensing require-

ments coincide with a worker’s ability p(wi, lcj) can be
calculated from Equation 12.

p(wi, lcj) =
E∑
k=1

{Num(χautk ≤ χawi)
β

p(utk)|χautk ∈ Xutk}

(12)
POI coverage is another major factor to consider in this

problem. We need to maximize the coverage of POIs under
limited time constraint. The time consumption T (wi) of work-
ers is mainly composed of three parts: moving time, sensing
time and actuation time, as shown in Equation 13.

T (wi) =

γ∑
j=1

t(lcj)

=
D(wi, LC)

v
+ x(LC)× ta + σ(LC)× tb

(13)

The moving time and sensing time are fixed values, which
can be calculated according to the distance of the POIs and

the number of sensing locations. The execution time is related
to the number of tasks detected in the POI, but the number of
tasks detected at different times is usually uncertain. Therefore,
we use the mean time to represent the actuation time. For an
POI, the mean vector of various tasks that may be detected
can be formulated as Equation 14, which reflects the density
of ISIA tasks. So the mean actuation time E(AT (lcj)) for lcj
is formulated in Equation 15.

Xut =
E∑
j=1

P (utj |lci)Xutj

=
E∑
j=1

[P (utj |lci)χ1utj , ..., P (utj |lci)χβutj ]

= [χ1ut, χ2ut, ..., χβut]

(14)

σ(lcj) =

β∑
i=1

χiut,

E(AT (lcj)) = σ(lcj)× tb,∀lcj ∈ LC

(15)

The main challenge in our problem relates to the two
contradictory optimization objectives. This is because the
distance between each POI with a high matching degree may
be relatively far, which leads to workers’ more moving time
consumption. However, under the constraint of maximum time
consumption, workers can only check a limited number of
POIs, which cannot guarantee the maximum coverage. On the
contrary, the allocation solution that achieve the maximum
coverage of POIs usually cannot have a relatively higher
degree of matching between worker and possible tasks. There-
fore, it is impossible for an optimal solution to satisfy these
two optimization objectives simultaneously.

To get relatively optimal solution of the ISIA problem, we
designed a reward function R based on the relationship be-
tween the two optimization objectives to solve ISIA problem,
as shown in Equation 16.

R =
∑
wi∈W

(η1 ·
∑

lcj∈LC(wi)

p(wi, lcj)− η2 · T (wi)) (16)

R is mainly composed of expected profit and cost, which
represents the expected rewards that workers can get from
the POIs check process. When there is a higher matching
degree between workers and tasks, we can obtain higher
expected profits, this is because these workers have a higher
probability of timely actuation. η1 represents the unit profit of
the unit matching. Moreover, the cost includes moving time
cost, sensing time cost and actuation time cost. η2 represents
the cost per unit time. In the following method, η1 and η2’s
value will be updated automatically with the training process
until an optimal solution is obtained. Next, we prove that the
POIs allocation problem we proposed is NP-hard.

Theorem 1. The POIs allocation problem is NP-hard.
Proof. In orienteering problem [31], we need to plan a

path for worker to visit a number of locations. The objective of
orienteering problem is to maximize the points coverage under
a maximum moving distance limit. This orienteering problem
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is already proved to be NP-hard. Next, we assume that there is
only one worker in our instance as the worker in the orienteer-
ing problem. Then, the worker has a predetermined maximum
time consumption. The sensing time and the actuation time is
set to 0. Obviously, the worker’s time consumption is directly
proportional to the moving distance, which is mapped to the
maximum moving distance in the orienteering problem. We set
the unit cost of workers to 0, thus the reward R equals the
total expected profit according to Equation 16, which is also
mapped to the points in the orienteering problem. Obviously,
the instance of our problem is exactly an orienteering problem,
which is also NP-hard.

