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Abstract—Rising user expectations are changing the
way mobile operators manage their networks. In this
paper, a self-tuning algorithm for adjusting parameters
in a multi-service packet scheduler of a Long Term
Evolution (LTE) base station is proposed to optimize
the overall system Quality of Experience (QoE) based
on network performance statistics. For this purpose, the
algorithm iteratively changes service priority parameters
to re-prioritize services so as to make the most of available
resources. The proposed algorithm ensures that the best
overall system QoE is always reached by analyzing
optimality conditions, unlike previous works, which only
guarantee a minimum user satisfaction level or aim
to balance QoE among services. Method assessment is
carried out with a dynamic system-level simulator in a
realistic service scenario. Simulation results show that the
overall network QoE can be improved by up to 35% by
tuning service priority parameters.

Index Terms—Quality of Experience, Long Term
Evolution, Self-Organizing Network, optimization, re-
prioritization, services.

I. INTRODUCTION

In years to come, an exponential growth in mobile
broadband traffic is foreseen. It is expected that, from
2015 to 2021, mobile traffic will be multiplied by
10, reaching 25% of Internet total traffic [1]. At the
same time, continuous advances in smartphones and
tablets are modifying the general profile of services
demanded by mobile users. In the past, mobile ser-
vices only required very high data rates. Nowadays,
most applications also require a permanent connection,
significantly increasing network signaling load [2]. All
these changes have made mobile network management
a very challenging task [3]. In parallel, the success of
mobile services has made that customers have greater
choice for devices, services and applications. In a
competitive market where most network and service
providers offer similar products, user experience (a.k.a.
Quality of Experience, QoE) has become the key dif-
ferentiating factor between companies. For this reason,

Customer Experience Management (CEM) has been
incorporated into the daily routine of operators [4].

QoE characterization has received a great deal of
attention by the mobile industry. In live networks, user
experience is usually estimated from Quality of Service
(QoS) metrics collected by the network, since end-
to-end performance indicators are seldom available.
Then, QoE modeling relates QoS and QoE indicators
by means of simple analytical functions [5][6]. First
QoE models for mobile services (e.g., voice [7], video-
telephony [8] or video-streaming [9]) were built based
on very simple network performance indicators. As
vendor equipment evolves, more indicators are avail-
able for the construction of new QoE models [10][11].
More advanced QoE models also consider the impact
of context on user quality perception [12][13]. Thus,
two mobile users with the same QoS level might
perceive very different QoE due to context features,
such as user location, device technology, time of day
or age.

From QoS measurements, QoE control procedures
assign network resources to ensure an adequate user
experience. To cope with the diversity of service
requirements, the 3rd Generation Partnership Project
(3GPP) has defined the QoS Class Identifier (QCI)
to discriminate among different service classes [14].
Based on QCI, dynamic Packet Scheduling (PS) algo-
rithms assign radio resources (i.e., power, frequency
and time slots) based on QoS thresholds [15][16][17].
Basic schedulers provide differentiated services, QoS
and user fairness by assigning appropriate weights
to each user queue. More sophisticated schedulers
exploit multiuser diversity gain to achieve optimal
system performance [18][19][20]. In [19], a scheduling
algorithm is proposed to deal with real-time and non-
real time traffic in a proportional fair manner. More
recent works [21][22] propose QoE-aware schedulers
that ensure a minimum QoE for all users. All these
schedulers decide the exact resources assigned to every
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single user in real time, which makes them suitable
for minimum QoS/QoE assurance. However, the aim
of most schedulers is to ensure a minimum satisfac-
tion level for the worst users, rather than maximizing
the overall system QoE. Moreover, implementing new
advanced schedulers would require upgrading network
equipment, which is not desired by network operators.

Alternatively, the overall system QoE can also
be improved by tuning parameters in an existing
scheduler. In [23], a self-tuning algorithm for the
contention window parameter in IEEE 802.11 WLANs
is presented. Such an algorithm does not discriminate
between services. Similarly, an adaptation scheme is
proposed in [24] for adjusting service priorities to
comply with end-to-end delay constraints. In [25],
another adaptive controller is proposed to enforce a
maximum delay constraint for multimedia services by
adjusting flow priorities. In that work, decisions are
made per service, as each flow has its own controller
independent from the others. Thus, the aim of each
controller is to ensure that every individual traffic flow
reaches a target QoS, but neglecting the requirements
of other flows, which could lead to system instabil-
ity. In a previous work [26], a self-tuning algorithm
for a multi-service scheduler in LTE is proposed to
equalize QoE among services in the context of a Self-
Organizing Network (SON). In that work, QoE balance
is ensured by tuning service priorities, increasing the
priority of services with lower QoE. However, QoE
balance does not necessarily lead to the maximum
overall system QoE. To the authors’ knowledge, no
method has been proposed to adjust service priority
parameters in a multi-service and multi-user scheduler
of a radio base station so that optimal overall system
QoE is guaranteed under all traffic load conditions.

In this paper, a self-tuning algorithm for adjust-
ing service priority parameters in a classical multi-
service multi-user packet scheduler of a LTE base
station is proposed. Similarly to [26], the algorithm
iteratively changes service priority parameters to re-
prioritize services so as to make the most of available
resources. Unlike in [26], the aim of the algorithm
proposed here is to optimize the overall system QoE
based on performance statistics in the network manage-
ment system. For this purpose, an optimality condition
is explicitly derived, which is then used to design
the controller that ensures the optimal overall system
QoE. In the problem formulation, context-aware QoE
management is considered by reflecting the impact of
user location on QoE perception. For this purpose, two
different QoE models are provided for outdoor and
indoor users. Method assessment is carried out in a
dynamic system-level LTE simulator implementing a
regular macrocellular scenario.

