903 research outputs found

    D2.1 - Report on Selected TRNG and PUF Principles

    Get PDF
    This report represents the final version of Deliverable 2.1 of the HECTOR work package WP2. It is a result of discussions and work on Task 2.1 of all HECTOR partners involved in WP2. The aim of the Deliverable 2.1 is to select principles of random number generators (RNGs) and physical unclonable functions (PUFs) that fulfill strict technology, design and security criteria. For example, the selected RNGs must be suitable for implementation in logic devices according to the German AIS20/31 standard. Correspondingly, the selected PUFs must be suitable for applying similar security approach. A standard PUF evaluation approach does not exist, yet, but it should be proposed in the framework of the project. Selected RNGs and PUFs should be then thoroughly evaluated from the point of view of security and the most suitable principles should be implemented in logic devices, such as Field Programmable Logic Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) during the next phases of the project

    Circuit Techniques for Low-Power and Secure Internet-of-Things Systems

    Full text link
    The coming of Internet of Things (IoT) is expected to connect the physical world to the cyber world through ubiquitous sensors, actuators and computers. The nature of these applications demand long battery life and strong data security. To connect billions of things in the world, the hardware platform for IoT systems must be optimized towards low power consumption, high energy efficiency and low cost. With these constraints, the security of IoT systems become a even more difficult problem compared to that of computer systems. A new holistic system design considering both hardware and software implementations is demanded to face these new challenges. In this work, highly robust and low-cost true random number generators (TRNGs) and physically unclonable functions (PUFs) are designed and implemented as security primitives for secret key management in IoT systems. They provide three critical functions for crypto systems including runtime secret key generation, secure key storage and lightweight device authentication. To achieve robustness and simplicity, the concept of frequency collapse in multi-mode oscillator is proposed, which can effectively amplify the desired random variable in CMOS devices (i.e. process variation or noise) and provide a runtime monitor of the output quality. A TRNG with self-tuning loop to achieve robust operation across -40 to 120 degree Celsius and 0.6 to 1V variations, a TRNG that can be fully synthesized with only standard cells and commercial placement and routing tools, and a PUF with runtime filtering to achieve robust authentication, are designed based upon this concept and verified in several CMOS technology nodes. In addition, a 2-transistor sub-threshold amplifier based "weak" PUF is also presented for chip identification and key storage. This PUF achieves state-of-the-art 1.65% native unstable bit, 1.5fJ per bit energy efficiency, and 3.16% flipping bits across -40 to 120 degree Celsius range at the same time, while occupying only 553 feature size square area in 180nm CMOS. Secondly, the potential security threats of hardware Trojan is investigated and a new Trojan attack using analog behavior of digital processors is proposed as the first stealthy and controllable fabrication-time hardware attack. Hardware Trojan is an emerging concern about globalization of semiconductor supply chain, which can result in catastrophic attacks that are extremely difficult to find and protect against. Hardware Trojans proposed in previous works are based on either design-time code injection to hardware description language or fabrication-time modification of processing steps. There have been defenses developed for both types of attacks. A third type of attack that combines the benefits of logical stealthy and controllability in design-time attacks and physical "invisibility" is proposed in this work that crosses the analog and digital domains. The attack eludes activation by a diverse set of benchmarks and evades known defenses. Lastly, in addition to security-related circuits, physical sensors are also studied as fundamental building blocks of IoT systems in this work. Temperature sensing is one of the most desired functions for a wide range of IoT applications. A sub-threshold oscillator based digital temperature sensor utilizing the exponential temperature dependence of sub-threshold current is proposed and implemented. In 180nm CMOS, it achieves 0.22/0.19K inaccuracy and 73mK noise-limited resolution with only 8865 square micrometer additional area and 75nW extra power consumption to an existing IoT system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138779/1/kaiyuan_1.pd

    Optimization of a Terahertz Radiator

    Get PDF
    At present, the utilization of the terahertz band for communications remains a hypothetical scenario. This thesis presents a design for a communications setup for terahertz frequencies of kilometer range distances using a reflector antenna design. The primary focus is the terahertz radiating element of the system. Building upon published experimental work a simulation based approach is developed that duplicates experimental work. Next, this simulation setup is used with a new proposed design methodology is used to develop the primary radiators. A structure intended to be used with a photoconductive switch is selected and various design parameters are studied. The summation of the study concludes with a proposed experimental design that will be built and studied