Next, we aim to maximize total reward R. In this paper, we
try to address this problem by using reinforcement learning
(RL) approach. The goal of RL is to find an optimal strat-
egy that allows an agent to receive most rewards from the
environment. Different from some meta-heuristic methods, the
training of RL method is based on a large number of historical
experience data. In fact, it takes into account the past, current
and future situation of agent and can relatively get a closer
result to the global optimal solution. Q-learning is a value-
based algorithm in reinforcement learning, which has been
widely used. It predicts the action should be taken at any state
by establishing a Q-table. The algorithm updates the Q-table
according to Q-function, which is shown as follows:

Q(s, a) = Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′)−Q(s, a)) (17)

Where Q(s, a) represents the expected reward of taking
action a at state s, α is the learning rate, γ is the reward
decay coefficient and r is the reward received after taking
action a from state s to s′. However, in our problem, the
state space and action space are too large to include all the
actions and states with a Q-table, so Q-learning algorithm is
not applicable. We propose a method based on double deep Q-
network (DDQN) to solve our problem. The DDQN uses two
DNNs, which includes a policy network and a target network
to help search the optimal strategy. We use S and A to denote
the state space and action space. A state S contains the current
allocation result of POIs and workers in the urban area. An
action A means we assigns a POI to a worker. Every time
performing an action, we can get a reward and reach the next
state. We adopt the state representation in [28] and define state
s ∈ S as a 2m dimensional vector, where each of the first
m elements indicates the worker assigned to each POI. The
remaining m elements represent the order number of workers
passing by POIs. An action a ∈ A indicates we assign a POI
lcj ∈ LC to worker wi ∈ W . It can be divided into valid
action and invalid action, in which valid action means that
there will be no sensing conflict between workers. In addition,
we also add a termination status done to represent whether
the current state is a termination state. When the system has
completed the allocation of all workers, we set done to 1. In
addition, when the current state is invalid, we also set done
to 1 and terminate current episode of training.

We show the pseudocode of POIs allocation algorithm in
Algorithm 3. Line 1 initializes a replay memory D with a
certain capacity of N to store samples. Line 2-3 initialize the

Algorithm 3 DDQN based POIs allocation (PA-DDQN)

Input:
POIs set LC = {lc1, lc2, ..., lcm}; Worker set W =
{w1, w2, ..., wp}; Number of episodes M , capacity of
replay memory N , probability of random selection ε,
learning rate α, discount factor γ, period to update target
network C.

Output:
Result path LC(wi) : ∀wi ∈W ; maximum reward R.

1: Initialize replay memory D to capacity N .
2: Initialize action-value function Q with random weights θ.
3: Initialize target action-value function Q̂ with weights
θ− = θ.

4: R = 0
5: for episode = 1, M do
6: Reset workers locations locW .
7: Initialize valid action set Avalid.
8: Initialize all elements in initial state vector s1 to zero.
9: r = 0

10: for t = 1, T do
11: Generate a random number rand within [0,1].
12: if rand ≤ ε then
13: Randomly select an action at from Avalid.
14: else
15: Select the action at = arg maxaQ(st, a; θ).
16: end if
17: if a ∈ Avalid then
18: Get the one-step cost rcost and profit rprofit.
19: r = r + (rprofit − rcost), done = 0
20: else
21: done = 1, break
22: end if
23: Take action at and get next state st+1.
24: Store current transition (st, at, r, done, st+1) in D.
25: Sample random minibatch of transitions

(sj , aj , rj , done, sj+1) from D.
26: Update policy network Q via learning step.
27: Every C steps reset target network Q̂ = Q.
28: Update current status of points and workers.
29: Update the valid action set Avalid in current state.
30: end for
31: if r > R then
32: R = r
33: Record the allocation result LC(wi) : ∀wi ∈W .
34: end if
35: end for
36: return LC(wi) : ∀wi ∈W ; R.