The main contributions of this work are: a) the
formulation of an optimality condition for the global

QoE when re-prioritizing services, b) the design of
a self-tuning algorithm for adjusting service priority
parameters in a LTE scheduler to maximize the global
QoE, and c) a performance analysis of the proposed
controller in a realistic multi-service LTE scenario.

The rest of the paper is organized as follows. Sec-
tion II formulates the problem of optimizing the overall
QoE in a mobile network by re-prioritizing services
with scheduler parameters. Section III presents the
proposed self-tuning algorithm to optimize the overall
system QoE. Section IV describes simulation results
and Section V presents the main conclusions of the
work.

II. PROBLEM FORMULATION

In this section, the system model is first outlined,
including service models, scheduling algorithm and
utility functions. Then, the tuning of service priority
parameters is formulated as an optimization problem.

A. Service models

Service models are identical to those presented
in [26]. Four services are considered:
• Voice over Internet Protocol (VoIP) is a conversa-

tional real-time service generating packets of 20
bytes every 10 ms, i.e., a bit rate of 16 kbps. A
VoIP call is dropped when a user does not receive
enough resources for one second.

• VIDEO service is a buffered videostreaming ser-
vice where the packet arrival process is taken from
real H.264/MPEG-4 AVC file traces. The load
of player’s buffer at the client side varies with
available bandwidth and video bit rate.

• WEB service is a Hypertext Transfer Protocol
(HTTP) web browsing service. A WEB session
consists in a number of web pages separated by a
reading time. The number of pages per session,
pages size and reading time are derived from
probabilistic models [27].

• FTP (File Transfer Protocol) service is a file
download service. FTP session time is determined
by the time spent downloading the file. As an FTP
user tries to download the file at full speed, FTP
session time depends on the amount of resources
received during the download.

B. Scheduling algorithm

The considered PS algorithm is implemented based
on the classical exponential/proportional fair (EXP/PF)
scheme [18], designed for the provision of real-time
services with different QoS together with non-real
time services. That scheduler is extended in [26] with
service priority parameters to allow re-prioritization of
services. The reader is referred to [26] for more details
on the scheduling algorithm.
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C. Utility functions

Utility functions are closed-form expressions used
to quantify user experience (i.e., QoE) from selected
QoS network statistics. Due to their different nature,
each service has its own utility function. In this work,
context information is also considered by differentiat-
ing between indoor and outdoor locations. Thus, two
utility functions are defined per service, depending on
user location, QoE(jc), where j ∈ {VoIP, VIDEO,
FTP, WEB} and c ∈ {outdoor, indoor}. In all utility
functions, the output is a Mean Opinion Score (MOS)
value, ranging from 1 (worst) to 5 (best). To make
analysis easier, indoor utility functions are obtained
by changing QoS thresholds in the utility functions
reported in the literature (associated here with outdoor
users). Such changes are introduced to force that indoor
users are more demanding in terms of QoS.

The VoIP utility functions are [28]

QoE(V oIPoutdoor) = 1 + 0.035R

+ 7× 10−6R(R− 60)(100−R) ,
(1)

QoE(V oIPindoor) = 1 + 0.035 R
1.5

+ 7× 10−6 R
1.5 ( R

1.5 − 60)(100− R
1.5 ) ,

(2)

where R is a factor related to traffic delay (i.e., R = 0
when highest delays are experienced, and R = 100
for the lowest values). From (1) and (2), it is deduced
that QoE(V oIPoutdoor) and QoE(V oIPindoor) are upper
limited to 4.5 and 3.44, respectively, due to the fact
that, even for ideal test conditions, some users may
not rank service experience as flawless.

For buffered videostreaming services, such as
YouTube or Netflix, QoE depends on how long
the video takes to start (initial buffering time) and
how many times and for how long the video is
frozen (known as stalling or re-buffering event). Thus,
videostreaming utility functions are [9]

QoE(V IDEOoutdoor) = 4.23− 0.0672 Tinit

−0.742 Freb − 0.106 Treb ,
(3)

QoE(V IDEOindoor) = 4.23− 0.0672 (1.5 Tinit)

−0.742 (1.5 Freb)− 0.106 (1.5 Treb) ,
(4)

where Tinit stands for the initial buffering time
in seconds, Freb is the average frequency of
re-buffering events in times per second, and
Treb is the total re-buffering time during video
reproduction in seconds [9]. As in the VoIP
case, the model is upper limited to a value
lower than 5 (i.e., max(QoE(V IDEOoutdoor)) =
max(QoE(V IDEOindoor)) = 4.23).

The utility functions of FTP and WEB services are
both based on user data throughput, as [29]

QoE(FTPoutdoor) = max(1,min(5, 0.0065 T − 0.54)) , (5)

QoE(FTPindoor) = max(1,min(5, 0.0065
T

1.5
− 0.54)) , (6)

QoE(WEBoutdoor) = 5− 578

1 +
(
T+541.1
45.98

)2 , (7)

QoE(WEBindoor) = 5− 578

1 +
(

T
1.5+541.1

45.98

)2 , (8)

where T is the average user throughput in kbps. By
comparing WEB and FTP functions, it is deduced
that WEB is not as demanding as FTP. On the one
hand, QoE(WEBoutdoor) > QoE(FTPoutdoor) for low
T values, showing that a WEB user needs fewer
resources to perceive an acceptable service level. On
the other hand, QoE(WEBoutdoor) < QoE(FTPoutdoor)

for high T values, so that, from some value on, higher
throughput does not influence web user satisfaction,
but does influence on an FTP user.

