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Abstract

In order to obtain a demanded fuzzy im-
plication, a number of properties have been
proposed, among which the first place anti-
tonicity, the second place monotonicity and
the boundary conditions are the most impor-
tant ones. The three classes of fuzzy impli-
cations derived from the implication in bi-
nary logic, S-, R- and QL-implications all sat-
isfy the second place monotonicity and the
boundary conditions. However, not all the
QL-implications satisfy the first place anti-
tonicity as S- and R- implications do. In this
paper we study the QL-implications satisfy-
ing the first place antitonicity. First we study
the relationship between the first place anti-
tonicity and other required properties of QL-
implications. And then we work on the con-
ditions under which a QL-implication gener-
ated by different combinations of a t-conorm
S, a t-norm T and a strong fuzzy negation
n will satisfy the first place antitonicity, es-
pecially on the cases that both S and T are
continuous. We also investigate the interre-
lationships between S- and R-implications on
one hand and QL-implications satisfying the
first place antitonicity on the other.
Keywords: Fuzzy implication, QL-
implication, the First place antitonicity.

1 Introduction

A fuzzy implication is a fuzzy connective that has
played important roles in different fuzzy domains
[5, 6, 7, 13, 14]. There are several different defini-
tions of a fuzzy implication, e.g., [1, 3, 4, 9]. In this
paper we define a fuzzy implication as a [0, 1]2 → [0, 1]
mapping that satisfies the boundary conditions:

I0. I(0,0)=I(0,1)=I(1,1)=1, I(1,0)=0

One of the fuzzy inference methods is the generalized
modus ponens. In fuzzy logic, the generalized modus
ponens is realized through IF-THEN rules. Let X
and Y be two linguistic variables on the universe of
discourses U and V respectively. Moreover, let A
and A

′
be two fuzzy sets on U and let B and B

′
be

two fuzzy sets on V . A, A
′
, B and B

′
may refer to

linguistic concepts. An IF-THEN rule is expressed
by:
IF X is A, THEN Y is B
X is A

′

Y is B
′

where B
′

is obtained through Zadeh’s compositional
rule of inference:

B
′
(v) = sup

u∈U
T (A

′
(u), I(A(u), B(v)))

In this formula, T is a t-norm and I is a fuzzy im-
plication. In order to obtain a suitable conclusion of
the fuzzy inference, a number of properties have been
proposed for the fuzzy implication I [4, 10, 11, 15, 17],
among which the most important ones are:

I1. the first place antitonicity:
x1 < x2 ⇒ I(x1, y) ≥ I(x2, y),
for all x1, x2, y ∈ [0, 1];

I2. the second place monotonicity:
y1 < y2 ⇒ I(x, y1) ≤ I(x, y2),
for all x, y1, y2 ∈ [0, 1];

I3. the neutrality property:
I(1, x) = x, for all x ∈ [0, 1];

I4. the exchange principle:
I(x, I(y, z)) = I(y, I(x, z)), for all x, y, z ∈ [0, 1];

I5. the ordering property:
x ≤ y ⇔ I(x, y) = 1, for all x, y ∈ [0, 1];

I6. the contrapositive principle:
I(x, y) = I(n(y), n(x)), for all x, y ∈ [0, 1], w.r.t.
a strong fuzzy negation n;
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I7. the continuity.

I1 and I2 are the most important properties. Some
authors even define a fuzzy implication I as a [0, 1]2 →
[0, 1] mapping that satisfies I1, I2 and

I9 I(0, x) = 1, for all x ∈ [0, 1];

I10 I(x, 1) = 1, for all x ∈ [0, 1];

I11 I(1, 0) = 0.

Notice that if I satisfies I0, I1 and I2, then I9, I10 and
I11 will be satisfied immediately.
There are three important classes of fuzzy implica-
tions derived from the implication in binary logic ([11],
Chapter 11):

1. Strong implication (S-implication),
I(x, y) = S(n(x), y), where S is a t-conorm and n
is a strong fuzzy negation;

2. Residuated implication (R-implication),
I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, where T is a
t-norm;

3. Quantum logic implication (QL-implication),
I(x, y) = S(n(x), T (x, y)), where S is a t-conorm,
T is a t-norm and n is a strong fuzzy negation.