policy network and target network respectively. In the training
process, we randomly select a batch of state transition samples
from the replay memory to train the policy network. Line
4 initializes a variable R to represent the reward value of
the current global optimal solution. From line 5 we started a
total of M episodes of training process. Lines 6-9 update the
current state of each worker and the set of valid actions that
can be selected in the next step. Then we set the elements
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of all vectors and the reward value in the initial state to 0.
We start the state transition and network training from Line
10. Lines 11-16 show that we adopt the ε-greedy strategy to
select the next state. If the current state is not a termination
state, we randomly select the next action from the set of valid
actions with the probability of ε, or get the next action with
the probability of 1-ε through the policy network. Lines 17-
22 show that if the next action is a valid action, we need to
calculate one step reward, and then set the termination status
to 0. Otherwise, we will set the termination status to 1 and
terminate the training ahead of time. Line 23 means we take
the current action and transit to the next state. In line 24 we
store the current samples into the replay memory, where each
sample vector is composed of the state st, the action at, the
one step reward r, the termination status done and the next
state st+1. In lines 25-27 we train the network and update
the parameters. We randomly select a batch of samples from
the replay memory for training, and then update the policy
network. Besides, we update the target network every C steps,
which can prevent the over fitting of the network. Lines 28-29
update the state of each worker and the current valid action set.
Finally, in Lines 31-34, we update the maximum R value and
its corresponding task allocation strategy. After M episodes
of training, we take the optimal strategy as the final allocation
result.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of our pro-
posed algorithms through extensive experiments on real-world
check-in dataset and camera location dataset in Chengdu city.
We first introduce the dataset and the experimental settings.
Then, some experimental purposes and baseline are proposed.
Finally, we compare the algorithm in this paper with several
baselines and analyze experimental results.

A. Datasets and Experimental Settings

In order to conduct experiments with real-world sensing lo-
cation distribution, we combined a real-world check-in dataset
and a real-world camera location dataset in Chengdu city. As
shown in Fig.6.

Check-in dataset. It contains 490,000 check-in records in
Chengdu, Sichuan, China. Each check-in data includes ad-
dress, longitude, latitude and check-in type (for example,
school, bank, restaurants, etc). These check-in points well
reflect the natural distribution of sensing locations in the
city. We divide these data into independent areas using equal
grids, and select 50 areas with densely distributed points for
experiments.

Camera location dataset. It contains the location of surveil-
lance cameras in Chengdu, Sichuan, China, including camera
ID, description, longitude and latitude. We map these points
to the corresponding grid as sensors in these areas. Combined
with the check-in dataset, we can get the approximate true
distribution of sensing locations and sensors in the same
region.

Then we present some settings of our experiments. First
of all, we divide the whole urban area of Chengdu into

Fig. 6: The spatial distribution of sensing/sensor locations in
Chengdu city

several 5km × 5km squares, and each square is regarded
as an independent sensing area. Several areas with dense
POI distribution were selected for the experiment. Limited
by workers’ sensing ability, the number of sensing locations
in each POI needs to be controlled within a certain range,
so x(lci) varies from 10 to 50, and the number of sensing
locations in different POIs can be different. For each sensing
location, we generate a random number from 1 to β as
its sensing type. Similarly, for each sensor point, we also
randomly define a sensing type. For m POIs, we recruit p
workers for sensing and actuation. m varies from 500 to 1000,
and p varies from 10 to 50. Within each sensing cycle (e.g.
08:00-10:00), each POI is considered to be completed once it
is checked by one worker. Here we use the Manhattan Distance
[32] to measure the travel distance between two POIs. Each
worker has a certain maximum time limit Ti, ranging from
1 to 2 hour. Each worker’s movement speed v is fixed (i.e.
1.1m/s). Workers should complete sensing within no longer
than Ti. The unit cost per unit time of all workers is set to 1,
and the profit a worker can obtain at an POI is proportional to
the matching degree between the two, varies from 0 to 100.

In addition, in the PA-DDQN algorithm, the capacity of
replay memory is set to 10000, and the number of episodes
is set to 7000. Probability of random selection ε is start with
0.1 and gradually increases to 0.9. The discount factor is set
to 0.99, learning rate is set to 0.01, and the size of minibatch
sampled from D is set to 128.

