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Abstract

In order to obtain a demanded fuzzy im-
plication, a number of properties have been
proposed, among which the first place anti-
tonicity, the second place monotonicity and
the boundary conditions are the most impor-
tant ones. The three classes of fuzzy impli-
cations derived from the implication in bi-
nary logic, S-, R- and QL-implications all sat-
isfy the second place monotonicity and the
boundary conditions. However, not all the
QL-implications satisfy the first place anti-
tonicity as S- and R~ implications do. In this
paper we study the QL-implications satisfy-
ing the first place antitonicity. First we study
the relationship between the first place anti-
tonicity and other required properties of QL-
implications. And then we work on the con-
ditions under which a QL-implication gener-
ated by different combinations of a t-conorm
S, a t-norm T and a strong fuzzy negation
n will satisfy the first place antitonicity, es-
pecially on the cases that both S and T are
continuous. We also investigate the interre-
lationships between S- and R-implications on
one hand and QL-implications satisfying the
first place antitonicity on the other.
Keywords: Fuzzy implication, QL-
implication, the First place antitonicity.

1 Introduction

A fuzzy implication is a fuzzy connective that has
played important roles in different fuzzy domains
[5, 6, 7, 13, 14]. There are several different defini-
tions of a fuzzy implication, e.g., [1, 3, 4, 9]. In this
paper we define a fuzzy implication as a [0,1]2 — [0, 1]
mapping that satisfies the boundary conditions:

10. 1(0,0)=I(0,1)=I(1,1)=1, I(1,0)=0

One of the fuzzy inference methods is the generalized
modus ponens. In fuzzy logic, the generalized modus
ponens is realized through IF-THEN rules. Let X
and Y be two linguistic variables on the universe of
discourses U and V respectively. Moreover, let A
and A" be two fuzzy sets on U and let B and B’ be
two fuzzy sets on V. A, A, B and B may refer to
linguistic concepts. An IF-THEN rule is expressed
by:

IF X is A, THEN Y is B

Xis A

Y is B
where B’ is obtained through Zadeh’s compositional
rule of inference:

B (v) = sup T(4 (u), I(A(w), B()))
In this formula, T is a t-norm and [ is a fuzzy im-
plication. In order to obtain a suitable conclusion of
the fuzzy inference, a number of properties have been
proposed for the fuzzy implication I [4, 10, 11, 15, 17],
among which the most important ones are:

I1. the first place antitonicity:
1 < T2 = I(‘Tlay) Z I(‘T27y)a
for all 21, 2o, y € [0, 1];

12. the second place monotonicity:

1 < yo = I(x,51) < I(x,92),
for all x, y1, y2 € [0,1];

13. the neutrality property:
I(1,z) =z, for all x € [0,1];

I4. the exchange principle:
I(z,I(y,2)) = I(y,I(z,2)), for all z, y, z € [0,1];
I5. the ordering property:
z<y<&I(z,y)=1,forall z, y € [0,1];

16. the contrapositive principle:
I(z,y) = I(n(y),n(zx)), for all z, y € [0,1], w.r.t.
a strong fuzzy negation n;
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I7. the continuity.

I1 and I2 are the most important properties. Some
authors even define a fuzzy implication I as a [0,1]? —
[0, 1] mapping that satisfies I1, 12 and

19 1(0,2) =1, for all z € [0,1];
110 I(z,1) =1, for all x € [0, 1];

111 I(1,0) = 0.

Notice that if I satisfies 10, I1 and 12, then 19, 110 and
111 will be satisfied immediately.
There are three important classes of fuzzy implica-

tions derived from the implication in binary logic ([11],
Chapter 11):

1. Strong implication (S-implication),
I(z,y) = S(n(x),y), where S is a t-conorm and n
is a strong fuzzy negation;

2. Residuated implication (R-implication),
I(z,y) = sup{t € [0,1]|T(z,t) < y}, where T is a
t-norm;

3. Quantum logic implication (QL-implication),
I(z,y) = S(n(x),T(x,y)), where S is a t-conorm,
T is a t-norm and n is a strong fuzzy negation.

All these three classes of fuzzy implications satisfy 10
and I2. However, although all S-implications and R-
implications satisfy I1 ([10], Definition 1.15), not all
the QL-implications do.