D. Optimization problem

The problem of tuning service priority parameters
in the scheduler of a base station can be formulated as
a classical optimization problem.

The decision variables are the service priority pa-
rameters, hereafter denoted as SPI(j), j ∈ {VoIP,
VIDEO, FTP, WEB}. The Figure of Merit (FoM) to
be maximized is the overall system QoE, QoEglobal,
defined as

QoEglobal =
1

Ns

Ns∑

j=1

QoE
(j)

, (9)

where Ns is the number of services in the network (4,
in this work), and QoE

(j)
is the average QoE for users

of service j, calculated as

QoE
(j)

=
1

Nj

Nj∑

u=1

QoE(j)(u) , (10)

where Nj is the number of users for service j and
QoE(j)(u) is the QoE perceived by user u of service
j, estimated from utility functions in (1)-(8).

In the previous formulas, the dependence of FoM
(overall system QoE) on decision variables (SPI set-
tings) is omitted for the sake of clarity. Fig. 1 breaks
down all the terms involved in such a relationship. On
the left of the figure, network performance depends
on uncontrolled inputs (e.g., service user demand, user
locations, . . . ) and decision variables (i.e., SPI(j)).
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Fig. 1. Optimization problem.

Thus, increasing the SPI of a service enforces that
more radio resources are assigned to users of that
service, improving their QoS. Then, QoS metrics are
calculated per service from network resource metrics
(e.g., delay statistics, stalling statistics, . . . ). Later,
QoE measurements are calculated per user by selecting
the utility function corresponding to the service and
context of user u, f (u), among (1)-(8). Then, service
QoE is obtained by averaging QoE metrics of users
of a service, including both indoor and outdoor users,
as in (10). Note that context information is only used
for QoE evaluation, and does not have an influence
on resource or QoS metrics. Finally, the FoM of the
optimization problem, QoEglobal, is computed as in
(9).

The optimization problem has two constraints. On
the one hand, the SPI value is limited from 1 to
15, so that maximum and minimum service priorities
are limited. On the other hand, the number of radio
resources to be shared by users are limited. Thus,
a high SPI value assigned to a user generating a
large traffic demand will lead to a fast radio resource
consumption. The former constraint has to be taken
into account by the optimization algorithm, whereas
the latter is already included in the QoS metrics.

The optimality conditions can be derived by
considering the tuning problem as an optimization
problem. Thus, the optimal configuration of SPI pa-
rameters must satisfy the stationarity condition,

∂QoEglobal

∂SPI(j)
= 0 , (11)

(i.e., the gradient of the objective function, QoEglobal,
with respect to the decision variables, SPI(j), is 0) for
all services j where the SPI constraint is inactive (i.e.,
SPI has not reached its limits). For services that have
reached their maximum or minimum SPI value, that
decision variable is fixed to the corresponding limit,
so that

∂QoEglobal

∂SPI(k)
< 0 <

∂QoEglobal

∂SPI(l)
, (12)

where k denotes services with SPI = 1 and l denotes
services with SPI = 15.
The previous condition may give a local maximum or
minimum for QoEglobal. In practice, the convex shape
of utility functions, where QoE improvements from
assigning more resources gradually decrease as QoE
levels increase, ensures that the above condition is only
satisfied by the global optimum.

III. SELF-TUNING ALGORITHM

In this section, a self-tuning algorithm is proposed
to improve the overall network QoE by changing SPI
parameters in the eNodeB scheduler. The aim of tuning
is to re-prioritize services so that the overall system
QoE is maximized.

The algorithm is designed as a rule-based controller
that iteratively modifies SPI parameters, SPI(j). Un-
like typical controllers, based on heuristic rules, the
controller proposed here is designed to drive the system
to its optimal state. For this purpose, the algorithm
makes use of the optimality conditions derived in the
previous section.

From (11), it is deduced that the optimal controller
should take the system to the equilibrium point where
any change in SPI settings would deteriorate the overall
QoE. This is achieved by equalizing the partial deriva-
tives (i.e., slopes) of the overall QoE with respect to the
SPI of the different services. In normal cases, such an
equalization can be performed by increasing (decreas-
ing) the SPI value of services with larger (smaller)
value of partial derivative, since this action decreases
(increases) the slope of the QoEglobal function due to
the convexity of utility functions.

For the above purpose, the proposed self-tuning
algorithm is designed as a set of four proportional
controllers (1 per service). Each controller has an incre-
mental structure that iteratively computes the change
of the SPI setting of a service from measurements of
all other services. The input of the controller is the
difference of the partial derivative of a service against
the others, SD (for Slope Difference),
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SD(j) =
∂QoEglobal

∂SPI(j)
− 1

Ns − 1

∑

k 6=j

∂QoEglobal

∂SPI(k)
, (13)

i.e., the slope of QoEglobal with respect to SPI of
service j, SPI(j), minus the average of that of the
other services. A positive value of SD(j) indicates that
∂QoEglobal

∂SPI(j) is larger than the average of ∂QoEglobal

∂SPI(k) , so
that SPI(j) should be increased. In contrast, a negative
value of SD(j) indicates that ∂QoEglobal

∂SPI(j) is smaller
than the average of ∂QoEglobal

∂SPI(k) , meaning that SPI(j)

should be decreased. For brevity, the expressions of
partial derivatives for different services are described
in Appendix A.