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attiré une énorme quantité de recherches ces dernières années, surtout après la présentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de très hauts débits de faible puissance tout en éliminant les interférences avec les systèmes existants à bande étroite. La faible puissance, cependant, limite la portée de propagation des radios UWB à quelques mètres pour la transmission sans fil à l’intérieur d’une pièce. En outre, des signaux UWB reçu sont étendus dans le temps en raison de la propagation par trajet multiple qui résulte en beaucoup d’interférence inter-symbole (ISI) à haut débit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thèse, nous démontrons des transmet- teurs qui sont capables de générer des impulsions UWB avec une efficacité de puissance élevée. Une impulsion efficace résulte dans un rapport de signal à bruit (SNR) supérieur au récepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomètres pour la distribution dans un réseau optique pas- sif. La fibre optique est très fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les éléments simples comme un modulateur Mach-Zehnder ou un résonateur en anneau pour générer des impulsions, ce qui permet l’intégration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel énorme pour abaisser le coût et l’encombrement des systèmes optiques. La photodétection convertit les impulsions optiques en impulsions électriques avant la transmission sur l’antenne du côté de l’utilisateur. La réponse fréquentielle de l’antenne déforme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linéaire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amélioration de l’énergie des impulsions UWB améliore directement la SNR au récepteur. Les résultats de simulation montrent que les impulsions optimisées améliorent considérablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adapté pour recevoir efficacement des impulsions UWB. Le filtre adapté est synthétisé et fabriqué en technologie microstrip, en collaboration avec l’Université McGill comme un dispositif de bande interdite électromagnétique. La réponse fréquentielle du filtre adapté montre une ex- cellente concordance avec le spectre ciblé de l’impulsion UWB. Les mesures de BER confirment la performance supérieure du filtre adapté par rapport à un récepteur à conversion directe. Le canal UWB est très riche en trajet multiple conduisant à l’ISI à haut débit. Notre dernière contribution est l’étude de performance des récepteurs en simulant un système avec des conditions de canaux réalistes. Les résultats de la simulation montrent que la performance d’un tel système se dégrade de façon significative pour les hauts débits. Afin de compenser la forte ISI dans les taux de transfert de données en Gb/s, nous étudions l’algorithme de Viterbi (VA) avec un nombre limité d’états et un égaliseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation améliore considérablement les performances par rapport à la détection de symbole. La DFE a une meilleure performance par rapport à la VA en utilisant une complexité comparable. La DFE peut couvrir une plus grande mémoire de canal avec un niveau de complexité relativement réduit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    A new generation of ultrafast oscillators for mid-infrared applications