Some work on whether a QL-implication satisfies I1 or
not has been done in [8], [16] and [12]. In [8], the condi-
tions under which a QL-implication Igy, and a t-norm
T, satisfy the residuation property: Ti(z,z) < y &
z < Igp(z,y), for all z, y, z € [0,1] are found. This
means that Igy is an R-implication as well ([8], Ex-
ample 4.5). Hence I, satisfies I1 provided these con-
ditions are fulfilled. However, being an R-implication
is sufficient but not necessary for a QL-implication to
satisfy I1 (see Remark 4, 5, 6 in this paper). In [16], the
authors have worked out how a QL-implication satis-
fies I1 as well as I4 ([16], Definition 1, Theorem 7, The-
orem 11). It is proved that such a QL-implication is an
S-implication as well. Again, being an S-implication
is sufficient but not necessary for a QL-implication
to satisfy 11 (see Remark 5, 6 in this paper). And
n [12], the authors have worked out for a group of
QL-implications the conditions under which they sat-
isfy I1. They restrict the relationship between the t-
conorm and the strong fuzzy negation which construct
the QL-implications ([12], Proposition 9).

In this paper, we study the QL-implications generated

by a t-conorm S, a t-norm 7" and a strong fuzzy nega-
tion n that satisfy I1, especially for the cases that both
S and T are continuous. First the relationship be-
tween I1 and the other properties of QL-implications
is studied in Section 3.1. And then the conditions un-
der which a QL-implication satisfies I1 are obtained in
Section 3.2. Some QL-implications that satisfy I1 are
equivalent to S-implications or R-implications while
others are not. We denote these facts in Remark 4 to
7. Preliminaries are given in Section 2 and conclusions
are given in Section 4 respectively.

2 Preliminaries

Definition 1. An automorphism of the interval

[a,b] C R is a continuous, strictly increasing mapping
@ from [a, b] to [a, b] with boundary conditions ¢(a) = a
and p(b) = b ([4], Definition 0).

Lemma 1. If ¢ is an automorphism of the unit in-
terval, then ¢~1 is also an automorphism of the unit
interval.

Lemma 2 (The chain rule). The composition of two
automorphisms of the unit interval is again an auto-
morphism.

Definition 2. Two mappings F, G: [0,1]" — [0,1]
are conjugated to each other, if there exists an auto-
morphism ¢ of the unit interval such that G = Fy,
where Fy(x1,x2, -+, 2n)

= ¢_1(F(¢(x1)7 ¢($2)’ ) ¢<xn)>)7
X1, T2, &y € [0,1] ([2], Definition 2).

It is easy to see that G = Fy & F'= G y-1.
Definition 3. A mapping n: [0,1] — [0,1] is a fuzzy
negation if it is decreasing and satisfies: n(0) = 1,
n(1) = 0.

Definition 4. A fuzzy negation that satisfies
n(n(z)) =z, for all x € [0,1] is called a strong

fuzzy negation.

We denote the standard strong fuzzy negation as ng,
i.e., no(r) =1—=z, for all z € [0, 1].

Definition 5. Let ¢ be an automorphism of the unit
interval. Then ng denotes the strong fuzzy negation
that is conjugated to ng, i.e.,

ng(r) = ¢~ (1 — ¢(x)), for all x € [0,1].

Definition 6. A mapping T: [0,1]?> — [0,1] is a tri-
angular norm (t-norm for short) if for all

x,y,z € [0,1] it satisfies:

T1. boundary condition: T(x,1) = x;

T2. monotonicity: y < z = T(x,y) < T(x,2);

T3. commutativity: T(x,y) = T(y, x);



T4. associativity: T(x,T(y,2)) = T(T(z,y), 2).
Three important continuous t-norms are:

1. Ta(z,y) = min(z,y),  (minimum)

2. Tp(z,y) =xy, (product)

3. Ty, (z,y) = max(z +y — 1,0),
uct)

(bounded prod-

Definition 7. Let ¢ be an automorphism of the unit
interval and T be a t-norm. Then Ty denotes the t-
norm that is conjugated to T, i.e.,

Ty(z,y) = ¢~ (T(o(2), ¢(y))), for all
(z,y) €10,1]2.

Ty is conjugated to itself, i.e., if ¢ is an automorphism
of the unit interval, then Ty = Ths¢.

Definition 8. Let {[am,bn]} be a non-empty family
of non-overlapping, closed, proper subintervals of [0, 1]
and {¢m} be a family of automorphisms of the unit
interval. Then a continuous t-norm T, is called an
ordinal sum of {[am,bwm], Tm}, where Ty, = Tpym or
T = Trom, if To(x,y) is equal to:

{ Am + (bm - am)Tm(bi:_a;:n ’ by—am

Ty(x,y), otherwise /

), (2.9) € [am, bm]®

m —am

If there exists only one subinterval [a1, b;] of [0, 1] with
a1 =0, by =1 and ¢, being the automorphism of the
unit interval, then T, = Tpg1 or T, = T},¢1. In this
paper, as to ‘an ordinal sum of {[am,bn], Tm}’, we
mean that there exists at least one subinterval [ag, bg]
such that ay, # 0 or by # 1.