All these three classes of fuzzy implications satisfy I0
and I2. However, although all S-implications and R-
implications satisfy I1 ([10], Definition 1.15), not all
the QL-implications do.
Some work on whether a QL-implication satisfies I1 or
not has been done in [8], [16] and [12]. In [8], the condi-
tions under which a QL-implication IQL and a t-norm
T∗ satisfy the residuation property: T∗(x, z) ≤ y ⇔
z ≤ IQL(x, y), for all x, y, z ∈ [0, 1] are found. This
means that IQL is an R-implication as well ([8], Ex-
ample 4.5). Hence IQL satisfies I1 provided these con-
ditions are fulfilled. However, being an R-implication
is sufficient but not necessary for a QL-implication to
satisfy I1 (see Remark 4, 5, 6 in this paper). In [16], the
authors have worked out how a QL-implication satis-
fies I1 as well as I4 ([16], Definition 1, Theorem 7, The-
orem 11). It is proved that such a QL-implication is an
S-implication as well. Again, being an S-implication
is sufficient but not necessary for a QL-implication
to satisfy I1 (see Remark 5, 6 in this paper). And
in [12], the authors have worked out for a group of
QL-implications the conditions under which they sat-
isfy I1. They restrict the relationship between the t-
conorm and the strong fuzzy negation which construct
the QL-implications ([12], Proposition 9).
In this paper, we study the QL-implications generated

by a t-conorm S, a t-norm T and a strong fuzzy nega-
tion n that satisfy I1, especially for the cases that both
S and T are continuous. First the relationship be-
tween I1 and the other properties of QL-implications
is studied in Section 3.1. And then the conditions un-
der which a QL-implication satisfies I1 are obtained in
Section 3.2. Some QL-implications that satisfy I1 are
equivalent to S-implications or R-implications while
others are not. We denote these facts in Remark 4 to
7. Preliminaries are given in Section 2 and conclusions
are given in Section 4 respectively.

2 Preliminaries

Definition 1. An automorphism of the interval
[a, b] ⊂ R is a continuous, strictly increasing mapping
ϕ from [a, b] to [a, b] with boundary conditions ϕ(a) = a
and ϕ(b) = b ([4], Definition 0).

Lemma 1. If φ is an automorphism of the unit in-
terval, then φ−1 is also an automorphism of the unit
interval.

Lemma 2 (The chain rule). The composition of two
automorphisms of the unit interval is again an auto-
morphism.

Definition 2. Two mappings F , G: [0, 1]n → [0, 1]
are conjugated to each other, if there exists an auto-
morphism φ of the unit interval such that G = Fφ,
where Fφ(x1, x2, · · · , xn)
= φ−1(F (φ(x1), φ(x2), · · · , φ(xn))),
x1, x2, · · · , xn ∈ [0, 1] ([2], Definition 2).

It is easy to see that G = Fφ ⇔ F = Gφ−1 .

Definition 3. A mapping n: [0, 1] → [0, 1] is a fuzzy
negation if it is decreasing and satisfies: n(0) = 1,
n(1) = 0.

Definition 4. A fuzzy negation that satisfies
n(n(x)) = x, for all x ∈ [0, 1] is called a strong
fuzzy negation.

We denote the standard strong fuzzy negation as n0,
i.e., n0(x) = 1− x, for all x ∈ [0, 1].

Definition 5. Let φ be an automorphism of the unit
interval. Then nφ denotes the strong fuzzy negation
that is conjugated to n0, i.e.,
nφ(x) = φ−1(1− φ(x)), for all x ∈ [0, 1].

Definition 6. A mapping T : [0, 1]2 → [0, 1] is a tri-
angular norm (t-norm for short) if for all
x, y, z ∈ [0, 1] it satisfies:

T1. boundary condition: T (x, 1) = x;

T2. monotonicity: y ≤ z ⇒ T (x, y) ≤ T (x, z);

T3. commutativity: T (x, y) = T (y, x);



T4. associativity: T (x, T (y, z)) = T (T (x, y), z).

Three important continuous t-norms are:

1. TM (x, y) = min(x, y), (minimum)

2. TP (x, y) = xy, (product)

3. T L(x, y) = max(x + y − 1, 0), (bounded prod-
uct)

Definition 7. Let φ be an automorphism of the unit
interval and T be a t-norm. Then Tφ denotes the t-
norm that is conjugated to T , i.e.,
Tφ(x, y) = φ−1(T (φ(x), φ(y))), for all
(x, y) ∈ [0, 1]2.

TM is conjugated to itself, i.e., if φ is an automorphism
of the unit interval, then TM = TM φ.

Definition 8. Let {[am, bm]} be a non-empty family
of non-overlapping, closed, proper subintervals of [0, 1]
and {φm} be a family of automorphisms of the unit
interval. Then a continuous t-norm To is called an
ordinal sum of {[am, bm], Tm}, where Tm = TP φm or
Tm = T Lφm, if To(x, y) is equal to:{

am + (bm − am)Tm( x−am

bm−am
, y−am

bm−am
), (x, y) ∈ [am, bm]2

TM (x, y), otherwise

If there exists only one subinterval [a1, b1] of [0, 1] with
a1 = 0, b1 = 1 and φ1 being the automorphism of the
unit interval, then To = TP φ1 or To = T Lφ1. In this
paper, as to ‘an ordinal sum of {[am, bm], Tm}’, we
mean that there exists at least one subinterval [ak, bk]
such that ak 6= 0 or bk 6= 1.
It is stated in ([10], Section 1.3.4) that a continuous
t-norm is either TM , or conjugated to TP , or conju-
gated to T L, or an ordinal sum of the non-empty fam-
ily {[am, bm], Tm} with Tm being conjugated to TP or
T L.