B. Experimental Purposes and Baselines

The goal of our experiments is to compare the performance
of ISIATasker and other baseline methods under different
situations, such as different number of tasks, different number
of workers, different maximum sensing time limit, different
number of clusters and so on. The performance comparison
metrics contain total reward, POI coverage and matching
degree. We provide the following baseline methods for com-
parative studies.
• Random Allocation (RA) : This method randomly selects

an unallocated POI for a worker in each allocation cycle,
while ensuring the result meets the current time limit.
Since the order of workers may have an impact on the
final allocation result, we randomly generate the worker
orders and carry out random allocation several times (e.g.
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50 times). We take the allocation strategy with the highest
reward value as the final result of RA.

• Weight-based Greedy Allocation (WGA) : For the multi-
objective optimization problem mentioned in this paper,
we need to quantify the value of each allocation action. A
simple idea is to use linear weighting method. The main
idea is to ignore the different units and ranges between
different objective functions. By setting corresponding
weights for different objective functions, we can use a
comprehensive utility function to represent the overall
optimization objective. The linear weighting function is
as follows:

r = ω × p(wi, lcj) + (1− ω)× tmax − t(lcj)
tmax − tmin

(18)

In this way, we can set different weights for different
optimization objectives according to the actual situation,
so as to get the optimal result. Obviously, when ω =
1, the original multi-objective optimization problem is
transformed into a single objective optimization problem
based on matching degree. When ω = 0, the original
multi-objective optimization problem is transformed into
a single objective optimization problem based on time
cost. In our experiments, we set ω as 0, 0.5, and 1
respectively. Then we choose the worker-POI pair with
the largest value r in each allocation cycle by greedy
method to get the final result.

• Reward-based Greedy Allocation (RGA) : In this paper,
we define a reward function R and transform the multi-
objective optimization problem into a problem which aim
to maximize total reward. Therefore, we propose a greedy
algorithm to maximize the reward function R as the
baseline. We greedily select the POI lcj with the largest
reward r for worker wi in each allocation cycle. When the
time consumption of all workers reaches the maximum
limit, we take the allocation strategy as the final result.

• DDQN based on Simple K-means (DDQN-SK) : The
clustering of sensing locations has a very important
influence on the final optimization result. We add Pearson
correlation coefficient in the clustering process to mea-
sure the similarity. So that the sensing type distribution
of possible tasks within the POIs more consistent with
the ability distribution of workers. In order to verify the
effect of introducing Pearson correlation coefficient, we
proposed DDQN algorithm based on simple K-means,
which only performs simple spacial K-means clustering
of sensing locations.

C. Experimental Results

In this subsection, we conduct the experiments and compare
the performance of our method with other baselines. When
varying one parameter, the other parameters are set to fixed
values.

1) Different Number of Training Episodes: First of all, we
compare the overall reward, matching degree, coverage ratio
of different methods under different training episodes. We fix
the number of POIs as 600, the number of workers as 60, the

value of β as 15, and the number of sensing locations in each
POI range from 10 to 20.
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Fig. 7: Total Reward comparison under learning process

As shown in Fig. 7, with the increase of training episode,
the total reward R of the DDQN-based methods (ISIATasker
and DDQN-SK) is gradually increasing. The total reward of
ISIATasker starts from a very low value. Through continuous
learning, it outperforms the greedy method at about 1000th
episode, and gets a better solution than any other baselines. Af-
ter learning about 6000 episodes, ISIATasker finally converges
to an approximate optimal value. DDQN-SK shows similar
effect in the training process, but because the correlation
between sensing types and workers’ ability is not considered
in the clustering process, this method can not achieve the same
matching effect as ISIATasker, which results in a lower total re-
ward. However, although the clustering process is less effective
than other baselines, DDQN-SK still learns the approximate
optimal solution in its solution space, and the total reward
R exceeds RGA at around 3000th episode. In addition, other
baselines (RGA, WGA, RA) are one-time algorithms. When
the experimental data are fixed, each solution obtained by the
algorithm is a fixed value and does not need the process of
learning. Therefore, we illustrate it as a straight line in our
figure. It can be seen from the Fig. 7 that the result of RGA is
worse than ISIATasker, but similar to DDQN-SK. The result
of WGA is worse than RGA, but better than RA.