    Get PDF
    The mid-infrared (MIR) spectral range with wavelengths between 2 µm and 20 µm holds tremendous potential for the study of complex biological systems, given the abundance of intense and unique molecular absorption lines that can be detected. Consequently, spectroscopic applications of mid-infrared radiation have garnered enormous attention in recent years. A particularly striking example is the combination of multi-MHz-repetition-rate, few-cycle MIR light sources with electric-field-resolved techniques, enabling the recording of amplitude- and phase-resolved molecular signals with unparalleled specificity and shot noise limited sensitivity. Despite the ever-growing research demand, their widespread use is severely hampered by the lack of low-noise, compact, and ultrafast laser systems. In this dissertation, a new generation of table-top mid-infrared laser sources is presented, bringing cutting-edge laser diode technology and few-cycle Cr2+:ZnS/ZnSe solid-state oscillators together for the first time. Not only have these laser systems proven to reliably provide coherent radiation in the 2 µm to 3 µm region, the simultaneous reduction in size and complexity, accompanied by an improved overall efficiency and – most importantly – noise performance, renders this approach as pioneering for future MIR applications. In total, three laser systems are developed, each of them pushing the frontiers of directly diode-pumped laser technology. The first one is driven by a single-emitter indium phosphide laser diode and delivers more than 500 mW of output power combined with pulse durations as short as 45 fs. With this first ever directly diode-pumped Kerr-lens mode-locked (KLM) Cr2+:ZnS/ZnSe oscillator, experimental results confirm a highly stable operation. In addition, amplitude noise measurements reveal an excellent low-noise performance of the mode-locked laser output. Driven by the desire to match and exceed the performance of more mature fiber-laser-pumped counterparts and also to boost the efficiency of the envisaged downstream applications, the output of two single-emitter pump laser diodes is carefully combined and implemented into a second-generation design. The achieved peak powers are almost three-times higher compared to before, while the low-noise performance of the KLM output is maintained. Typically, the design architecture of laser systems used for generating mid-infrared radiation up to several tens of microns includes a sophisticated chain of amplification, pulse compression and parametric conversion stages. Using a powerful few-cycle mid-infrared oscillator as driving laser source instead not only significantly improves the effectiveness of these nonlinear schemes, but could even supersede the need for initial amplification. The presented third-generation system brings the directly diode-pumped Cr2+:ZnS/ZnSe solid-state laser technology to a new level; with output peak powers reaching 1 MW and pulse durations as short as 28 fs, direct generation of CEP-stable mid-infrared pulses in a nonlinear optical crystal (ZGP) becomes feasible and results in a multi-octave-spanning spectrum between 4.5 µm and 14 µm at more than 20 mW of average power. The successful development and realization of the three novel and powerful directly diode-pumped mid-infrared laser systems serves as a foundation for a new generation of few-cycle MIR light sources, capable of performing spectroscopic measurements at unprecedented efficiency and shot noise limited sensitivity, while paving the way towards a more accessible alternative to synchrotron-like infrared radiation.Der mittelinfrarote (MIR) Spektralbereich, der die Wellenlängen zwischen 2 µm und 20 µm umspannt, birgt enormes Potential für die Untersuchung komplexer biologischer Systeme, insbesondere angesichts der großen Anzahl an detektierbaren intensiven und einzigartigen molekularen Absorptionslinien. Spektroskopische Anwendungen, die sich Strahlung im mittleren Infrarot bedienen, sind deshalb in den letzten Jahren in den Fokus der Forschung gerückt. Ein besonders eindrucksvolles Beispiel ist die Kombination von gepulsten Lichtquellen mit Repetitionsraten mehrerer zehn Megahertz und Impulsdauern von wenigen optischen Zyklen mit feldaufgelösten Techniken. Letztere ermöglichen es, molekulare Signale nach Amplitude und Phase aufgelöst mit einer Empfindlichkeit am Quantenrauschen zu detektieren. Trotz des stetig wachsenden Forschungsbedarfs erschwert der Mangel an rauscharmen, kompakten und zugleich gepulsten Lasersystemen deren breite Anwendung. In dieser Dissertation wird eine neue Generation von kompakten Mittelinfrarot-Laserquellen präsentiert. Diese vereint erstmalig modernste Laserdiodentechnologie und Ultrakurzpuls-Festkörperoszillatoren, basierend auf Cr2+:ZnS/ZnSe, eindrucksvoll miteinander. Die im Rahmen dieser Arbeit entwickelten neuartigen Lasersysteme zeigen einerseits, wie durch die Erzeugung kohärenter Strahlung der Bereich zwischen 2 µm und 3 µm abgedeckt werden kann. Andererseits wird durch dieses Konzept eine gleichzeitige Reduktion in Größe und Komplexität erreicht, sowie eine verbesserte Gesamteffizienz und insbesondere Rauschverhalten. All das macht den Ansatz wegweisend für zukünftige Anwendungen im mittelinfraroten Spektralbereich. Im Rahmen der Dissertation wurden drei einzigartige Lasersysteme entwickelt, wobei jedes davon die Grenzen direkt Dioden-gepumpter Lasertechnologie sprengt. Das erste System wird von einer Einzel-Emitter-Diode aus Indiumphosphid gepumpt und liefert bei einer Impulsdauer von nur 45 fs eine Ausgangsleistung von mehr als 500 mW. Insbesondere stellt dies die erstmalige Umsetzung eines Kerr-Linsen modengekoppelten (KLM) Cr2+:ZnS/ZnSe Oszillators dar, der direkt von einer Diode optisch gepumpt wird. Neben einer außerordentlichen Langzeitstabilität ist das Lasersystem durch ein exzellentes Rauschverhalten charakterisiert. Dies zeigt sich in Messungen des Amplitudenrauschens im modengekoppelten Betrieb. Um die Leistungsmerkmale eines typischen Faserlaser-gepumpten Cr2+:ZnS/ZnSe-Systems zu erreichen und zu übertreffen, und damit auch die Effizienz einer dem Lasersystem nachgelagerten Anwendung zu steigern, werden zwei Einzel-Emitter-Dioden in einem Lasersystem der zweiten Generation präzise überlagert. Die dadurch realisierbaren Spitzenleistungen sind knapp einen Faktor drei größer als mit nur einer Diode, während die Rauschcharakteristik unverändert niedrig bleibt. Im Allgemeinen ist ein Lasersystem, welches zur Erzeugung von mittlerer Infrarotstrahlung von bis zu mehreren zehn Mikrometern eingesetzt wird, außerordentlich komplex. Dies liegt in der komplizierten Verkettung von Verstärker-, Pulskompressions- und optisch parametrischen Konversionsstufen dieser Systeme begründet. Wird stattdessen ein leistungsstarker Mittelinfrarot-Ultrakurzpulslaser verwendet, kann nicht nur die Effizienz von nichtlinearen Prozessen signifikant erhöht, sondern unter Umständen sogar eine Verstärkerstufe überflüssig werden. Mit dem im Rahmen der Dissertation entwickelten Lasersystem der dritten Generation kann genau dies erreicht werden. Mit einer Spitzenleistung von 1 MW bei einer Impulsdauer von nur 28 fs wird die direkte Erzeugung phasenstabiler Mittelinfrarotimpulse in einem nichtlinear optischen Kristall (ZGP) möglich. Dieser nichtlineare Konversionsprozess erzeugt ein mehrere Oktaven breites Spektrum zwischen 4.5 µm und 14 µm bei Durchschnittsleistungen von mehr als 20 mW. Die erfolgreiche Entwicklung und Realisierung von drei neuartigen und leistungsstarken direkt Dioden-gepumpten Lasersystemen im mittelinfraroten Spektralbereich legt die Grundlage für eine neue Generation von MIR-Ultrakurzpulslasern. Diese ermöglichen die Durchführung spektroskopischer Messungen mit einer beispiellosen Effizienz und einer Empfindlichkeit am Quantenrauschen. Zugleich ebnen sie den Weg für eine einfacher zugänglichere Alternative zu Synchrotron-ähnlicher Infrarotstrahlung