The output of the controller is the positive or
negative step to be added to the current SPI value.
Fig. 2 shows the input-output relation in one of the
controllers. In each iteration, the SPI parameter change,
∆SPI(j), is computed from the slope difference,
SD(j). Basically, SPI(j) is increased/decreased so as
to reduce the slope difference against other services, as
this should increase QoEglobal. A piecewise function
with five segments and three different slopes is selected
to implement a gain scheduling algorithm, providing
adequate trade-off between speed of response and
system stability. Segments with a higher slope aim to
increase convergence speed towards the balance point
at the start of the equalization process (i.e., when
SD(j) is still large). Segments on the sides with a zero
slope ensure system stability by limiting the maximum
value of ∆SPI(j) to ±2. Likewise, the central segment
with the lower slope ensures system stability at the end
of the balancing process (i.e., when SD(j) is small).

The pseudocode of the algorithm is shown in Fig. 3.
Both the input and the output of the algorithm are
detailed at the top. The algorithm is run a pre-
determined number of times (optimization loops). First,
the algorithm computes the partial derivatives required
to generate the input of the controller, SD(j). Then,
the output of the controller, ∆SPI(j), is obtained from
SD(j) based on the function in Fig. 2. Finally, the new

ΔSPI(j)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2.E-02 -1.E-02 1.E-02 2.E-02

SD(j)

Fig. 2. Input-output relation in the proposed controller.

parameter value, SPI(j)′, is obtained by adding the
step to the current value, SPI(j), and enforcing that
the value is between 1 and 15.

Note that the number of controllers is equal to
the number of services (i.e., one per service for the
whole network), and SPI tuning is therefore done on a
network basis (i.e., all eNodeBs in the network share
the same SPI configuration). The four controllers work
independently, but synchronously, sharing network per-
formance measurements from the past iteration and
computing SPI changes in their service for the next
iteration.

IV. PERFORMANCE ASSESSMENT

For clarity, the assessment methodology is first
described and results are presented later.

A. Assessment methodology

A dynamic system-level LTE simulator is used [30].
A regular macrocellular scenario is considered, consist-
ing of 19 tri-sectorized sites uniformly distributed [26].
To reduce the computational load, the minimum system
bandwidth is set (i.e., 6 Physical Resource Blocks,
PRBs) and only the downlink is simulated. For ease
of analysis, uniform user spatial distribution is consid-
ered. The scheduling algorithm includes service prior-
ity parameters (i.e., SPI), as explained in Section II-B.
The reader is referred to [30] for additional details
about the simulation tool.

To check the impact of service distribution, two
realistic traffic mixes are considered, referred to as
Traffic mix A and B. As shown in Table I [27], VoIP is
the most populated service in both distributions. The
main difference is the share of video users, which are
those demanding more resources. As a result, offered
traffic in mix A is dominated by video users, while
offered traffic in mix B is more evenly balanced.
Unless stated otherwise, traffic mix A is used. Service
models were described in Section II-A. Network load
is controlled by the average number of users per cell.
In both traffic mixes, this parameter is fixed to ensure
that PRB utilization ratio is close to 100% for every
single cell, so that services compete for available radio
resources. Thus, SPI should have a strong impact on
user experience. Such a load configuration sets a worst-
case scenario in terms of inter-cell interference.

The proposed self-tuning algorithm (referred to as
optimization algorithm) is compared with the simple
QoE balancing algorithm in [26] (referred to as balanc-
ing algorithm). Both schemes consist of 4 controllers
(i.e., VoIP, VIDEO, WEB, FTP), but the former intends
to achieve optimal system performance, whereas the
latter just equalizes the QoE among services.

Five experiments are carried out. The first four
experiments only consider outdoor users, while the
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Input: D, R, Treb, TWEB, TFTP

NV oIP , NV IDEO, NWEB, NFTP , Ns

PRB
(V oIP )
util , PRB

(V IDEO)
util , PRB

(WEB)
util , PRB

(FTP )
util

SPI(V oIP ), SPI(V IDEO), SPI(WEB), SPI(FTP )

Output: SPI(V oIP )′, SPI(V IDEO)′, SPI(WEB)′, SPI(FTP )′

For a pre-determined number of optimization loops

For every service j in the network, with k representing other services (k 6= j)

∂QoE(j)

∂SPI(j) = ∂QoE(j)

∂QoS(j) · ∂QoS(j)

∂Res(j)
· ∂Res(j)

∂SPI(j)

∂QoE(j)

∂QoS(j) = 1
Nj

Nj∑
u=1

∂QoE(j)

∂QoS(j) (u)

∂QoS(j)

∂Res(j)
≃ QoS(j)

max−QoS
(j)
min

Res
(j)
max−Res

(j)
min

Res
(j)
max = (SPImax − SPImin)

∑
∀k 6=j

PRB
(k)
util

Res
(j)
min = (SPImin − SPImax)

∑
∀k 6=j

PRB
(k)
util

∂Res(j)

∂SPI(j) ≃ ∑
∀ k 6=j

PRB
(k)
util

∂QoE(k)

∂SPI(j) = ∂QoE(k)

∂QoS(k) · ∂QoS(k)

∂Res(k) · ∂Res(k)

∂SPI(j)

∂QoE(k)

∂QoS(k) = 1
Nk

Nk∑
u=1

∂QoE(k)

∂QoS(k) (u)

∂QoS(k)

∂Res(k) ≃ QoS(k)
max−QoS

(k)
min

Res
(k)
max−Res

(k)
min

Res
(k)
max = (SPImax − SPImin)

∑
∀l 6=k

PRB
(l)
util

Res
(k)
min = (SPImin − SPImax)

∑
∀l 6=k

PRB
(l)
util

∂Res(k)

∂SPI(j) ≃ −PRB
(j)
util

∂QoEglobal

∂SPI(j) = 1
Ns

Ns∑
k=1

∂QoE(k)

∂SPI(j) = 1
Ns

(
∂QoE(j)

