7 research outputs found

    On the first place antitonicity in QL-implications

    Get PDF
    To obtain a demanded fuzzy implication in fuzzy systems, a number of desired properties have been proposed, among which the first place antitonicity, the second place isotonicity and the boundary conditions are the most important ones. The three classes of fuzzy implications derived from the implication in binary logic, S-, R- and QL-implications all satisfy the second place isotonicity and the boundary conditions. However, not all the QL-implications satisfy the first place antitonicity as S- and R-implications do. In this paper we study the QL-implications satisfying the first place antitonicity. First we establish the relationship between the first place antitonicity and other required properties of QL-implications. Second we work on the conditions under which a QL-implication generated by different combinations of a t-conorm S, a t-norm T and a strong fuzzy negation N satisfy the first place antitonicity, especially in the cases that both S and T are continuous. We further investigate the interrelationships between S- and R-implications generated by left-continuous t-norms on one hand and QL-implications satisfying the first place antitonicity on the other

    Intersections between some families of (U,N)- and RU-implications

    Get PDF
    (U,N)-implications and RU-implications are the generalizations of (S,N)- and R-implications to the framework of uninorms, where the t-norms and t-conorms are replaced by appropriate uninorms. In this work, we present the intersections that exist between (U,N)-implications and the different families of RU-implications obtainable from the well-established families of uninorms

    Fuzzy entropy from weak fuzzy subsethood measures

    Full text link
    In this paper, we propose a new construction method for fuzzy and weak fuzzy subsethood measures based on the aggregation of implication operators. We study the desired properties of the implication operators in order to construct these measures. We also show the relationship between fuzzy entropy and weak fuzzy subsethood measures constructed by our method

    A Deep Study of Fuzzy Implications

    Get PDF
    This thesis contributes a deep study on the extensions of the IMPLY operator in classical binary logic to fuzzy logic, which are called fuzzy implications. After the introduction in Chapter 1 and basic notations about the fuzzy logic operators In Chapter 2 we first characterize In Chapter 3 S- and R- implications and then extensively investigate under which conditions QL-implications satisfy the thirteen fuzzy implication axioms. In Chapter 4 we develop the complete interrelationships between the eight supplementary axioms FI6-FI13 for fuzzy implications satisfying the five basic axioms FI1-FI15. We prove all the dependencies between the eight fuzzy implication axioms, and provide for each independent case a counter-example. The counter-examples provided in this chapter can be used in the applications that need different fuzzy implications satisfying different fuzzy implication axioms. In Chapter 5 we study proper S-, R- and QL-implications for an iterative boolean-like scheme of reasoning from classical binary logic in the frame of fuzzy logic. Namely, repeating antecedents nn times, the reasoning result will remain the same. To determine the proper S-, R- and QL-implications we get a full solution of the functional equation I(x,y)=I(x,I(x,y))I(x,y)=I(x,I(x,y)), for all xx, y[0,1]y\in[0,1]. In Chapter 6 we study for the most important t-norms, t-conorms and S-implications their robustness against different perturbations in a fuzzy rule-based system. We define and compare for these fuzzy logical operators the robustness measures against bounded unknown and uniform distributed perturbations respectively. In Chapter 7 we use a fuzzy implication II to define a fuzzy II-adjunction in F(Rn)\mathcal{F}(\mathbb{R}^{n}). And then we study the conditions under which a fuzzy dilation which is defined from a conjunction C\mathcal{C} on the unit interval and a fuzzy erosion which is defined from a fuzzy implication II^{'} to form a fuzzy II-adjunction. These conditions are essential in order that the fuzzification of the morphological operations of dilation, erosion, opening and closing obey similar properties as their algebraic counterparts. We find out that the adjointness between the conjunction C\mathcal{C} on the unit interval and the implication II or the implication II^{'} play important roles in such conditions

    Contribució a l'estudi de les uninormes en el marc de les equacions funcionals.

    Get PDF
    Les uninormes són uns operadors d'agregació que, per la seva definició, es poden considerar com a conjuncions o disjuncions, i que han estat aplicades a camps molt diversos. En aquest treball s'estudien algunes equacions funcionals que tenen com a incògnites les uninormes, o operadors definits a partir d'elles. Una d'elles és la distributivitat, que és resolta per les classes d'uninormes conegudes, solucionant, en particular, un problema obert en la teoria de l'anàlisi no-estàndard. També s'estudien les implicacions residuals i fortes definides a partir d'uninormes, trobant solució a la distributivitat d'aquestes implicacions sobre uninormes. Com a aplicació d'aquests estudis, es revisa i s'amplia la morfologia matemàtica borrosa basada en uninormes, que proporciona un marc inicial favorable per a un nou enfocament en l'anàlisi d'imatges, que haurà de ser estudiat en més profunditat.Las uninormas son unos operadores de agregación que, por su definición se pueden considerar como conjunciones o disjunciones y que han sido aplicados a campos muy diversos. En este trabajo se estudian algunas ecuaciones funcionales que tienen como incógnitas las uninormas, o operadores definidos a partir de ellas. Una de ellas es la distributividad, que se resuelve para las classes de uninormas conocidas, solucionando, en particular, un problema abierto en la teoría del análisis no estándar. También se estudian las implicaciones residuales y fuertes definidas a partir de uninormas, encontrando solución a la distributividad de estas implicaciones sobre uninormas. Como aplicación de estos estudios, se revisa y amplía la morfología matemática borrosa basada en uninormas, que proporciona un marco inicial favorable para un nuevo enfoque en el análisis de imágenes, que tendrá que ser estudiado en más profundidad.Uninorms are aggregation operators that, due to its definition, can be considered as conjunctions or disjunctions, and they have been applied to very different fields. In this work, some functional equations are studied, involving uninorms, or operators defined from them as unknowns. One of them is the distributivity equation, that is solved for all the known classes of uninorms, finding solution, in particular, to one open problem in the non-standard analysis theory. Residual implications, as well as strong ones defined from uninorms are studied, obtaining solution to the distributivity equation of this implications over uninorms. As an application of all these studies, the fuzzy mathematical morphology based on uninorms is revised and deeply studied, getting a new framework in image processing, that it will have to be studied in more detail

    QL-implications versus D-implications

    Get PDF
    summary:This paper deals with two kinds of fuzzy implications: QL and Dishkant implications. That is, those defined through the expressions I(x,y)=S(N(x),T(x,y))I(x,y) = S(N(x),T(x,y)) and I(x,y)=S(T(N(x),N(y)),y)I(x,y) = S(T(N(x),N(y)),y) respectively, where TT is a t-norm, SS is a t-conorm and NN is a strong negation. Special attention is due to the relation between both kinds of implications. In the continuous case, the study of these implications is focused in some of their properties (mainly the contrapositive symmetry and the exchange principle). Finally, the case of non continuous t-norms or non continuous t-conorms is studied, deriving new implications of both kinds and showing that they remain strongly connected
    corecore