It is stated in ([10], Section 1.3.4) that a continuous
t-norm is either T, or conjugated to Tp, or conju-
gated to T}, or an ordinal sum of the non-empty fam-
ily {[am,bm], T} with T, being conjugated to Tp or
Ty,

Definition 9. A mapping S: [0,1]> — [0,1] is a tri-
angular conorm (t-conorm for short) if for all

x,y, 2z € [0,1] it satisfies:

S1. boundary condition: S(x,0) = x;
S2. monotonicity: y < z = S(z,y) < S(z,2);
S3. commutativity: S(x,y) = S(y,x);
S4. associativity: S(x,S(y,2)) = S(S(x,y), z).

Three important continuous t-conorms are:

1. Sy(z,y) = max(z,y), (maximum)

2. Sp(z,y) =x+y—axy, (probabilistic sum)

3. St,(z,y) = min(xz +y,1), (bounded sum)

Definition 10. Let ¢ be an automorphism of the unit
interval and S be a t-conorm. Then Sy denotes the
t-conorm that is conjugated to S, i.e.,

Se(a,y) = ¢~ (S(4(x), d(y))), for all

(z,y) € 0,1

Definition 11. Let ¢ be an automorphism of the unit
interval and I be a fuzzy implication. Then Iy de-
notes the fuzzy implication that is conjugated to I, i.e.,

I¢($7y) = ¢_1(I(¢(l'),gb(y))), Jor all (m,y) € [07 1]2'

3 QL-implications and the first place
antitonicity

First we give two propositions and three lemmas that
will play important roles in this section.

Proposition 1. A necessary condition for a QL-
implication generated by a t-conorm S, a t-norm T
and a strong fuzzy negation n to satisfy 11, 1j, 15 or
16 is S(n(z),z) = 1, for all z € [0,1].

For the case that the t-conorm S is continuous, Propo-
sition 1 can be further expressed by next proposition,
according to [4] and [12].

Proposition 2. A necessary condition for a QL-
implication generated by a continuous t-conorm S, a
t-norm T and a strong fuzzy negation n to satisfy 11,
1, I5 or I6 is that there exists an automorphism ¢ of
the unit interval such that S = Syg and n satisfies
n(z) > ng(x), for all z € [0,1].

Lemma 3. ([10], Theorem 1.13) A fuzzy implication
is an S-implication if and only if it satisfies 13, 14 and
16.

Lemma 4. ([10], Theorem 1.14}) A fuzzy implication
is an R-implication if and only if it satisfies 12, 14 and
15.

Lemma 5. Let ¢ be an automorphism of the unit in-
terval. Then a QL-implication Iy, satisfies 11 iff Ior ¢
satisfies I1.

3.1 Relationship between the first place
antitonicity and the other potential
properties of QL-implications

As stated in the Introduction, all QL-implications sat-
isfy 10 and I2. It is also easy to see that each QL-
implication satisfies I3. Moreover, a QL-implication
generated by a t-conorm S, a t-norm T and a strong
fuzzy negation is continuous if both S and T are
continuous. Thus we will only consider how a QL-
implication Igy, satisfies I1, 14, I5 or 16 and the inter-
relationship between the Ig’s satisfying them.
Theorem 1. A QL-implication Ig1, satisfies 14 iff Ior,
s also an S-implication.



Proof. <=: Directly from Lemma 3.

= According to ([12], Remark 2), if I, satisfies I4,

then Iy, also satisfies 16. Since Ig;, always satisfies 13,

according to Lemma 3, Igy is also an S-implication.
O

Remark 1. As stated in the Introduction, an S-
implication always satisfies I1. Thus if a QL-
implication satisfies 14, then it also satisfies I1.

Next theorem is for the case that the t-conorm S
which constructs the QL-implication is continuous, i.e,
according to Proposition 2, there exists an automor-
phism ¢ of the unit interval such that S = Sy 4.

Theorem 2. Let ¢ be an automorphism of the unit
interval. A @QL-implication Igr, generated by the t-
conorm Sg,g, a t-norm T and the strong fuzzy negation
ne satisfies L4 iff there exists s € [0,+00] such that
T =T, where T® is a Frank t-norm, defined as:

Tp(z,y), s=0
s Tp(z,y), s=1
T%(w,y) = Ty(z,y), s=4o0

logs(1 + %), otherwise

(1)

Proof. <=: According to the proof of ([12], Corollary
1), such a QL-implication Igy, is also an S-implication.
Thus according to Lemma 3, I, satisfies 14.