∂SPI(j) +
Ns−1∑
k=1

∂QoE(k)

∂SPI(j)

)

End For

For every service j in the network, with k representing other services (k 6= j)

SD(j) =
∂QoEglobal

∂SPI(j) − 1
Ns−1

∑
k 6=j

∂QoEglobal

∂SPI(k)

∆SPI(j) = f
(
SD(j)

)

SPI(j)′ = max
(
1,min

(
15, SPI(j) +∆SPI(j)

))

End For

End For

Fig. 3. Pseudocode of the self-tuning algorithm.

last experiment checks the robustness of the algorithm
when both outdoor and indoor users are considered.
• In a first preliminary experiment, the aim is to

explain the basic performance of the algorithm
by showing the value of intermediate terms that
are necessary to obtain the input of the controller,
SD(j), in a typical situation. The result of this
experiment is then used as the first loop of the
proposed algorithm. Readers who have not yet
read the Appendix may skip this experiment.

• A second experiment shows the benefits of the
new algorithm compared to the previous approach

of balancing QoE among services. In this experi-
ment, all services begin with the same SPI value
(i.e., SPI(j) = 8 ∀ j), i.e., no service is initially
prioritized over the others. It is expected that both
self-tuning algorithms change SPI on a per-service
basis, but only the one proposed here achieves
optimal QoEglobal.

• A third experiment proves the robustness of the
proposed algorithm by showing its capability to
optimize the QoEglobal also for non-uniform ini-
tial SPI configurations. For this purpose, a set of
10 initial SPI configurations are randomly gener-
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TABLE I
TRAFFIC MIX

Service QCI (Traffic Category) Share of users [%]
Mix A Mix B (Experiment 4)

VoIP 1 (Real-Time) 50 65
VIDEO 6 (Streaming) 20 5
WEB 8 (Interactive) 20 20
FTP 9 (Best effort) 10 10

TABLE II
QoS(j) VS Res(j) (TRAFFIC MIX A, UNIFORM INITIAL SPI)

Service (j) QoS(j) QoS
(j)
max QoS

(j)
min PRB

(j)
util

∑
∀k 6=j

PRB
(k)
util Res

(j)
max Res

(j)
min

∂QoS(j)

∂Res(j)

VoIP D [s] 1 0 0.05 0.95 13.30 −13.30 −0.04

VIDEO Treb [s] 0 30 0.51 0.49 6.86 −6.86 −2.2

FTP T [kbps] 1200 0 0.29 0.71 9.94 −9.94 60.4

WEB T [kbps] 1200 0 0.15 0.85 11.90 −11.90 50.3

ated with a uniform parameter distribution. Then,
the proposed algorithm is applied to the network
with each initial settings (i.e., the algorithm is run
10 times).

• A fourth experiment checks the sensitivity of the
algorithm to the service mix by simulating traffic
mix B. To ease the analysis, all services begin
with the same SPI value (i.e., SPI(j) = 8 ∀ j).

• A fifth experiment includes context information.
Different utility functions are used, depending on
whether the user is indoors or outdoors. For this
experiment, 70% of users are created indoors [31].
All services begin with the same SPI value (i.e.,
SPI(j) = 8 ∀ j).

Each simulation includes 24 optimization loops,
each consisting of 5 minutes of network time (i.e.,
SPI parameters are modified every 5 minutes). It is
checked a posteriori that 24 loops are enough to ensure
that the system reaches equilibrium in all experiments.
To ensure that every optimization loop within the same
experiment is carried out under identical conditions, all
random variables are pre-generated. Thus, performance
differences between loops are only due to SPI tuning,
and not to the stochastic nature of simulation.

The main figure of merit is the overall system QoE
in equilibrium (i.e., at the end of the tuning process).
Stability and convergence speed are secondary criteria.
In each experiment, network performance with the ini-
tial SPI settings (i.e., before changing SPI parameters)
is used as a benchmark.

B. Results
1) Experiment 1: Basic performance (traffic mix A,

uniform initial SPI): The aim of this experiment is

to show an example of how the controllers’ input,
SD(k), is computed from network statistics. Table III
summarizes the values of the three partial derivatives,
∂QoE(k)

∂QoS(k) , ∂QoS(k)

∂Res(k) and ∂Res(k)

∂SPI(j) , whose product is the
slope of the QoE of a service with respect to the SPI
change of another service, ∂QoE(k)

∂SPI(j) , as shown in Eq.
(16) in the Appendix. Table II breaks down the terms
required to compute the second factor, ∂QoS(k)

∂Res(k) , as
described in Eq. (24)-(26).

The analysis is first focused on the values of ∂QoS(j)

∂Res(j)

shown in Table II. Recall that term shows the QoS
improvement of re-assigning resources to a service
by taking them from the other services. From the
sign of ∂QoS(j)

∂Res(j)
in the last column, it is verified that

QoS(j) is inversely proportional to Res(j) in the case
of VoIP and VIDEO, since both delay and re-buffering
time decrease when more resources are allocated. In
contrast, QoS(j) increases with Res(j) for FTP and
WEB, since a larger amount of resources leads to a
higher throughput. Likewise, the large differences in
the values in the last column come from the large
differences in the QoS thresholds in the third and fourth
columns.