0 200 400 600 800 1000
Training time

0

1

2

3

4

5

Lo
ss

Fig. 8: Convergence of PA-DDQN loss function

The convergence curve of the loss function is shown in
Fig. 8. At the beginning, the loss increases rapidly, this
is because the experience replay memory has not collected
enough training samples. When a sufficient number of samples
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are collected in the experience replay memory, we can see that
the loss begin to decrease and finally converges to a low value.
This shows that our network finally get a good training effect.
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Fig. 9: Matching degree(left) and coverage ratio(right)
comparison under learning process

Our optimization objectives are to maximize matching and
the POIs coverage, as shown in Equation 1b and 1c. Therefore,
we analyze the results from matching degree and coverage
ratio. In Fig. 9(a), we can see that ISIATasker can converge
quickly, and it can find higher matching degree compared
with other baselines. But DDQN-SK algorithm only clusters
sensing locations by simple K-means, the matching degree
of the final result is worse than RGA and WGA based on
greedy, only better than RA. In Fig. 9(b), we only consider
the coverage ratio. It can be seen that ISIATasker and DDQN-
SK get approximately the same effect, which is better than
other baselines. This is because RL algorithm, which takes
single time cost as optimization objective, can find better
solution than greedy method without considering the influence
of sensing type heterogeneity.
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Fig. 10: Comparison between ISIATasker and WGA under
learning process

ISIATasker is actually a kind of ”trade off” method, which
aim to find a balance between maximizing matching degree
and maximizing coverage ratio. Therefore, our method can’t
get the optimal solution of each optimization objective. On
the contrary, we only need to ensure that the results are
approximate optimal solutions for both two objectives. As
shown in Fig. 10, we set the weight ω in WGA to different
values and compare it with ISIATasker. When the value of ω is
0, WGA only takes the coverage ratio as the single objective.
When the value of ω is 1, WGA only takes the matching
degree as the single objective. Thus, the original problem
is transformed into two single optimization problems with
different optimization objectives. In Fig. 10(a), WGA (ω = 0)
only gets a very low matching degree. The matching degree

of WGA (ω = 0.5) is higher than WGA (ω = 0) but lower
than ISIATasker and WGA (ω = 1). ISIATasker has a higher
matching degree, which is only slightly lower than WGA (ω
= 1). From the perspective of coverage ratio, as shown in Fig.
10(b), the experimental results are just opposite to Fig. 10(a).
WGA (ω = 1) only gets very low coverage ratio. The coverage
ratio of WGA (ω = 0.5) is higher than WGA (ω = 1) but lower
than ISIATasker and WGA (ω = 0). ISIATasker has a higher
coverage ratio, which is only slightly lower than WGA (ω =
0). Generally speaking, both WGA (ω = 0) and WGA (ω = 1)
optimize a single objective, which can not get a good balance
between the two optimization objectives. ISIATasker achieves
better results for both matching degree and coverage ratio and
obtains a relatively optimal solution, which is better than other
baselines.

2) Different Number of POIs: Next we evaluate the perfor-
mance of ISIATasker and other baselines by setting different
number of POIs. We will analyze the total reward, matching
degree and coverage ratio, and explain the change trend of
relevant experimental results. We fix the number of workers
as 60, the value of β as 15, and the number of sensing locations
in each POI range from 10 to 20.
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Fig. 11: Total reward comparison under different number of
POIs

In Fig. 11, we compare the total reward of different methods
under different number of POIs. When the number of POIs
increases, there are more options with higher profits and
lower costs for each worker, so the total reward of different
methods are also increase. ISIATasker tends to select these
POIs which make the total reward R higher and outperforms
DDQN-SK, RGA, WGA and RA by achieving a higher total
reward, respectively. However, it is worth noting that although
ISIATasker outperforms other baselines in all settings, its
significance becomes less obvious with the increase of POIs.
This is because although the number of POIs is increasing,
the ability of workers is limited, and they can only maximize
the total reward within a certain time limit. When the POI
reaches a larger scale, the probability of new point that can
make workers more profitable is relatively low.