= According to ([12], Remark 2), if I, satisfies I4,
then I also satisfies 16. Moreover, since Igy satis-
fies 12, according to ([4], Lemma 1 (ii)), Igs satisfies
I1. Thus according to ([12], Proposition 9) and ([12],
Corollary 1), Ty-1 is a Frank t-norm, i.e., T' = ;. O

A QL-implication satisfies 14 implies that it satis-
fies 16, but not the reverse. Comparing next theo-
rem and Theorem 2, we can see that there exist QL-
implications that satisfy 16 but not I4.

Theorem 3. ([12], Proposition 11) Let ¢ be an auto-
morphism of the unit interval. A QL-implication Igy,
generated by the t-conorm Spe, a t-norm T and the
strong fuzzy negation ng satisfies 16 iff Ty—1 is an ordi-
nal sum of the non-empty family {[am, bm], Trm }, where
T, are Frank t-norms defined in (1) with the parame-
ter s € [0, +o0] .

Remark 2. Since a QL-implication Ig;, always sat-
isfies 12, according to ([4], Lemma 1 (ii)), if Igy,
satisfies 16, then it also satisfies I1.

Now we consider the conditions under which a QL-
implication satisfies I5. Next theorem is for the case
that both the t-conorm and the t-norm which con-
struct the QL-implication are continuous.

Theorem 4. Let ¢ be an automorphism of the unit
interval. A @QL-implication Ig;, generated by the t-
conorm Spe, a continuous t-norm T and a strong
fuzzy negation n satisfies 15 iff for all y € [0, 1]:

i) T(y,y) = ne(n(y)) and
ii) T(x,y) > ng(n(x)), for all x € [0,y] and

iii) T(x,y) < ne(n(z)), for all x € [y, 1].

Proof. Igy satisfies I5 iff

Iqr(z,y) = ¢~ (min(¢(n(z)) + (T'(z,y)),1)) = 1 &
x <y, which means ¢(n(z))+o(T(x, )) >ler<y.
Define for all y € [0, 1], F, () = ¢(n(2)) + 6(T(x, y)).
for all z € [0,1]. Then F,(z) > 1, i.e.,

T(z,y) > ne(n(z)) iff z € [0,y] and Fy(z) <1,ie.,
T(z,y) < ng(n(z)) iff x € Jy,1]. Moreover, since T,
n and ¢ are all continuous, Fj, is continuous. Thus
F,

J() = L. ie., T(y.y) = ng(n(y). O
Example 1. Let Io; be the QL-implication defined
in Theorem 4 with T(y,y) = ng(n(y)), for all

€ [0,1]. Since Ty is the one and only the one
t-norm that satisfies T'(y,y) =y, for all y € [0, 1],
we have that if T' = T}, then n = ng and that
if n = ng, then T = Ty, Actually Igr gen-
erated by Sy ¢, T and ng is an R-implication,

e, Igr(z,y) = sup{t € [0,1]|T},¢(z,t) < y}.
According to Lemma 4, Ig; satisfies 14 and I5.
Moreover, as stated in the Introduction, Iy sat-
isfies 11.

Remark 3. The QL-implication Ig; defined in Ex-
ample 1 is also an S-implication, i.e.,
Igr(z,y) = Sp¢(ne(x),y). Thus according to
Lemma 3, Igy, also satisfies 16.

3.2 QL-implications that satisfy the first
place antitonicity

In this section we will focus on the characterizations
of QL-implications satisfying I1. We mainly focus on
the continuous cases. We will also indicate whether
a QL-implication satisfying I1 is also an S-implication
or an R-implication.

Theorem 5. A (QL-implication 1gr, generated by the
t-conorm SL, the t-norm Thy and a strong fuzzy nega-
tion n satisfies I1 iff n(x) > no(z), for all x € [0,1].

Proof. =: Straightforward from Proposition 2.

<=: For all 1, x5 and y € [0, 1], assume 7 < xo. If
r1 <y, then Igr(z1,y)= St,(n(r1), min(z1,y))

= St,(n(z1),21). Since n(x1) > no(z1),

Ion(z1,y) =1 > Igr(xe,y). Thus we need only con-
sider the situation that y < x; < xo. In this case,



IQL(xhy) = SL(n(x1)7min($1ﬂy)) = SL(n(‘rl)vy)
and Igr(z2,y) = St (n(x2),y). Since Sy (-,y) is in-
creasing and n is decreasing, we have Igr(z1,y) >
Igr(z2,y). Thus for all z1, 22 and y € [0,1], 21 < z
implies: Igr(z1,y) > Igr(xe,y), ie., Igr satisfies
I1. O]

Corollary 1. Let ¢ and ¢ denote two automorphisms
of the unit interval. Then a QL-implication I, gener-
ated by the t-conorm Sy 4, the t-norm T and a strong
fuzzy negation ny, satisfies 11 iff ny(x) > ng(x), for all
z €1[0,1].

