85,703 research outputs found

    Superradiant Phase Transitions and the Standard Description of Circuit QED

    Full text link
    We investigate the equilibrium behaviour of a superconducting circuit QED system containing a large number of artificial atoms. It is shown that the currently accepted standard description of circuit QED via an effective model fails in an important aspect: it predicts the possibility of a superradiant quantum phase transition, even though a full microscopic treatment reveals that a no-go theorem for such phase transitions known from cavity QED applies to circuit QED systems as well. We generalize the no-go theorem to the case of (artificial) atoms with many energy levels and thus make it more applicable for realistic cavity or circuit QED systems.Comment: 4+6 pages, 3+1 figure

    Limits on Non-Linear Electrodynamics

    Get PDF
    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested

    Precision Study of Positronium: Testing Bound State QED Theory

    Full text link
    As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positronium tests compared to other QED experiments.Comment: A talk presented at Workshop on Positronium Physics (ETH Zurich, May 30-31, 2003

    Quantum electrodynamics corrections to energies, transition amplitudes and parity nonconservation in Rb, Cs, Ba+^+, Tl, Fr and Ra+^+

    Full text link
    We use previously developed radiative potential method to calculate quantum electrodynamic (QED) corrections to energy levels and electric dipole transition amplitudes for atoms which are used for the study of the parity non-conservation (PNC) in atoms. The QED shift in energies and dipole amplitudes leads to noticeable change in the PNC amplitudes. This study compliments the previously considered QED corrections to the weak matrix elements. We demonstrate that the QED corrections due to the change in energies and dipole matrix elements are comparable in value to those due to change in weak matrix elements.Comment: 5 pages, 1 figur

    Symbolic QED Pre-silicon Verification for Automotive Microcontroller Cores: Industrial Case Study

    Full text link
    We present an industrial case study that demonstrates the practicality and effectiveness of Symbolic Quick Error Detection (Symbolic QED) in detecting logic design flaws (logic bugs) during pre-silicon verification. Our study focuses on several microcontroller core designs (~1,800 flip-flops, ~70,000 logic gates) that have been extensively verified using an industrial verification flow and used for various commercial automotive products. The results of our study are as follows: 1. Symbolic QED detected all logic bugs in the designs that were detected by the industrial verification flow (which includes various flavors of simulation-based verification and formal verification). 2. Symbolic QED detected additional logic bugs that were not recorded as detected by the industrial verification flow. (These additional bugs were also perhaps detected by the industrial verification flow.) 3. Symbolic QED enables significant design productivity improvements: (a) 8X improved (i.e., reduced) verification effort for a new design (8 person-weeks for Symbolic QED vs. 17 person-months using the industrial verification flow). (b) 60X improved verification effort for subsequent designs (2 person-days for Symbolic QED vs. 4-7 person-months using the industrial verification flow). (c) Quick bug detection (runtime of 20 seconds or less), together with short counterexamples (10 or fewer instructions) for quick debug, using Symbolic QED

    Higher order QED in high mass e+ e- pairs production at RHIC

    Full text link
    Lowest order and higher order QED calculations have been carried out for the RHIC high mass e+ e- pairs observed by PHENIX with single ZDC triggers. The lowest order QED results for the experimental acceptance are about two standard deviations larger than the PHENIX data. Corresponding higher order QED calculations are within one standard deviation of the data.Comment: 2 page

    On the string-inspired approach to QED in external field

    Get PDF
    Strassler's formulation of the string-derived Bern-Kosower formalism is extended to consider QED processes in homogeneous constant external field. A compact expression for the contribution of the one-loop with arbitrary number of external photon lines is given for scalar QED. Extension to spinor QED is shortly discussed.Comment: 14 pages,Revtex,no figure
    • …
    corecore