Definition 9. A mapping S: [0, 1]2 → [0, 1] is a tri-
angular conorm (t-conorm for short) if for all
x, y, z ∈ [0, 1] it satisfies:

S1. boundary condition: S(x, 0) = x;

S2. monotonicity: y ≤ z ⇒ S(x, y) ≤ S(x, z);

S3. commutativity: S(x, y) = S(y, x);

S4. associativity: S(x, S(y, z)) = S(S(x, y), z).

Three important continuous t-conorms are:

1. SM (x, y) = max(x, y), (maximum)

2. SP (x, y) = x + y − xy, (probabilistic sum)

3. S L(x, y) = min(x + y, 1), (bounded sum)

Definition 10. Let φ be an automorphism of the unit
interval and S be a t-conorm. Then Sφ denotes the
t-conorm that is conjugated to S, i.e.,
Sφ(x, y) = φ−1(S(φ(x), φ(y))), for all
(x, y) ∈ [0, 1]2.
Definition 11. Let φ be an automorphism of the unit
interval and I be a fuzzy implication. Then Iφ de-
notes the fuzzy implication that is conjugated to I, i.e.,
Iφ(x, y) = φ−1(I(φ(x), φ(y))), for all (x, y) ∈ [0, 1]2.

3 QL-implications and the first place
antitonicity

First we give two propositions and three lemmas that
will play important roles in this section.
Proposition 1. A necessary condition for a QL-
implication generated by a t-conorm S, a t-norm T
and a strong fuzzy negation n to satisfy I1, I4, I5 or
I6 is S(n(x), x) = 1, for all x ∈ [0, 1].

For the case that the t-conorm S is continuous, Propo-
sition 1 can be further expressed by next proposition,
according to [4] and [12].
Proposition 2. A necessary condition for a QL-
implication generated by a continuous t-conorm S, a
t-norm T and a strong fuzzy negation n to satisfy I1,
I4, I5 or I6 is that there exists an automorphism φ of
the unit interval such that S = S Lφ and n satisfies
n(x) ≥ nφ(x), for all x ∈ [0, 1].
Lemma 3. ([10], Theorem 1.13) A fuzzy implication
is an S-implication if and only if it satisfies I3, I4 and
I6.
Lemma 4. ([10], Theorem 1.14) A fuzzy implication
is an R-implication if and only if it satisfies I2, I4 and
I5.
Lemma 5. Let φ be an automorphism of the unit in-
terval. Then a QL-implication IQL satisfies I1 iff IQLφ

satisfies I1.

3.1 Relationship between the first place
antitonicity and the other potential
properties of QL-implications

As stated in the Introduction, all QL-implications sat-
isfy I0 and I2. It is also easy to see that each QL-
implication satisfies I3. Moreover, a QL-implication
generated by a t-conorm S, a t-norm T and a strong
fuzzy negation is continuous if both S and T are
continuous. Thus we will only consider how a QL-
implication IQL satisfies I1, I4, I5 or I6 and the inter-
relationship between the IQL’s satisfying them.
Theorem 1. A QL-implication IQL satisfies I4 iff IQL

is also an S-implication.



Proof. ⇐=: Directly from Lemma 3.
=⇒: According to ([12], Remark 2), if IQL satisfies I4,
then IQL also satisfies I6. Since IQL always satisfies I3,
according to Lemma 3, IQL is also an S-implication.

Remark 1. As stated in the Introduction, an S-
implication always satisfies I1. Thus if a QL-
implication satisfies I4, then it also satisfies I1.

Next theorem is for the case that the t-conorm S
which constructs the QL-implication is continuous, i.e,
according to Proposition 2, there exists an automor-
phism φ of the unit interval such that S = S Lφ.

Theorem 2. Let φ be an automorphism of the unit
interval. A QL-implication IQL generated by the t-
conorm S Lφ, a t-norm T and the strong fuzzy negation
nφ satisfies I4 iff there exists s ∈ [0, +∞] such that
T = T s

φ, where T s is a Frank t-norm, defined as:

T s(x, y) =


T L(x, y), s = 0
TP (x, y), s = 1
TM (x, y), s = +∞
logs(1 + (sx−1)(sy−1)

s−1 ), otherwise
(1)

Proof. ⇐=: According to the proof of ([12], Corollary
1), such a QL-implication IQL is also an S-implication.
Thus according to Lemma 3, IQL satisfies I4.
=⇒: According to ([12], Remark 2), if IQL satisfies I4,
then IQL also satisfies I6. Moreover, since IQL satis-
fies I2, according to ([4], Lemma 1 (ii)), IQL satisfies
I1. Thus according to ([12], Proposition 9) and ([12],
Corollary 1), Tφ−1 is a Frank t-norm, i.e., T = T s

φ .