Proof. IqL(z,y) = St,¢(ne(x), Ti(2,y))

— 67 1(SL(0(ny (@), Tt (B(x), 6(1)))-

Putting 7 = ¢ 0 ¢, then d(ny(z)) = n,(6(2)).
According to Lemma 1 and Lemma 2, v is also an
automorphism of the unit interval. So n, is a strong
fuzzy negation. Thus

Iqr(@,y) = 6~ (SL(n4(6(2)), Tt ((2), 6(9))))

= ¢ (I (8(x), ¢(y))), where

IéL(m‘,y) = St,(ny(x), Tar(x,y)). According to The-
orem b, IéL satisfies I1 iff ny(z) > ng(x), for all
z € [0,1]. And according to Lemma 5, Ioz satis-
fies I1 iff IéL satisfies I1. Thus Ig; satisfies I1 iff
ny(z) > no(z), which leads to n,(¢(x)) > 1 — ¢(x),
which means ¢(n,(x)) > 1 — ¢(z), ie.,

ne(x) > ¢~ (1 — ¢(x)) = ng(x), for all z € [0,1]. O

Remark 4. According to Example 1 and Remark 3,
for the QL-implication I, defined in Theorem 5
with n > ng, if n = ng, then gy, is equivalent to
both an S-implication and an R-implication.

On the contrary, we suppose that there exists

xo € ]0,1] such that n(zg) > mno(xo). Then
there exists yo such that zo > yo > 1 — n(zo),
which leads to n(zg) + yo > 1, which means
Ior(zo,yo) = 1 provided xg > yo. Thus Igy, does
not satisfy I5. Therefore according to Lemma 4,
Igr is not an R-implication. But Igr is an S-
implication, i.e., Iqor(z,y) = Sf,(n(x),y).
Similarly, for the QL-implication Ig;, defined in
Corollary 1 with n, > ng, if n, = ng, then Igr,
is equivalent to both an S-implication and an R-
implication. If on the contrary n, # ng, then Igy,
is not an R-implication but an S-implication, i.e.,

IQL(xv y) = SL¢(n<P(x)v y)

According to Proposition 2, a necessary condition for
a QL-implication Ig; generated by a continuous t-
conorm S, a t-norm T and a strong fuzzy negation
n to satisfy I1 is that there exists an automorphism ¢
of the unit interval such that S = SL¢ and n > ng.
The authors of [12] have done the work for the special
case that n = ng. Next theorem gives the sufficient

and necessary condition for Igy, of such case to satisfy
I1.

Theorem 6. ([12], Proposition 9) Let ¢ be an auto-
morphism of the unit interval. A QL-implication Igy,
generated by the t-conorm Spge, a t-norm T and the
strong fuzzy negation ng satisfies 11 iff Ty—1 satisfies
the Lipschitz condition, i.e., for all 1,29,y € [0, 1],

z1 < @9 = Ty-1(22,y) — Ty-1(21,y) <2 — 21, (2)

There are t-norms sufficient to fulfill the Lipschitz con-
dition (2), here we give examples:

Example 2 According to (1), a Frank t-norm 7% =
Tp if s =1 and T® = Ty, if s = 0. It has been
stated in ([12], Remark 4) that a t-norm T which
is a Frank t-norm or an ordinal sum of the non-
empty family {[am, bm], Tin}, where T, are Frank
t-norms, always satisfies the Lipschitz condition
(2). Thus Tp, T}, and T, which is an ordinal sum
of the non-empty family {[am,bmn], Tm}, where
Ty = Tp or Ty, = Tj, all satisfy the Lipschitz
condition (2). Hence according to Theorem 6, a
QL-implication generated by the t-conorm Sy g,
the t-norm Tpg, Ty,¢ or T,¢ and the strong fuzzy
negation ng satisfies I1.

Remark 5 Let /g, be a QL-implication generated by
the t-conorm Sj ¢, a t-norm T that Ty-1 satisfies
the Lipschitz condition (2) and the strong fuzzy
negation ng. Then according to ([12], Corollary
1), Igp satisfies 14 iff Ty-1 is a Frank t-norm
defined in (1). Thus according to Theorem 1,
Ig1 is also an S-implication as soon as Tj-1 is a
Frank t-norm. Moreover, if Ty-1 is not a Frank t-
norm, eg., an ordinal sum of the non-empty family
{lam,bm], T}, where T;,, = Tp or T, = T}, then
Ig1 does not satisfy I4. Thus according to Lemma
3 and Lemma 4, it is neither an S-implication nor
an R-implication.