A more detailed analysis is presented in Table III,
which shows the values of the three factors determining
the slope of the QoE of a service with respect to the
changes of SPI of another service. First, it is observed
that the first two factors, ∂QoE(k)

∂QoS(k) and ∂QoS(k)

∂Res(k) , are vec-
tors, as they are computed on a per-service basis, while
the third factor, ∂Res(k)

∂SPI(j) , is a matrix whose elements
are computed for each pair of services. An inspection
of the values of the second and third columns shows
that the sign of the first two factors is the same. Again,
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TABLE III
QoE(k) VS SPI(j) (TRAFFIC MIX A, UNIFORM INITIAL SPI)

Service ∂QoE(k)

∂QoS(k)

∂QoS(k)

∂Res(k)
∂Res(k)

∂SPI(j)

∂QoE(k)

∂SPI(j) = ∂QoE(k)

∂QoS(k) · ∂QoS(k)

∂Res(k) · ∂Res(k)

∂SPI(j) SD(k) ∆SPI(k)

(k) VoIP VIDEO FTP WEB VoIP VIDEO FTP WEB

VoIP −1.06 −0.04 0.95 −0.51 −0.29 −0.15 0.04 −0.02 −0.01 −0.01 0.004 0.39

VIDEO −0.08 −2.2 −0.05 0.49 −0.29 −0.15 −0.01 0.09 −0.05 −0.03 −0.044 −2.00

FTP 0.003 60.4 −0.05 −0.51 0.71 −0.15 −0.01 −0.09 0.13 −0.03 0.004 0.43

WEB 0.004 50.3 −0.05 −0.51 −0.29 0.85 −0.01 −0.10 −0.06 0.17 0.036 2.00

for VoIP and VIDEO, a decrease in the QoS indicator
(i.e., average delay and re-buffering time) improves
QoE, whereas, for FTP and WEB, it is an increase
in the QoS indicator (i.e., average user throughput)
that improves QoE. Regarding the ∂QoE(k)

∂SPI(j) term, note
that the main diagonal (k = j) is always greater
than 0, because increasing the SPI of a service (i.e.,
prioritizing a service) most often leads to an increase
of its QoE. In contrast, non-diagonal elements are
all negative, as increasing the SPI of other services
(i.e., prioritizing other services) tends to degrade the
QoE of a service. Finally, the last two columns show
the slope difference, SD(k), and the suggested SPI
change, ∆SPI(k), which are the input and output
of the controllers, respectively. Both parameters are
related by the controller function shown in Fig. 2. From
the output values, it is deduced that, in the initial loop
with traffic mix A and uniform initial SPI settings, the
best action to improve the overall system QoE is to
increase the SPI of WEB, FTP and VoIP, and decrease
the SPI of VIDEO.

2) Experiment 2: Optimization vs balancing algo-
rithm (traffic mix A, uniform initial SPI): Fig. 4(a)-
(b) show the evolution of SPI(j) and QoE

(j)
, re-

spectively, with the proposed algorithm. Fig. 5 shows
the evolution of the overall system QoE for both
self-tuning algorithms. In Fig. 4, it is observed that,
at the first iteration, VoIP and WEB services have
very disparate QoE values (QoE

(V oIP )
= 1.94 and

QoE
(WEB)

= 3.5), regardless of the uniform SPI
settings. With this initial configuration, the scheduler
benefits WEB by allocating enough resources to down-
load web pages in a reasonable time (and, thus,
QoE

(WEB)
is high), but not enough for a satisfactory

packet delay for VoIP service (and, thus, QoE
(V oIP )

is low). As a consequence, QoEglobal = 2.62 in the
first iteration.

Fig. 4(a) shows that, as tuning is performed, all
services except VIDEO increase their SPI(j) value.
In particular, VoIP and WEB SPI values end up at
the maximum value (SPI(V oIP ) = SPI(WEB) =
15), while SPI(FTP ) stabilizes around 10.5. This is
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Fig. 5. Evolution of the overall system QoE for different algorithms
(traffic mix A, uniform initial SPI).

achieved at the expense of VIDEO users, for which
QoE

(V IDEO)
is slightly degraded from 2.4 to 1.8 (first

and last iterations in Fig. 4(b)). As a result, QoEglobal

is significantly improved from 2.62 to 3.13 (first and
last iterations in Fig. 5). As explained below, this is
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just a consequence of the re-prioritization of services
that leads to the re-assignment of the large amount
of resources initially used by VIDEO users to other
services.

The self-tuning algorithm mainly acts in the first
eight iterations, with no significant changes of SPI
and QoE indicators in subsequent iterations. In Fig. 5,
an abrupt change in QoEglobal is seen in the 4th

optimization loop. That is the point when the pri-
ority of the voice service becomes higher than FTP
service priority (i.e., SPI(V oIP ) > SPI(FTP )). A
more detailed analysis (not shown here) reveals that
QoEglobal is considerably increased every time the
SPI value of a service with a high demand of radio
resources (FTP and VIDEO in this work) falls below
the SPI of another service. Similar peaks are observed
in the overall system QoE for the QoE balancing
algorithm. More importantly, the proposed self-tuning
algorithm based on the optimality condition achieves
a 20% improvement in the global QoE (i.e., from
2.62 to 3.13), whereas the QoE balancing algorithm
deteriorates the global QoE by 7% (i.e., from 2.62 to
2.43).