A QL-implication satisfies I4 implies that it satis-
fies I6, but not the reverse. Comparing next theo-
rem and Theorem 2, we can see that there exist QL-
implications that satisfy I6 but not I4.

Theorem 3. ([12], Proposition 11) Let φ be an auto-
morphism of the unit interval. A QL-implication IQL

generated by the t-conorm S Lφ, a t-norm T and the
strong fuzzy negation nφ satisfies I6 iff Tφ−1 is an ordi-
nal sum of the non-empty family {[am, bm], Tm}, where
Tm are Frank t-norms defined in (1) with the parame-
ter s ∈ [0, +∞[ .

Remark 2. Since a QL-implication IQL always sat-
isfies I2, according to ([4], Lemma 1 (ii)), if IQL

satisfies I6, then it also satisfies I1.

Now we consider the conditions under which a QL-
implication satisfies I5. Next theorem is for the case
that both the t-conorm and the t-norm which con-
struct the QL-implication are continuous.

Theorem 4. Let φ be an automorphism of the unit
interval. A QL-implication IQL generated by the t-
conorm S Lφ, a continuous t-norm T and a strong
fuzzy negation n satisfies I5 iff for all y ∈ [0, 1]:

i) T (y, y) = nφ(n(y)) and

ii) T (x, y) ≥ nφ(n(x)), for all x ∈ [0, y] and

iii) T (x, y) < nφ(n(x)), for all x ∈ [y, 1].

Proof. IQL satisfies I5 iff
IQL(x, y) = φ−1(min(φ(n(x)) + φ(T (x, y)), 1)) = 1 ⇔
x ≤ y, which means φ(n(x))+φ(T (x, y)) ≥ 1 ⇔ x ≤ y.
Define for all y ∈ [0, 1], Fy(x) = φ(n(x)) + φ(T (x, y)),
for all x ∈ [0, 1]. Then Fy(x) ≥ 1, i.e.,
T (x, y) ≥ nφ(n(x)) iff x ∈ [0, y] and Fy(x) < 1, i.e.,
T (x, y) < nφ(n(x)) iff x ∈ ]y, 1]. Moreover, since T ,
n and φ are all continuous, Fy is continuous. Thus
Fy(y) = 1, i.e., T (y, y) = nφ(n(y)).

Example 1. Let IQL be the QL-implication defined
in Theorem 4 with T (y, y) = nφ(n(y)), for all
y ∈ [0, 1]. Since TM is the one and only the one
t-norm that satisfies T (y, y) = y, for all y ∈ [0, 1],
we have that if T = TM , then n = nφ and that
if n = nφ, then T = TM . Actually IQL gen-
erated by S Lφ, TM and nφ is an R-implication,
i.e., IQL(x, y) = sup{t ∈ [0, 1]|T Lφ(x, t) ≤ y}.
According to Lemma 4, IQL satisfies I4 and I5.
Moreover, as stated in the Introduction, IQL sat-
isfies I1.

Remark 3. The QL-implication IQL defined in Ex-
ample 1 is also an S-implication, i.e.,
IQL(x, y) = S Lφ(nφ(x), y). Thus according to
Lemma 3, IQL also satisfies I6.

3.2 QL-implications that satisfy the first
place antitonicity

In this section we will focus on the characterizations
of QL-implications satisfying I1. We mainly focus on
the continuous cases. We will also indicate whether
a QL-implication satisfying I1 is also an S-implication
or an R-implication.

Theorem 5. A QL-implication IQL generated by the
t-conorm S L, the t-norm TM and a strong fuzzy nega-
tion n satisfies I1 iff n(x) ≥ n0(x), for all x ∈ [0, 1].

Proof. =⇒: Straightforward from Proposition 2.
⇐=: For all x1, x2 and y ∈ [0, 1], assume x1 < x2. If
x1 ≤ y, then IQL(x1, y)= S L(n(x1), min(x1, y))
= S L(n(x1), x1). Since n(x1) ≥ n0(x1),
IQL(x1, y) = 1 ≥ IQL(x2, y). Thus we need only con-
sider the situation that y < x1 < x2. In this case,



IQL(x1, y) = S L(n(x1), min(x1, y)) = S L(n(x1), y)
and IQL(x2, y) = S L(n(x2), y). Since S L(·, y) is in-
creasing and n is decreasing, we have IQL(x1, y) ≥
IQL(x2, y). Thus for all x1, x2 and y ∈ [0, 1], x1 < x2

implies: IQL(x1, y) ≥ IQL(x2, y), i.e., IQL satisfies
I1.

Corollary 1. Let φ and ϕ denote two automorphisms
of the unit interval. Then a QL-implication IQL gener-
ated by the t-conorm S Lφ, the t-norm TM and a strong
fuzzy negation nϕ satisfies I1 iff nϕ(x) ≥ nφ(x), for all
x ∈ [0, 1].

