256 research outputs found

    LTE Optimization and Resource Management in Wireless Heterogeneous Networks

    Get PDF
    Mobile communication technology is evolving with a great pace. The development of the Long Term Evolution (LTE) mobile system by 3GPP is one of the milestones in this direction. This work highlights a few areas in the LTE radio access network where the proposed innovative mechanisms can substantially improve overall LTE system performance. In order to further extend the capacity of LTE networks, an integration with the non-3GPP networks (e.g., WLAN, WiMAX etc.) is also proposed in this work. Moreover, it is discussed how bandwidth resources should be managed in such heterogeneous networks. The work has purposed a comprehensive system architecture as an overlay of the 3GPP defined SAE architecture, effective resource management mechanisms as well as a Linear Programming based analytical solution for the optimal network resource allocation problem. In addition, alternative computationally efficient heuristic based algorithms have also been designed to achieve near-optimal performance

    A comprehensive simulation analysis of LTE Discontinuous Reception (DRX)

    Get PDF
    In an LTE cell, Discontinuous Reception (DRX) allows the central base station to configure User Equipments for periodic wake/sleep cycles, so as to save energy. DRX operations depend on several parameters, which can be tuned to achieve optimal performance with different traffic profiles (i.e., CBR vs. bursty, periodic vs. sporadic, etc.). This work investigates how to configure these parameters and explores the trade-off between power saving, on one side, and per-user QoS, on the other. Unlike previous work, chiefly based on analytical models neglecting key aspects of LTE, our evaluation is carried out via simulation. We use a fully-fledged packet simulator, which includes models of all the protocol stack, the applications and the relevant QoS metrics, and employ factorial analysis to assess the impact of the many simulation factors in a statistically rigorous way. This allows us to analyze a wider spectrum of scenarios, assessing the interplay of the LTE mechanisms and DRX, and to derive configuration guidelines

    QoE-driven LTE Downlink Scheduling for Multimedia Services

    Get PDF
    The significant growth in multimedia services and traffic (e.g. VoIP, video streaming and video gaming) in current and emerging mobile networks including the latest 4G Long-Term Evolution (LTE) networks and the rising user expectation for high Quality of Experience (QoE) for these services have posed real challenges to network operators and service providers. One of the key challenges is how to bring multimedia services to the end-user over resource-constrained mobile networks with a satisfactory QoE. Cost-effective solutions are needed for network operators to improve the bandwidth usage of these mobile networks. Therefore, scheduling schemes are of extreme importance in LTE, where scheduling algorithms are responsible for the overall efficiency of resource allocation in an LTE system. The aim of the project is to develop novel QoE-driven scheduling algorithms for improving system capacity in delivering multimedia services over downlink 3GPP LTE. This is to move away from traditional QoS-driven scheduling schemes to a QoE-driven scheme which guarantee end-user satisfaction in resource allocation. The main contributions of the thesis are threefold: 1. Performance of several existing scheduling algorithms for VoIP applications was evaluated thoroughly in terms of QoE metric (i.e. MOS), instead of QoS metrics (e.g. packet loss and delay). Using QoE metrics instead of QoS ones will facilitate the development of QoE-driven scheduling schemes in order to achieve optimised end-user experiences or optimised mobile system capacity. 2. A novel QoE-driven LTE downlink scheduling scheme for VoIP application was developed to maximize the number of users per cell at an acceptable MOS score. The proposed scheme achieved significant improvement in cell capacity at an acceptable quality (75% compared to MLWDF, and 250% compared to PF and EXP-PF in all three lower speed scenarios considered). 3. A QoE-driven LTE downlink scheduling scheme for multiservice multimedia applications was developed to improve the cell capacity with satisfactory QoE for both VoIP and video streaming services. The proposed algorithm performed well in a pedestrian scenario increasing cell capacity to double for video stream with ‘Rapid Movement’ (RM) content. For ‘Medium Movement’ (MM) video content, the capacity was increased about 20% compared to MLWDF and by 40% compared to EXP-PF. In a vehicular scenario, the proposed scheme managed to enhance the cell capacity for MM video stream case. The project has led to three publications (IEEE Globecom’12 – QoEMC Workshop, IEEE CCNC’15 and IEEE MMTC E-letter/May-2015). A journal paper is in preparation.The Public Authority for Applied Education and Training , Kuwai

    Self-Tuning of Service Priority Parameters for Optimizing Quality of Experience in LTE

    Get PDF
    Rising user expectations are changing the way mobile operators manage their networks. In this paper, a self-tuning algorithm for adjusting parameters in a multiservice packet scheduler of a Long-Term Evolution base station is proposed to optimize the overall system Quality of Experience (QoE) based on network performance statistics. For this purpose, the algorithm iteratively changes service priority parameters to reprioritize services so as to make the most of available resources. The proposed algorithm ensures that the best overall system QoE is always reached by analyzing optimality conditions, unlike previous works, which only guarantee a minimum user satisfaction level or aim to balance QoE among services. Method assessment is carried out with a dynamic system-level simulator in a realistic service scenario. Simulation results show that the overall network QoE can be improved up to 35% by tuning service priority parameters.Spanish Ministry of Economy and Competitiveness (TEC2015-69982-R) and Optimi-Ericsson and Agencia IDEA (Consejeria de Ciencia, Innovacion y Empresa, Junta de Andalucıa, ref. 59288), co-funded by FEDER
    • …
    corecore