Besides the QL-implications generated by the t-
conorm 5§, ¢, a t-norm 7" and the strong fuzzy negation
ng, which we discussed above, there exist other combi-
nations of a t-conorm S, a t-norm 7" and a strong fuzzy
negation n to generate a QL-implication Igy which
satisfies I1. It is sufficient but not necessary for n to
be ng while S = St 4. Next we discuss the cases that
provided both S and T are continuous, what condi-
tions should n fulfill to make Iy, satisfy I1. Since T' is
either Ty, or conjugated to Tp or conjugated to Ty,
or an ordinal sum the non-empty family {[a,, by], Tin }
with T, being conjugated to Tp or T} , we have the
next theorems and corollaries. First we consider the
cases that T'=Tp or T is conjugated to Tp.



Theorem 7. Let n be a strong fuzzy negation and
define a mapping f as f(z) = 1_%(:”), for all

€ 10,1]. Then a QL-implication Igr generated by
the t-conorm Sy, the t-norm Tp and n satisfies 11 iff

f is increasing.

Proof. For all z1, xo and y € [0, 1], assume 7 < xo.
=>: In order for Iy to satisfy I1, it is necessary
that Ior(xe,y) = 1 implies Igr(x1,y) = 1, namely,
y > 1_2732) implies y > 1_27(“) Thus

fla) = nlea) > donten) _ g
i.e., f is increasing.
—: If Ior(x1,y) = 1, then it is always greater than
Iorn(xe,y). If Igr(z2,y) = 1, then since f is increas-
ing, according to the proof above, Igr(z1,y) =1 =
Ior(x2,y). Thus we need only consider the situation
that Igr(z1,y) =n(z1) + 21y < 1 and
Ion(xe,y) = n(ze) + z2y < 1, ie., x1 > 0, z3 > 0,
y < 1_27(3“) and y < 1_275332) Since f is increasing,
1on(zz) > 1=n(@i) g,

2 - 1
n(x1)xr — n(xe)rr > x9 — xon(x1) — x1 + n(xy)z,
which leads to 2El=n(za) > 1= n(ml) > y. Therefore

ro—Tq1

x1), for all 7 < xo,

n(z1) + Ty > n(z2) + xgy, ie., Igr(zi,y) >
Ior(xg,y). Hence Iy, satisfies I1. O
Example 3. Let (x) = 2% Then n(x) = V1 — 22
and f(z) = "(z) = 1=V for all o € 0, 1.
Since % Jivi_ > O f is increasing. Thus
Iqr defined by Igr(z,y) = S, (V1 — 22, zy) sat-
isfies I1.

Corollary 2. Let ¢, ¢ and v be three automorphisms
of the unit interval, where v = p o ¢~ L. And define a
mapping [ as f(x) = 1—%(@’ for all x € 10,1]. Then
a QL-implication 1q1, generated by the t-conorm S g,
the t-norm Tpy and n, satisfies 11 iff f is increasing.

Proof. Iq(z,y) = Squ(%( ), Tpy(2,y))

= ¢~ (SL(¢(ny(2)), Tp(6(2), 6(y))))-

Since vy = po ¢!,

Igw(@,y) = 6~ L(SE (0, (6(2)), T (6(x), 6(1))).
According to Lemma 1 and Lemma 2, v is also an
automorphism of the unit interval. So n, is a strong
fuzzy negation. Thus

Igr(w,y) = ¢~ (Igp(6(x), é(y))), where

I'QL(x,y) = St,(ny(x), Tp(x,y)). According to Theo-
rem 7, Ié 5, satisfies I1 iff f is increasing. And accord-
ing to Lemma 5, Ig;, satisfies I1 iff IéQL satisfies I1.
Thus Igy, satisfies I1 iff f is increasing. O

Remark 6. Let Ig;, be the QL-implication and f be
the mapping defined in Theorem 7 with f being
increasing. Then f(z) < f(1) =1, for all

€ 10, 1], which leads to n(z) > ng(z), for all

€ 10,1]. Since n(0) = no(0), we have
n(xz) > no(x), for all € [0,1]. If n = ngp, then
according to Example 2 and Remark 5, Ig, is also
an S-implication. If on the contrary n # ng, then
consider:
IgL(z, IQL(?J, z))
= min(n(z) + = - min(n(y) + yz, 1), 1),
which is equivalent to:

i) n(z) + z(nly) + yz), if n(y) + yz < 1 and
n(x) +z(n(y) +yz) < 1;
ii) 1 otherwise,
and Ior(y, Igr(z, 2))
= min(n(y) + y - min(n(z) + zz,1),1),
which is equivalent to:
i) n(y) + y(n(z) + z2), if n(z) + 2z < 1 and
n(y) + y(n(x) + z2) < 1;
ii) 1 otherwise.