Proof. IQL(x, y) = S Lφ(nϕ(x), TM (x, y))
= φ−1(S L(φ(nϕ(x)), TM (φ(x), φ(y)))).
Putting γ = ϕ ◦ φ−1, then φ(nϕ(x)) = nγ(φ(x)).
According to Lemma 1 and Lemma 2, γ is also an
automorphism of the unit interval. So nγ is a strong
fuzzy negation. Thus
IQL(x, y) = φ−1(S L(nγ(φ(x)), TM (φ(x), φ(y))))
= φ−1(I

′

QL(φ(x), φ(y))), where
I
′

QL(x, y) = S L(nγ(x), TM (x, y)). According to The-
orem 5, I

′

QL satisfies I1 iff nγ(x) ≥ n0(x), for all
x ∈ [0, 1]. And according to Lemma 5, IQL satis-
fies I1 iff I

′

QL satisfies I1. Thus IQL satisfies I1 iff
nγ(x) ≥ n0(x), which leads to nγ(φ(x)) ≥ 1 − φ(x),
which means φ(nϕ(x)) ≥ 1− φ(x), i.e.,
nϕ(x) ≥ φ−1(1− φ(x)) = nφ(x), for all x ∈ [0, 1].

Remark 4. According to Example 1 and Remark 3,
for the QL-implication IQL defined in Theorem 5
with n ≥ n0, if n = n0, then IQL is equivalent to
both an S-implication and an R-implication.
On the contrary, we suppose that there exists
x0 ∈ ]0, 1[ such that n(x0) > n0(x0). Then
there exists y0 such that x0 > y0 ≥ 1 − n(x0),
which leads to n(x0) + y0 ≥ 1, which means
IQL(x0, y0) = 1 provided x0 > y0. Thus IQL does
not satisfy I5. Therefore according to Lemma 4,
IQL is not an R-implication. But IQL is an S-
implication, i.e., IQL(x, y) = S L(n(x), y).
Similarly, for the QL-implication IQL defined in
Corollary 1 with nϕ ≥ nφ, if nϕ = nφ, then IQL

is equivalent to both an S-implication and an R-
implication. If on the contrary nϕ 6= nφ, then IQL

is not an R-implication but an S-implication, i.e.,
IQL(x, y) = S Lφ(nϕ(x), y).

According to Proposition 2, a necessary condition for
a QL-implication IQL generated by a continuous t-
conorm S, a t-norm T and a strong fuzzy negation
n to satisfy I1 is that there exists an automorphism φ
of the unit interval such that S = S Lφ and n ≥ nφ.
The authors of [12] have done the work for the special
case that n = nφ. Next theorem gives the sufficient

and necessary condition for IQL of such case to satisfy
I1.

Theorem 6. ([12], Proposition 9) Let φ be an auto-
morphism of the unit interval. A QL-implication IQL

generated by the t-conorm S Lφ, a t-norm T and the
strong fuzzy negation nφ satisfies I1 iff Tφ−1 satisfies
the Lipschitz condition, i.e., for all x1, x2, y ∈ [0, 1],

x1 ≤ x2 ⇒ Tφ−1(x2, y)− Tφ−1(x1, y) ≤ x2 − x1, (2)

There are t-norms sufficient to fulfill the Lipschitz con-
dition (2), here we give examples:

Example 2 According to (1), a Frank t-norm T s =
TP if s = 1 and T s = T L if s = 0. It has been
stated in ([12], Remark 4) that a t-norm T which
is a Frank t-norm or an ordinal sum of the non-
empty family {[am, bm], Tm}, where Tm are Frank
t-norms, always satisfies the Lipschitz condition
(2). Thus TP , T L and To which is an ordinal sum
of the non-empty family {[am, bm], Tm}, where
Tm = TP or Tm = T L all satisfy the Lipschitz
condition (2). Hence according to Theorem 6, a
QL-implication generated by the t-conorm S Lφ,
the t-norm TP φ, T Lφ or Toφ and the strong fuzzy
negation nφ satisfies I1.

Remark 5 Let IQL be a QL-implication generated by
the t-conorm S Lφ, a t-norm T that Tφ−1 satisfies
the Lipschitz condition (2) and the strong fuzzy
negation nφ. Then according to ([12], Corollary
1), IQL satisfies I4 iff Tφ−1 is a Frank t-norm
defined in (1). Thus according to Theorem 1,
IQL is also an S-implication as soon as Tφ−1 is a
Frank t-norm. Moreover, if Tφ−1 is not a Frank t-
norm, eg., an ordinal sum of the non-empty family
{[am, bm], Tm}, where Tm = TP or Tm = T L, then
IQL does not satisfy I4. Thus according to Lemma
3 and Lemma 4, it is neither an S-implication nor
an R-implication.