Fig. 12 analyzes the experimental results from matching
degree and coverage ratio. In Fig. 12(a), we can see that
with the increases of POIs number, the matching degree has a
relatively slow growth trend. This is because the types of some
new POIs better match the ability of workers than before.
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Fig. 12: Matching degree(left) and coverage ratio(right)
comparison under different number of POIs

Our algorithm will assign these new POIs to workers first.
In addition, with the increases of the number of POIs, the
significance of the growth trend of our method becomes less
obvious, and the reason is the same as that mentioned above.
Next to ISIATasker in performance is RGA based on greedy.
DDQN-SK is worse than the former two in matching degree.
It has similar performance with WGA and is better than RA.
As shown in Fig. 12(b), we analyze the experimental results
from coverage ratio. It can be seen that with the increase
of POIs number, the coverage ratio of all methods has a
significant downward trend. This is because the number of
workers is fixed, so the total ability is also limited. Workers
can only cover as many POIs as possible under the limitation
of their ability. When there are few POIs, such as 200 or
400, the ability of workers in the area can basically meet
the total requirements. Therefore, ISIATasker and DDQN-SK
can achieve a high coverage. It is also worth noting that
the performance of DDQN-SK is worse than ISIATasker in
matching degree, but it can achieve the same performance as
ISIATasker in coverage ratio.

3) Different Number of Workers: In this part, we set differ-
ent number of workers to get the experimental results under
different conditions. Then the performance of ISIATasker and
other baselines is evaluated from total reward, matching degree
and coverage ratio. We fix the number of POIs as 600, the
value of β as 15, and the number of sensing locations in each
POI range from 10 to 20.
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Fig. 13: Total reward comparison under different number of
workers

As shown in Fig. 13, we compare the change of different
methods’ total reward under different number of workers. It
can be seen from the figure that the total reward of all methods

have a increasing trend. This is because the increase enables
the platform to recruit more workers. In the case of a certain
number of POIs, more workers can cover a wider sensing area.
Therefore, compared with other parameters, the increase of
the total reward brought by the increase of workers is more
obvious. However, we can see that there is a slight slowdown
in the growth of total reward. We find that each worker may
give up some POIs with little profit but great cost, so the
total reward will not show a linear growth. Compared with
other baselines, ISIATasker achieves higher total reward. And
this advantage becomes more obvious with the increase of
the number of workers. Moreover, DDQN-SK and RGA have
similar performance, which is better than WGA and RA.
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Fig. 14: Matching degree(left) and coverage ratio(right)
comparison under different number of workers

Fig. 14 shows the experimental performance of matching
degree and coverage ratio. As shown in Fig. 14(a), with the
increase of the number of workers, the total matching degree
has an obvious linear growth trend, which can be explained
from the following two aspects. On the one hand, the platform
can recruit more workers, so as to cover more POIs and
improve the overall matching degree significantly. On the other
hand, it means that workers have more composition of muti-
ability, which can better match with heterogeneous POIs. In
this case, ISIATasker is significantly better than other baselines
in matching degree. Fig. 14(b) reports the change of coverage
ratio. It can be seen from the figure that all methods has
an obvious increasing trend. When the number of workers
is enough, such as at 100 and 120, RL methods (ISIATasker
and DDQN-SK) can achieve the approximate full coverage
of POIs faster than other methods. Only from the perspective
of coverage ratio, ISIATasker and DDQN-SK have the same
performance, which is better than the baselines based on
greedy (RGA and WGA) and random (RA). This is because
ISIATasker and DDQN-SK have the same solution process for
coverage ratio.

