600 research outputs found

    Pushing Software-Defined Blockchain Components onto Edge Hosts

    Get PDF
    With the advent of blockchain technology, some management tasks of IoT networks can be moved from central systems to distributed validation authorities. Cloud-centric blockchain implementations for IoT have shown satisfactory performance. However, some features of blockchain are not necessary for IoT. For instance, a competitive consensus. This research presents the idea of customizing and encapsulating the features of blockchain into software-defined components to host them on edge devices. Thus, blockchain resources can be provisioned by edge devices (e-miners) working together closer to the things layer in a cooperative manner. This research uses Edison SoC as e-miners to test the software-defined blockchain components

    Digital Twins and Blockchain for IoT Management

    Full text link
    Security and privacy are primary concerns in IoT management. Security breaches in IoT resources, such as smart sensors, can leak sensitive data and compromise the privacy of individuals. Effective IoT management requires a comprehensive approach to prioritize access security and data privacy protection. Digital twins create virtual representations of IoT resources. Blockchain adds decentralization, transparency, and reliability to IoT systems. This research integrates digital twins and blockchain to manage access to IoT data streaming. Digital twins are used to encapsulate data access and view configurations. Access is enabled on digital twins, not on IoT resources directly. Trust structures programmed as smart contracts are the ones that manage access to digital twins. Consequently, IoT resources are not exposed to third parties, and access security breaches can be prevented. Blockchain has been used to validate digital twins and store their configuration. The research presented in this paper enables multitenant access and customization of data streaming views and abstracts the complexity of data access management. This approach provides access and configuration security and data privacy protection.Comment: Reference: Mayra, Samaniego and Ralph, Deters. 2023. Digital Twins and Blockchain for IoT Management. In The 5th ACM International Symposium on Blockchain and Secure Critical Infrastructure (BSCI '23), July 10-14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3594556.359461

    Suspicious Transactions in Smart Spaces

    Get PDF
    IoT systems have enabled ubiquitous communication in physical spaces, making them smart Nowadays, there is an emerging concern about evaluating suspicious transactions in smart spaces. Suspicious transactions might have a logical structure, but they are not correct under the present contextual information of smart spaces. This research reviews suspicious transactions in smart spaces and evaluates the characteristics of blockchain technology to manage them. Additionally, this research presents a blockchain-based system model with the novel idea of iContracts (interactive contracts) to enable contextual evaluation through proof-of-provenance to detect suspicious transactions in smart spaces

    Digital Twins and Blockchain for IoT Management

    Get PDF
    We live in a data-driven world powered by sensors getting data from anywhere at any time. This advancement is possible thanks to the Internet of Things (IoT). IoT embeds common physical objects with heterogeneous sensing, actuating, and communication capabilities to collect data from the environment and people. These objects are generally known as things and exchange data with other things, entities, computational processes, and systems over the internet. Consequently, a web of devices and computational processes emerges involving billions of entities collecting, processing, and sharing data. As a result, we now have an internet of entities/things that process and produce data, an ever-growing volume that can easily exceed petabytes. Therefore, there is a need for novel management approaches to handle the previously unheard number of IoT devices, processes, and data streams. This dissertation focuses on solutions for IoT management using decentralized technologies. A massive number of IoT devices interact with software and hardware components and are owned by different people. Therefore, there is a need for decentralized management. Blockchain is a capable and promising distributed ledger technology with features to support decentralized systems with large numbers of devices. People should not have to interact with these devices or data streams directly. Therefore, there is a need to abstract access to these components. Digital twins are software artifacts that can abstract an object, a process, or a system to enable communication between the physical and digital worlds. Fog/edge computing is the alternative to the cloud to provide services with less latency. This research uses blockchain technology, digital twins, and fog/edge computing for IoT management. The systems developed in this dissertation enable configuration, self-management, zero-trust management, and data streaming view provisioning from a fog/edge layer. In this way, this massive number of things and the data they produce are managed through services distributed across nodes close to them, providing access and configuration security and privacy protection

    An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments

    Get PDF
    Industrial assets often feature multiple sensing devices to keep track of their status by monitoring certain physical parameters. These readings can be analyzed with machine learning (ML) tools to identify potential failures through anomaly detection, allowing operators to take appropriate corrective actions. Typically, these analyses are conducted on servers located in data centers or the cloud. However, this approach increases system complexity and is susceptible to failure in cases where connectivity is unavailable. Furthermore, this communication restriction limits the approach’s applicability in extreme industrial environments where operating conditions affect communication and access to the system. This paper proposes and evaluates an end-to-end adaptable and configurable anomaly detection system that uses the Internet of Things (IoT), edge computing, and Tiny-MLOps methodologies in an extreme industrial environment such as submersible pumps. The system runs on an IoT sensing Kit, based on an ESP32 microcontroller and MicroPython firmware, located near the data source. The processing pipeline on the sensing device collects data, trains an anomaly detection model, and alerts an external gateway in the event of an anomaly. The anomaly detection model uses the isolation forest algorithm, which can be trained on the microcontroller in just 1.2 to 6.4 s and detect an anomaly in less than 16 milliseconds with an ensemble of 50 trees and 80 KB of RAM. Additionally, the system employs blockchain technology to provide a transparent and irrefutable repository of anomalies

    IoT DEVICE MANAGEMENT AND CONFIGURATION

    Get PDF
    As the number of IoT devices grows, the management and configuration of IoT devices becomes crucial in resource constraint networks. It is hard to manage and configure a large amount of heterogeneous resource constraint IoT devices because people need to know how they connect to each other, what internet-enabled services are available to provide, and how people interact with things through the internet. The thing-centric approach focuses on user experience when engaging things, but the cloud- centric approach switch the focus to IoT services that can process data streams collected from things and applications that help get people joined in the IoT world. To manage IoT populations effectively in a centralized manner, not only does it mean that moving computational power closer to the edge is a way to reduce bandwidth and latency, but it also implies that it is necessary to build an architecture which can scale and manage tons of connected devices by a uniform interface. In particular, RESTful Web services can provide a uniform interface that operates resources by HTTP methods. For example, users can read and write data by a uniform interface, and a flowerpot can write data and be triggered to water plants by a uniform interface. Thus, in the scope of IoT, embedded middleware can implement uniform interface by REST model. Virtualizing physical things has emerged as a design pattern to build IoT systems. Resource less constraint devices are capable of being virtualized with enough CPU power, memory, networking, but they are more expensive and power consuming. However, resource highly constraint devices take advantage of low energy consumption and cheaper price, but they cannot be virtualized because they do not have ability to even run a single multi-threaded program. Therefore, it is very important to select the right platforms for the right roles. In our case, we use Raspberry Pi 3 as a middleware and Nordic nRF52832 as a BLE endpoint. In this thesis, a REST-based IoT management system based on Service-Oriented Architecture is built, and the performance of the system has been tested, including the response time of HTTP GET and POST requests of the centralized server in a Fog domain and a script engine onto a BLE-enabled endpoint
    corecore