Besides the QL-implications generated by the t-
conorm S Lφ, a t-norm T and the strong fuzzy negation
nφ, which we discussed above, there exist other combi-
nations of a t-conorm S, a t-norm T and a strong fuzzy
negation n to generate a QL-implication IQL which
satisfies I1. It is sufficient but not necessary for n to
be nφ while S = S Lφ. Next we discuss the cases that
provided both S and T are continuous, what condi-
tions should n fulfill to make IQL satisfy I1. Since T is
either TM , or conjugated to TP or conjugated to T L,
or an ordinal sum the non-empty family {[am, bm], Tm}
with Tm being conjugated to TP or T L, we have the
next theorems and corollaries. First we consider the
cases that T = TP or T is conjugated to TP .



Theorem 7. Let n be a strong fuzzy negation and
define a mapping f as f(x) = 1−n(x)

x , for all
x ∈ ]0, 1]. Then a QL-implication IQL generated by
the t-conorm S L, the t-norm TP and n satisfies I1 iff
f is increasing.

Proof. For all x1, x2 and y ∈ [0, 1], assume x1 < x2.
=⇒: In order for IQL to satisfy I1, it is necessary
that IQL(x2, y) = 1 implies IQL(x1, y) = 1, namely,
y ≥ 1−n(x2)

x2
implies y ≥ 1−n(x1)

x1
. Thus

f(x2) = 1−n(x2)
x2

≥ 1−n(x1)
x1

= f(x1), for all x1 < x2,
i.e., f is increasing.
⇐=: If IQL(x1, y) = 1, then it is always greater than
IQL(x2, y). If IQL(x2, y) = 1, then since f is increas-
ing, according to the proof above, IQL(x1, y) = 1 =
IQL(x2, y). Thus we need only consider the situation
that IQL(x1, y) = n(x1) + x1y < 1 and
IQL(x2, y) = n(x2) + x2y < 1, i.e., x1 > 0, x2 > 0,
y < 1−n(x1)

x1
and y < 1−n(x2)

x2
. Since f is increasing,

1−n(x2)
x2

≥ 1−n(x1)
x1

. Thus:
n(x1)x1 − n(x2)x1 ≥ x2 − x2n(x1)− x1 + n(x1)x1,
which leads to n(x1)−n(x2)

x2−x1
≥ 1−n(x1)

x1
> y. Therefore

n(x1) + x1y > n(x2) + x2y, i.e., IQL(x1, y) ≥
IQL(x2, y). Hence IQL satisfies I1.

Example 3. Let φ(x) = x2. Then n(x) =
√

1− x2

and f(x) = 1−n(x)
x = 1−

√
1−x2

x , for all x ∈ ]0, 1].
Since df(x)

dx = 1−
√

1−x2√
1−x2x2 ≥ 0, f is increasing. Thus

IQL defined by IQL(x, y) = S L(
√

1− x2, xy) sat-
isfies I1.

Corollary 2. Let φ, ϕ and γ be three automorphisms
of the unit interval, where γ = ϕ ◦ φ−1. And define a
mapping f as f(x) = 1−nγ(x)

x , for all x ∈ ]0, 1]. Then
a QL-implication IQL generated by the t-conorm S Lφ,
the t-norm TP φ and nϕ satisfies I1 iff f is increasing.

Proof. IQL(x, y) = S Lφ(nϕ(x), TP φ(x, y))
= φ−1(S L(φ(nϕ(x)), TP (φ(x), φ(y)))).
Since γ = ϕ ◦ φ−1,
IQL(x, y) = φ−1(S L(nγ(φ(x)), TP (φ(x), φ(y)))).
According to Lemma 1 and Lemma 2, γ is also an
automorphism of the unit interval. So nγ is a strong
fuzzy negation. Thus
IQL(x, y) = φ−1(I

′

QL(φ(x), φ(y))), where
I
′

QL(x, y) = S L(nγ(x), TP (x, y)). According to Theo-
rem 7, I

′

QL satisfies I1 iff f is increasing. And accord-
ing to Lemma 5, IQL satisfies I1 iff I

′

QL satisfies I1.
Thus IQL satisfies I1 iff f is increasing.

Remark 6. Let IQL be the QL-implication and f be
the mapping defined in Theorem 7 with f being
increasing. Then f(x) ≤ f(1) = 1, for all

x ∈ ]0, 1], which leads to n(x) ≥ n0(x), for all
x ∈ ]0, 1]. Since n(0) = n0(0), we have
n(x) ≥ n0(x), for all x ∈ [0, 1]. If n = n0, then
according to Example 2 and Remark 5, IQL is also
an S-implication. If on the contrary n 6= n0, then
consider:
IQL(x, IQL(y, z))
= min(n(x) + x ·min(n(y) + yz, 1), 1),
which is equivalent to:

i) n(x) + x(n(y) + yz), if n(y) + yz < 1 and
n(x) + x(n(y) + yz) < 1;

ii) 1 otherwise,

and IQL(y, IQL(x, z))
= min(n(y) + y ·min(n(x) + xz, 1), 1),
which is equivalent to:

i) n(y) + y(n(x) + xz), if n(x) + xz < 1 and
n(y) + y(n(x) + xz) < 1;

ii) 1 otherwise.