Since n is continuous and since g(z) = %7
x € [0,1] cannot be constant, there exist
o, Yo € [0,1] such that zg # yo and
g(wo) # g(yo). Let g(zo) > g(yo). Then we
Tl n(ao) R —n(y)

have —= zo T . Thus there
exists zg such that )

1_nit()yﬂ)_n(xo) < 20 < 1_27(()20)_"(1!0) < 1— n(yo)

xr
Therefgre To, Yo, 20 satlsfyyn(yo) + yozo < 1 and
n(zo) + zo(n(yo) + yozo0) < 1 and

n(yo) + wo(n(zo) + zozo) > 1, which
means  Igr(yo, lor(zo, 20)) = 1 while
Iorn(zo, Igr (Yo, 20)) < 1. Thus Igr does
not satisfy I4. According to Lemma 3 and
Lemma 4, Igy, is neither an S-implication nor an
R-implication.

Similarly, let Igr be the QL-implication and
f be the mapping defined in Corollary 2 with
[ being increasing, we have n,(z) > ng(z),
for all € [0,1]. If n, = ng, then Iy is also
an S-implication. If on the contrary n, # ng,
then Igy is neither an S-implication nor an
R-implication.

Theorem 8. A (Q)L-implication 1gr, generated by the
t-conorm Sy, the t-norm Ty and a strong fuzzy nega-
tion n satisfies 11 iff n = ny.

Proof. <=: Straightforward from Theorem 6 and Ex-
ample 2.

—: Take 0 < x1 <o < 1. Sincel —ao <1 —121 <
2 —n(zq1) — 1, for all 1 € ]0,1], there exists yo such
that 1 — 21 < yo < 2 —n(z1) —x1 and 1 — z2 < yo.
Thus Igr(z1,y0) =n(z1) + 21 +yo — 1 < 1 and

Iorn (w2, yo) = min(n(x2) + x2 +yo — 1,1). If Iy sat-
isfies I1, then it is necessary that Ior(xs, yo) < 1, i.e.,



n(xg) + x2 +yo — 1 < 1. Namely, yo < 2 — n(z1) — 21
implies y9 < 2 — n(z2) — x3. Thus define f as
f(@) = n(x) + z, f must be decreasing for all x €
10, 1[. Since n is continuous, f is continuous. Thus
f must be decreasing for all « € [0,1]. Moreover, we
have f(0) = f(1) = 1. Therefore f(z) = 1, for all
x € [0, 1], which means n(z) =1 — =z, for all z € [0,1],
i.e., n =ng. O

Corollary 3. Let ¢ and ¢ be two automorphisms of
the unit interval. Then a QL-implication Igr gen-
erated by the t-conorm Sy, the t-norm Tpg and a
strong fuzzy negation n, satisfies 11 iff n, = ng.

Proof. Iqr(z,y) = Spe(n,(2), Ty e(2,y))

= ¢~ (S, (9(ne(2)), Ty, (6(2), ¢(y))))-

Putting v = ¢ 0 ¢!, then ¢(n,(z)) = n,(p(x)).
According to Lemma 1 and Lemma 2, v is also an
automorphism of the unit interval. So n., is a strong
fuzzy negation. Thus Igr(z,y)

= 07 (Sp,(n(6(@)), Ty, (=), 6(9))))

=97 Iq1(9(2), 6(1))),

where I (7,y) = S’L(nv(x’),TL(x,y)).

According to Theorem 8, I, satisfies I1 iff

n, = no. And according to Lemma 5, Iy, satisfies 11
iff I,QL satisfies I1. Thus I, satisfies I1 iff n, = ng. So
ny(z) =1 —z, ny(é(x)) =1 — ¢(x), being equivalent
to ¢(ny(x)) =1 — ¢(x), which means

ne(x) = ¢~ (1 — ¢(x)), for all z € [0,1]. Hence

Ny = Ng. O

Remark 7. According to Example 2 and Remark 5,
the QL-implication defined in Theorem 8 with
n = ng and the QL-implication defined in Corol-
lary 3 with n, = mng are equivalent to S-
implications.