    A new generation of ultrafast oscillators for mid-infrared applications

    Get PDF

    Quantum benchmarking with realistic states of light

    Full text link
    The goal of quantum benchmarking is to certify that imperfect quantum communication devices (e.g., quantum channels, quantum memories, quantum key distribution systems) can still be used for meaningful quantum communication. However, the test states used in quantum benchmarking experiments may be imperfect as well. Many quantum benchmarks are only valid for states which match some ideal form, such as pure states or Gaussian states. We outline how to perform quantum benchmarking using arbitrary states of light. We demonstrate these results using real data taken from a continuous-variable quantum memory.Comment: 14 pages, 3 figures. Updated to more closely match the published versio

    Nanopower CMOS transponders for UHF and microwave RFID systems

    Get PDF
    At first, we present an analysis and a discussion of the design options and tradeoffs for a passive microwave transponder. We derive a set of criteria for the optimization of the voltage multiplier, the power matching network and the backscatter modulator in order to optimize the operating range. In order to match the strictly power requirements, the communication protocol between transponder and reader has been chosen in a convenient way, in order to make the architecture of the passive transponder very simple and then ultra-low-power. From the circuital point of view, the digital section has been implemented in subthreshold CMOS logic with very low supply voltage and clock frequency. We present different solutions to supply power to the transponder, in order to keep the power consumption in the deep sub-µW regime and to drastically reduce the huge sensitivity of the subthreshold logic to temperature and process variations. Moreover, a low-voltage and low-power EEPROM in a standard CMOS process has been implemented. Finally, we have presented the implementation of the entire passive transponder, operating in the UHF or microwave frequency range

    High-frequency oscillator design for integrated transceivers

    Get PDF
    • …
    corecore