Since n is continuous and since g(x) = 1−x
n(x) ,

x ∈ [0, 1[ cannot be constant, there exist
x0, y0 ∈ [0, 1[ such that x0 6= y0 and
g(x0) 6= g(y0). Let g(x0) > g(y0). Then we

have
1−n(y0)

y0
−n(x0)

x0
<

1−n(x0)
x0

−n(y0)

y0
. Thus there

exists z0 such that
1−n(y0)

y0
−n(x0)

x0
≤ z0 <

1−n(x0)
x0

−n(y0)

y0
≤ 1−n(y0)

y0
.

Therefore x0, y0, z0 satisfy n(y0) + y0z0 < 1 and
n(x0) + x0(n(y0) + y0z0) < 1 and
n(y0) + y0(n(x0) + x0z0) ≥ 1, which
means IQL(y0, IQL(x0, z0)) = 1 while
IQL(x0, IQL(y0, z0)) < 1. Thus IQL does
not satisfy I4. According to Lemma 3 and
Lemma 4, IQL is neither an S-implication nor an
R-implication.
Similarly, let IQL be the QL-implication and
f be the mapping defined in Corollary 2 with
f being increasing, we have nϕ(x) ≥ nφ(x),
for all x ∈ [0, 1]. If nϕ = nφ, then IQL is also
an S-implication. If on the contrary nϕ 6= nφ,
then IQL is neither an S-implication nor an
R-implication.

Theorem 8. A QL-implication IQL generated by the
t-conorm S L, the t-norm T L and a strong fuzzy nega-
tion n satisfies I1 iff n = n0.

Proof. ⇐=: Straightforward from Theorem 6 and Ex-
ample 2.
=⇒: Take 0 < x1 < x2 < 1. Since 1 − x2 < 1 − x1 <
2− n(x1)− x1, for all x1 ∈ ]0, 1[ , there exists y0 such
that 1 − x1 < y0 < 2 − n(x1) − x1 and 1 − x2 < y0.
Thus IQL(x1, y0) = n(x1) + x1 + y0 − 1 < 1 and
IQL(x2, y0) = min(n(x2) + x2 + y0 − 1, 1). If IQL sat-
isfies I1, then it is necessary that IQL(x2, y0) < 1, i.e.,



n(x2) + x2 + y0 − 1 < 1. Namely, y0 < 2− n(x1)− x1

implies y0 < 2 − n(x2) − x2. Thus define f as
f(x) = n(x) + x, f must be decreasing for all x ∈
]0, 1[. Since n is continuous, f is continuous. Thus
f must be decreasing for all x ∈ [0, 1]. Moreover, we
have f(0) = f(1) = 1. Therefore f(x) = 1, for all
x ∈ [0, 1], which means n(x) = 1− x, for all x ∈ [0, 1],
i.e., n = n0.

Corollary 3. Let φ and ϕ be two automorphisms of
the unit interval. Then a QL-implication IQL gen-
erated by the t-conorm S Lφ, the t-norm T Lφ and a
strong fuzzy negation nϕ satisfies I1 iff nϕ = nφ.

Proof. IQL(x, y) = S Lφ(nϕ(x), T Lφ(x, y))
= φ−1(S L(φ(nϕ(x)), T L(φ(x), φ(y)))).
Putting γ = ϕ ◦ φ−1, then φ(nϕ(x)) = nγ(φ(x)).
According to Lemma 1 and Lemma 2, γ is also an
automorphism of the unit interval. So nγ is a strong
fuzzy negation. Thus IQL(x, y)
= φ−1(S L(nγ(φ(x)), T L(φ(x), φ(y))))
= φ−1(I

′

QL(φ(x), φ(y))),
where I

′

QL(x, y) = S L(nγ(x), T L(x, y)).
According to Theorem 8, I

′

QL satisfies I1 iff
nγ = n0. And according to Lemma 5, IQL satisfies I1
iff I

′

QL satisfies I1. Thus IQL satisfies I1 iff nγ = n0. So
nγ(x) = 1− x, nγ(φ(x)) = 1− φ(x), being equivalent
to φ(nϕ(x)) = 1− φ(x), which means
nϕ(x) = φ−1(1− φ(x)), for all x ∈ [0, 1]. Hence
nϕ = nφ.

Remark 7. According to Example 2 and Remark 5,
the QL-implication defined in Theorem 8 with
n = n0 and the QL-implication defined in Corol-
lary 3 with nϕ = nφ are equivalent to S-
implications.