3) Experiment 3: Impact of initial SPI configuration
(traffic mix A, random initial SPI): The proposed al-
gorithm is simulated with 10 initial SPI configurations
generated at random. Fig. 6 shows the SPI and QoE
evolution per service with one of the initial configu-
rations (SPI(V oIP ) = 13.68, SPI(V IDEO) = 13.79,
SPI(FTP ) = 2.37 and SPI(WEB) = 8.66). In the
example, FTP and VoIP are the services with the
worst initial user experience (QoE

(FTP )
= 1.98 and

QoE
(V oIP )

= 1.97). For FTP, the reason for the low
initial QoE is a low initial SPI (SPI(FTP ) = 2.37).
For VoIP, the reason is not the initial SPI value, but a
SPI slightly lower than that of VIDEO (SPI(V oIP ) =
13.68 vs SPI(V IDEO) = 13.79). Such a small dif-
ference with the SPI of a resource-hungry application
as VIDEO makes VoIP users suffer long delays in
the scheduler, resulting in a bad QoE for VoIP. Other
than that, the algorithm behaves similarly to the first
experiment. Fig. 6(b) show that all services, except
VIDEO, improve their experience. Fig. 6(a) shows that
VoIP and WEB SPI reach the maximum SPI(j) value
(i.e., 15). Fig. 7 shows that QoEglobal is significantly
improved from 2.44 to 3.13 (28% enhancement).

A detailed analysis of the first iteration with the
different initial SPI configurations (not shown here)
reveals that the initial overall system QoE varies be-
tween 2.32 and 3.00 among the 10 cases. In all cases,
the proposed algorithm manages to lead the system
to the optimal state at the end of the tuning process,
where QoEglobal = 3.13. Specifically, an average
improvement of 21.8% is obtained in QoEglobal com-
pared to the initial situation, with a minimum and
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maximum value of 4.33% and 35.34%, respectively. It
is worth remarking that QoEglobal is never decreased,
regardless of the initial SPI configuration. This was
not the case for the QoE balancing algorithm in the
previous experiment.

4) Experiment 4: Impact of traffic mix (traffic mix
B, uniform initial SPI): In this experiment, a different
traffic mix is configured in the scenario. As shown in
Table I, traffic mix B has significantly less video users,
causing that traffic demand is not dominated by this
service, as in traffic mix A. For ease of analysis, initial
SPI settings are configured the same for all services.

Fig. 8(a) shows how the proposed self-tuning al-
gorithm adjusts SPI settings to the new traffic con-
ditions. In this case, VIDEO is the service with the
fastest SPI(j) increase, reaching the maximum value
(SPI(V IDEO) = 15) in barely 5 loops. In contrast,
FTP service priority parameter is decreased to the
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Fig. 9. Evolution of overall system QoE for a different traffic mix
(traffic mix B, uniform initial SPI).

minimum (SPI(FTP ) = 1). Due to the new service
distribution, where FTP users are more than VIDEO
users (10% against 5%), both services interchange
their SPI and QoE behaviors. Thus, less frequent
VIDEO users are now awarded with a higher SPI and,
consequently, better QoE. More frequent FTP users
are penalized with a lower SPI and worse QoE. VoIP
and WEB services behave similarly to the previous
experiments in terms of SPI and QoE, but with slower
increases. Again, QoEglobal is improved by 9% (from
2.88 to 3.14 at first and last iterations), as shown in
Fig. 9.

5) Experiment 5: Context dependency (traffic mix
A, uniform initial SPI): This experiment checks the
impact of context information. Fig. 10(a)-(b) show the
evolution of SPI(j) and QoE

(jc) with the proposed
algorithm. In Fig. 10(a), it can be seen how SPI(V oIP )

and SPI(WEB) increase up to the maximum level
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Fig. 10. Evolution of SPI and QoE for outdoor and indoor users
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Fig. 11. Evolution of overall system QoE considering outdoor and
indoor users (traffic mix A, uniform initial SPI).

in a few iterations, while VIDEO and FTP priorities
decrease at a similar speed up to their minimum
value. This behavior is also reflected in service-context
QoE values, shown in Fig. 10(b). Differences between
outdoor and indoor VoIP users in Fig. 10(b) are due to
differences in indoor/outdoor utility functions, (1) and
(2). Both functions depend on the R factor, although
indoor function includes a correction factor (1.5). This
factor leads to lower MOS values for indoor users even
when a high R (i.e., low packet delay) is experienced.
The system reaches steady state at the 7th loop. There-
after, some fluctuations are observed in QoE, especially
in VIDEO and FTP services.

Finally, Fig. 11 illustrates QoEglobal evolution.
QoEglobal improves significantly in the first five loops,
and remains stable from that point. Specifically, FoM
is improved by a 14% (i.e., from 2.39 to 2.73). This
result proves that the proposed algorithm can deal with
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several utility functions per service for context-aware
QoE modeling.

V. CONCLUSIONS

In this paper, a self-tuning algorithm for a classical
multi-service packet scheduler in a LTE base station
has been proposed. The aim of the algorithm is to
achieve the optimum overall system QoE by modifying
service priorities, regardless of network conditions. For
this purpose, the proposed algorithm changes service
priority parameters to re-prioritize services by an iter-
ative process based on network statistics. Briefly, the
algorithm tends to increase the priority of services that
would make the most of additional resources and are
occupying less resources. Method assessment has been
carried out in a dynamic system-level LTE simula-
tor. Results have shown that tuning service priority
parameters can improve the overall system QoE for
different initial configurations and traffic mixes, with
gains of up to 35%. Such an improvement is obtained
without changing the existing scheduling algorithm.
Furthermore, the proposed algorithm also improves
network performance when user location information
is included in QoE models. It is left for future work the
inclusion of other context attributes in QoE models.

The proposed self-tuning algorithm is conceived as
a centralized algorithm for the network management
system, where service performance indicators and pri-
ority parameters are collected and set on a network
basis. However, it can also be designed as a distributed
algorithm executed in every eNodeB, provided that
service performance statistics are available and priority
parameters can be adjusted on a site or cell basis.

APPENDIX A
In this Appendix, partial derivatives ∂QoEglobal

∂SPI(j) are
developed. These terms, reflecting how the overall
system QoE is affected by changes in the SPI of a
service j, are used to define the controller in (13). For
space reasons, only outdoor users are considered in
this appendix. A similar development has been carried
for indoor users to conduct the last experiment in
Section IV.