4) Different Values of β: Next, we analyze the influence of
different values of β on the experimental results. We fixed the
number of POIs to 600, the number of workers to 60, and the
number of sensing locations in each POI range from 10 to 20.

As shown in Fig. 15, the total reward of all methods
decreases with the increase of β. This shows that when the
number of workers and POIs is fixed, more heterogeneous
sensing type will lead to less total reward value of the
allocation result. Although the downward trend of ISIATasker
is obvious, its total reward is still higher than other baselines.
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Fig. 15: Total reward comparison under different value of β

In order to find out the reasons behind this change, we
analyzed the relationship between the two evaluation indexes
of matching degree and coverage ratio with β. As shown
in Fig. 16(a), similar to the previous methods, the matching
degree of all methods also shows a downward trend. Obvi-
ously, the change of β has a direct impact on the matching
degree. However, in Fig. 16(b), we can see that with the
increase of β, the coverage ratio of all methods are stable
floating in a fixed interval, and there is no obvious upward or
downward trend. This shows that the change of β does not
affect the coverage ratio of the final results. Obviously, the
reason for the decrease of total reward and matching degree
is that the increase of heterogeneous sensing types leads to
greater differences between workers and POIs, which makes
it more difficult for our methods to find the best matching
between workers and POIs.
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Fig. 16: Matching degree(left) and coverage ratio(right)
comparison under different value of β

5) Different of Other Parameters: As shown in Fig. 17,
we evaluate the similarity between the POIs assigned to
different workers. Lighter color blocks indicate the lower
similarity between two POIs, and darker color blocks indicate
a higher similarity. a0, a1, a2, a3, a4 and a5 represent the
six POIs assigned to worker a in the result, and b0, b1, b2,
b3, b4, b5 represent the six POIs assigned to worker b. It
is obvious from the figure that the similarity between POIs
belonging to the same worker is higher. For example, the
darker color blocks are concentrated in [a0, a1, a2, a3, a4, a5]
and [b0, b1, b2, b3, b4, b5]. However, the similarity between
the POIs of worker a and worker b is relatively low. The
experimental results show that our method tends to select the
POIs which are more suitable for each worker, so as to make
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Fig. 17: POIs Similarity

full use of the worker’s ability to enable instant sensing and
then instant actuation.
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Fig. 18: Matching degree comparison under different average
number of sensing locations
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Fig. 19: Matching degree comparison for different workers

Fig. 18 evaluates the performance of different methods on
matching degree under various average number of sensing
locations in one POI. We can see that the matching degree
of all methods decreases with the increase of the average
number of sensing locations. This is because more sensing
locations make the composition of POI more complex, which
increases the difficulty of the best matching. In this case,
the performance of ISIATasker is obviously better than other
baselines. In addition, we randomly selected six workers in the
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experimental results and evaluated the difference of matching
degree obtained by different methods, as shown in Fig. 19.
Obviously, the matching degree of ISIATasker is significantly
higher than that of other baselines.

D. Algorithm Complexity and Performance Analysis

In this section, we analyze the time complexity of our
proposed algorithms. The SPCP method clusters a large
number of discrete sensing locations into several POIs with
similar sensing types. The running time complexity of SPCP
for clustering will be O(β × n × k), in which β is the
dimension of sensing type vector, n is the number of sensing
locations, and k is the number of clustering categories. The
sensor selection method SSFP in each POI after clustering
adopts an iterative process, which continuously removes the
combination with highest redundancy from the pool to reduce
the sensing redundancy. The running time complexity of SSFP
is O(|lci| × (2 |S| −K)). In the worst case, the running time
complexity is O(2× |lci| × |S|).