Next we consider the t-norm T which constructs the
QL-implication to be an ordinal sum of the non-empty
family {[am, bm], Tm}, where Tm = TP or Tm = T L.
Because of space limitation, we omit the proofs of the
theorems and corollaries below.

Theorem 9. Let {[am, bm]} be a non-empty family of
non-overlapping, closed, proper subintervals of [0, 1]
and To be an ordinal sum of {[am, bm], Tm}, where
Tm = TP . Moreover, let n be a strong fuzzy nega-
tion and define fm(x) = 1−n(x)−am

x−am
, for all m and x ∈

]am, bm]. Then a QL-implication IQL generated by the
t-conorm S L, To and n satisfies I1 iff n(x) ≥ n0(x),
for all x ∈ [0, 1] and fm is increasing, for all m.

Theorem 10. Let {[am, bm]} be a non-empty family
of non-overlapping, closed, proper subintervals of [0, 1]
and To be an ordinal sum of {[am, bm], Tm}, where
Tm = T L. Then a QL-implication IQL generated by

the t-conorm S L, To and a strong fuzzy negation n
satisfies I1 iff

i) n(x) = n0(x), if x ∈ [am, bm] and

ii) n(x) ≥ n0(x), otherwise.

Synthesize Theorem 9 and Theorem 10, we have the
next corollary.

Corollary 4. Let {[ai, bi]} and {[aj , bj ]} be two
non-empty families of non-overlapping, closed, proper
subintervals of [0, 1] and {[am, bm]} = {[ai, bi]} ∪
{[aj , bj ]}. To is an ordinal sum of {[am, bm], Tm},
which is defined as:

ai + (bi − ai)TP ( x−ai

bi−ai
, y−ai

bi−ai
), (x, y) ∈ [ai, bi]2

aj + (bj − aj)T L( x−aj

bj−aj
,

y−aj

bj−aj
), (x, y) ∈ [aj , bj ]2

TM (x, y), otherwise
(3)

Moreover, let n be a strong fuzzy negation and define
fi(x) = 1−n(x)−ai

x−ai
, for all i and x ∈ ]ai, bi]. Then a

QL-implication IQL generated by the t-conorm S L, To

and n satisfies I1 iff

i) fi is increasing, for all i, and

ii) n(x) = n0(x), for all x ∈ [aj , bj ], and

iii) n(x) ≥ n0(x), for all x /∈ [ai, bi] and all
x /∈ [aj , bj ].

For the QL-implication being conjugated to the one
defined in Corollary 4, we have the next corollary.

Corollary 5. Let To be a t-norm defined by (3), n
be a strong fuzzy negation and φ be an automorphism
of the unit interval. Define fi(x) = 1−φ(n(φ−1(x)))−ai

x−ai
,

for all i and x ∈ ]ai, bi]. Then a QL-implication IQL

generated by the t-conorm S Lφ, Toφ and n satisfies I1
iff

i) fi is increasing, for all i, and

ii) n(x) = nφ(x), for all x ∈ [aj , bj ], and

iii) n(x) ≥ nφ(x), for all x /∈ [ai, bi] and all
x /∈ [aj , bj ].

Proof. Suppose n
′
(x) = φ(n(φ−1(x))). According to

Lemma 5, IQL satisfies I1 iff IQLφ−1 , which is ex-
pressed as IQLφ−1(x, y) = S L(n

′
(x), To(x, y)), satisfies

I1. According to Corollary 5, IQLφ−1 satisfies I1 iff

i) f
′

i is increasing, for all i, and

ii) n
′
(x) = n0(x), for all x ∈ [aj , bj ], and



iii) n
′
(x) ≥ n0(x), for all x /∈ [ai, bi] and all

x /∈ [aj , bj ],

where f
′

i (x) = 1−n
′
(x)−ai

x−ai
, for all x ∈ ]ai, bi]. The three

conditions are equivalent to

i) fi is increasing, for all i, and

ii) n(x) = nφ(x), for all x ∈ [aj , bj ], and

iii) n(x) ≥ nφ(x), for all x /∈ [ai, bi] and all
x /∈ [aj , bj ].

4 Conclusions

In this paper, we have studied the QL-implications
generated by a t-conorm, a t-norm and a strong fuzzy
negation that satisfy the properties which are required
to obtain a suitable conclusion in fuzzy inference. Es-
pecially the first place antitonicity (property I1 in
the Introduction) of QL-implications has been stud-
ied. Theorem 1 to Theorem 4 state the general rela-
tionship between a QL-implication satisfying the first
place antitonicity and the other properties. Moreover,
Theorem 5 to Theorem 10 together with Corollary 1
to Corollary 5 state sufficient and necessary condi-
tions for the QL-implications generated by different
combinations of a t-conorm, a t-norm and a strong
fuzzy negation to satisfy the first place antitonicity.
Whether the QL-implications which satisfy the first
place antitonicity are equivalent to S- or R- implica-
tions have been illustrated in Remarks 4 to 7.
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