From (9), those partial derivatives are computed as

∂QoEglobal

∂SPI(j) = 1
Ns

Ns∑
k=1

∂QoE(k)

∂SPI(j)

= 1
Ns

(
∂QoE(j)

∂SPI(j) +
Ns−1∑
k=1

∂QoE(k)

∂SPI(j)

)
,

(14)

where Ns is the number of services. For convenience,
an intermediate term is defined per service, Res(k), as

Res(k) =
∑

∀j 6=k

(SPI(k) − SPI(j)) · PRB
(j)
util , (15)

where PRB
(j)
util represents the PRB utilization ratio

of service j (i.e., amount of radio resources used
by service j against total amount of resources) in
the current optimization loop. This intermediate term
roughly reflects the maximum ratio of resources that
can potentially be gained by a service from other
services.

With (15), partial derivatives ∂QoE(k)

∂SPI(j) , reflecting
how the QoE of service k is affected by SPI changes
in another service j, can be developed as

∂QoE(k)

∂SPI(j)
=

∂QoE(k)

∂QoS(k)
· ∂QoS(k)

∂Res(k)
· ∂Res(k)

∂SPI(j)
, (16)

where QoS(k) is the main QoS indicator in the QoE
model for service k (i.e., average delay for VoIP, re-
buffering time for VIDEO or throughput for WEB and
FTP). The second and third factors are shared by all
users of a service, and are therefore calculated on a
per-service basis. In contrast, the first factor, ∂QoE(k)

∂QoS(k) ,
representing the slope of the utility function, depends
on the specific QoS level provided to each user, and
could be computed on a per-user basis. As the SPI
parameter is defined on a service basis, SPI changes
are selected by aggregating users of a service. Thus,
an average slope is computed as

∂QoE(k)

∂QoS(k)
=

1

Nk

Nk∑

u=1

∂QoE(k)

∂QoS(k)
(u) , (17)

where Nk is the number of users for service k and
∂QoE(k)

∂QoS(k) (u) is the slope for a particular user u.

A. QoE vs QoS

The first factor, ∂QoE(k)

∂QoS(k) , is computed by aggregating
the slopes for users of a service. Such slopes are
obtained analytically on a per-user and per-iteration
basis from the utility function of the service (1)-(8) as
follows.

In (1), QoE(V oIP ) depends on R, which is com-
puted from connection delay, D, in seconds. Thus,
the main QoS indicator for VoIP is delay (i.e.,
QoS(V oIP ) = D), and

∂QoE(V oIP )

∂QoS(V oIP )
(u) =

∂QoE(V oIP )

∂R
(u) · ∂R

∂D
(u) . (18)

From (1),

∂QoE(V oIP )

∂R
(u) = 0.035 + 7× 10−6(200R(u)

−3R(u)2 − 6× 103 + 120R(u)) ,

(19)

and, from [28],
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∂R
∂D

(u) = −0.024− 0.11 H(D(u)− 177.3) /

H(D(u)− x) =

{
0 D(u) < x

1 D(u) ≥ x
.

(20)

In (3), the re-buffering time component tends to dominate
the QoE of VIDEO, so that QoE(V IDEO) ≈ 4.23 −
0.106 Treb. Thus, the main QoS indicator for VIDEO is the
re-buffering time in seconds (i.e., QoS(V IDEO) = Treb),
and

∂QoE(V IDEO)

∂QoS(V IDEO) (u) =
∂QoE(V IDEO)

∂Treb
(u)

=

{
−0.106 Treb(u) < 30

0 Treb(u) ≥ 30
,

(21)

where Treb(u) = 30 is the threshold from which
QoE(V IDEO) is always minimum (= 1).

In (5) and (7), the main QoS indicator for FTP and
WEB services is average user throughput in kbps (i.e.,
QoS(WEB) = QoS(FTP ) = T ), and

∂QoE(WEB)

∂QoS(WEB) (u) =
∂QoE(WEB)

∂T
(u)

=
578 ( 1

45.98 )
2
(2 T (u)+1.082)(

1+
(

T (u)+541.1
45.98

)2)2 ,
(22)

∂QoE(FTP )

∂QoS(FTP ) (u) =
∂QoE(FTP )

∂T
(u)

=

{
0 T (u) ≤ 236.5

0.0065 236.5 < T (u) < 852.5
0 T (u) ≥ 852.5

.

(23)

In (23), throughput values represent the thresholds asso-
ciated with the minimum (= 1) and maximum (= 5) values
of the MOS scale for FTP.

B. QoS vs Res

The second factor, ∂QoS(k)

∂Res(k) , is estimated on a per-iteration
and per-service basis as

∂QoS(j)

∂Res(j)
' QoS

(j)
max −QoS

(j)
min

Res
(j)
max −Res

(j)
min

, (24)

where QoS
(j)
max and QoS

(j)
min stand for the maximum and

minimum value of the main QoS indicator per service,
respectively, and Res

(j)
max and Res

(j)
min are obtained as

Res(j)max = (SPImax − SPImin)
∑

∀k 6=j

PRB
(k)
util , (25)

Res
(j)
min = (SPImin − SPImax)

∑

∀k 6=j

PRB
(k)
util . (26)

C. Res vs SPI
The third factor, ∂Res(k)

∂SPI(j)
, is approximated on a per-

iteration and per-service basis by

∂Res(k)

∂SPI(j)
'





−PRB
(j)
util k 6= j

∑
∀ l 6=k

PRB
(l)
util k = j

. (27)
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