In order to deal with the high complexity of the allocation
problem under ISIA constraints, we use PA-DDQN based on
deep reinforcement learning to find efficient solutions. As
shown in algorithm 3, PA-DDQN is an offline task allocation
method, and the model training process will produce some
time consumption. However, because the MCS platform pre-
trains the model and pre-recruits workers based on historical
data before the start of sensing and actuation cycle, which
means PA-DDQN will not be executed during the sensing
cycle, so the running time of this method will not make the
time consumption of sensing and actuation longer. Therefore,
this model can be used for ISIA tasks. PA-DDQN uses two
deep neural networks (DNNS) to help search the optimal
strategy, which is used to learn the best operation (allocate
action) and the reward of all possible operations in each state.
We can choose different numbers and dimensions of hidden
layers according to the complexity of the ISIA problem. Differ-
ent from many meta-heuristic methods whose solution quality
depends on the fine tuning of parameters, this method takes
into account the past, current and future possible situations,
so we can get the result which is closer to the global optimal
solution of NP-hard problem, The experimental results also
show that our PA-DDQN method has a better performance.

VI. LIMITATION AND DISCUSSION

This section discusses other issues that are not addressed
in this work due to various constraints, which we plan to
investigate in our future work.

The unpredictability and fail execution of tasks. Our algo-
rithms are executed before the sensing and actuation cycle,
so it only guarantees the maximum coverage of POIs that
may have some sensing tasks, while ensuring the maximum
matching between workers and tasks based on historical data,
which is completed by offline allocation. However, in the
process of sensing and actuation, due to the uncontrollability
of workers and the unpredictability of ISIA tasks, our MCS
system is likely to encounter the situation of task execution
failure. We need to study how to deal with these failed tasks,

and extend the task allocation algorithm from offline phase to
online phase to reallocate workers and tasks dynamically, so
as to further improve the execution success rate and sensing
quality of tasks.

Lack of historical access data. Under the scene of sparse
mobile crowd sensing, the historical access data in some areas
are usually scarce, but our PA-DDQN algorithm needs to train
the model based on these historical data, which makes our
mode unable to mine enough information through the sparse
historical data. This will lead to a low quality of allocation
results and will greatly reduce the success rate and sensing
quality of tasks. Therefore, we need to further study the cold
start problem of this method to ensure the performance of the
algorithm in the case of sparse historical data.

The unpredictability of workers’ route. Our current study
is based on the fact that all workers have a fixed route,
and all workers have the willingness to be dispatched by the
platform. However, in many scenarios, the workers recruited
by the platform do not have enough willingness to execute
the allocated tasks, and the route of workers is difficult to
predict. Therefore, in order to get a more detailed description
of workers’ personal preferences to improve the quality of
allocation, we need to consider the prediction of workers’
mobile routes to get the accurate position of each worker at
the beginning of each sensing cycle, based on which we can
ultimately improve the quality of the sensing results.

More complex task quality metric. In this paper, we measure
the sensing quality of tasks only base on historical access data.
In fact, there are many factors that affect the sensing quality,
including characteristics of sensing tasks, temporal and spatial
distribution, sensing requirements, as well as capabilities of
workers and IOT devices. All of these will lead to different
quality of sensing results. Therefore, we need to measure the
sensing quality from at least two aspects, one is to measure
quality according to the different types of sensing tasks, the
other is to measure quality according to the sensing terminal
itself. Building a practical task quality model is a complex
problem, so we try to study whether we can extend more
complex measurement methods in this scenario, which will
be a new research work in the future.

VII. CONCLUSION

In this paper, We propose a new MCS task allocation frame-
work called ISIATasker, which jointly consider the sensing
and actuation to enable an instant sensing and then instant
actuation. We designed a two-phase task allocation algorithm
to implement ISIATasker, which consists of three key methods
particular for solving ISIA problem. First, we propose a
method called SPCP based on Pearson correlation coefficient
to cluster sensing locations into several POIs and a descent
greedy method SSFP for cooperative sensor set selection.
Second, in order to maximize POI coverage and worker-task
matching degree, we proposed a DDQN-based method called
PA-DDQN to allocate an optimal POI set for each worker. We
conduct extensive experiments based on real-world dateset:
Chengdu check-in dataset and camera dataset. The results
show that the performance of our method outperforms other
baselines.
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