Next we consider the t-norm 7' which constructs the
QL-implication to be an ordinal sum of the non-empty
family {[ay,,bm], Tin}, where T,,, = Tp or T, = T,
Because of space limitation, we omit the proofs of the
theorems and corollaries below.

Theorem 9. Let {[am,bn]} be a non-empty family of
non-overlapping, closed, proper subintervals of [0,1]
and T, be an ordinal sum of {[am,bm],Tm}, where
T = Tp. Moreover, let n be a strong fuzzy nega-
tion and define f,(x) = %, for allm and x €
|am, bm]. Then a QL—implicatz’on;z Ior generated by the
t-conorm Sy, T, and n satisfies 11 iff n(x) > no(x),
for all x € [0,1] and fp, is increasing, for all m.

Theorem 10. Let {[am,bn]} be a non-empty family
of non-overlapping, closed, proper subintervals of [0, 1]
and T, be an ordinal sum of {[am,bm], Tm}, where
Ty = Ty. Then a QL-implication Igr generated by

the t-conorm Sy, T, and a strong fuzzy negation n
satisfies I1 iff

i) n(x) =no(z), if © € [am, bm] and

i) n(x) > no(x), otherwise.

Synthesize Theorem 9 and Theorem 10, we have the
next corollary.

Corollary 4. Let {[a;,b;]} and {[a;,b;]} be two
non-empty families of non-overlapping, closed, proper
subintervals of [0,1] and {[am,bm]} = {lai,bi]} U
{la;,b;]}. T, is an ordinal sum of {[am,bm],Tm},
which is defined as:
a; + (bi — ai)) Tp(3=55, £=25),
aj + (b — a;) T (5= 5=a5)s
TM(xvy)a

(xay> € [ai7 bz]2
($, y) € [a’j7 b]]2
otherwise

(3)

Moreover, let n be a strong fuzzy negation and define
filz) = Ionl@)=ai *for gl i and x € lai,bi]. Then a

T—ay

QL-implication Iqr generated by the t-conorm Sy, T,
and n satisfies 11 iff

i) fi is increasing, for all i, and
it) n(x) = no(z), for all x € [a;,b;], and

ii1) n(x) > no(x), for all ¢ [a;, b;] and all
@ ¢ lag, bjl.

For the QL-implication being conjugated to the one
defined in Corollary 4, we have the next corollary.
Corollary 5. Let T, be a t-norm defined by (3), n
be a strong fuzzy negation and ¢ be an automorphism
of the unit interval. Define f;(x) = %,
for all i and x € Ja;,b;]. Then a QL—implicat%on Ior
generated by the t-conorm Sy¢, T, and n satisfies 11
if

i) fi is increasing, for all i, and
ii) n(z) = ng(x), for all x € [a;,b;], and

i) n(x) > ng(x), for all x ¢ [a;,b;] and all
@ ¢ lag, bjl.

Proof. Suppose n' (x) = ¢(n(¢~'(z))). According to
Lemma 5, Igy satisfies I1 iff Igr4-1, which is ex-
pressed as Igr4-1(z,y) = SL(n/(a:), T,(x,y)), satisfies
I1. According to Corollary 5, Iz 4-1 satisfies I1 iff

i) f; is increasing, for all ¢, and

’

ii) n (x) = ne(x), for all = € [a;,b;], and



iii) n' () > no(z), for all = ¢ [a;, b;] and all
T

¢ laj, bjl,

where f; () = =)= fo1 all 2 € |a;, b;]. The three

r—a;
conditions are equivalent to

i) f; is increasing, for all ¢, and
ii) n(z) = ny(x), for all z € [a;, b;], and

iil) n(z) > ne(zx), for all = ¢ [a;, b;] and all
¢ [aj, byl

4 Conclusions

In this paper, we have studied the QL-implications
generated by a t-conorm, a t-norm and a strong fuzzy
negation that satisfy the properties which are required
to obtain a suitable conclusion in fuzzy inference. Es-
pecially the first place antitonicity (property I1 in
the Introduction) of QL-implications has been stud-
ied. Theorem 1 to Theorem 4 state the general rela-
tionship between a QL-implication satisfying the first
place antitonicity and the other properties. Moreover,
Theorem 5 to Theorem 10 together with Corollary 1
to Corollary 5 state sufficient and necessary condi-
tions for the QL-implications generated by different
combinations of a t-conorm, a t-norm and a strong
fuzzy negation to satisfy the first place antitonicity.
Whether the QL-implications which satisfy the first
place antitonicity are equivalent to S- or R~ implica-
tions have been illustrated in Remarks 4 to 7.
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