

Pushing Software-Defined Blockchain Components onto Edge Hosts

Mayra Samaniego

University of Saskatchewan

 mayra.samaniego@usask.ca

Ralph Deters

University of Saskatchewan

deters@cs.usask.ca

Abstract

With the advent of blockchain technology, some

management tasks of IoT networks can be moved from central

systems to distributed validation authorities. Cloud-centric

blockchain implementations for IoT have shown satisfactory

performance. However, some features of blockchain are not

necessary for IoT. For instance, a competitive consensus. This

research presents the idea of customizing and encapsulating

the features of blockchain into software-defined components

to host them on edge devices. Thus, blockchain resources can

be provisioned by edge devices (e-miners) working together

closer to the things layer in a cooperative manner. This

research uses Edison SoC as e-miners to test the software-

defined blockchain components.

1. Introduction

Internet of Things (IoT) networks enable connectivity with

the real world anytime and anywhere [1]. The pervasiveness
characteristic of IoT networks would make IoT devices (aka
things [2]) the primary enablers of data [3].

IoT networks have experimented exponential scalability
[3]. This scalability introduces management challenges at the
constrained network. For instance, verification of identities and
correct configurations of the resources of the things network,
provenance data to analyze the behaviour of the things
network, and validation of transactions from the things and
over them.

Some studies have designed blockchain-based
implementations to handle some of these challenges. For
instance, Kaku et al. [4] present a blockchain-based system to
handle provenance of responses in IoT. This kind of
implementations is considered a cloud-centric one [5], in which
there is a service layer that connects the things network and the
services hosted in the cloud.

Cloud-centric blockchain implementations would not
involve any challenge because cloud computing provides
access to virtualized and scalable services over the Internet [6].
Besides, even though the cloud represents a robust and reliable
architecture for IoT analytics, its consolidated power might not
fit the dynamic characteristics of IoT networks [7]. These
systems introduce significant latency, network traffic and
bandwidth consumption [8].

Fog computing extends the cloud features toward the edge
of IoT networks to deal with specific characteristics of some
networking scenarios such as a broad set of heterogeneous
nodes, geographical location, and real-time communication [6]
[9]. Cisco explains that fog nodes can directly access physical
IoT devices, consequently reducing latency and bandwidth
consumption [8]. According to Bonomi et al. [10], IoT analytic
tasks can be moved to a fog network as well. In our most
recent work, we implemented a blockchain-based middleware
called Amatista [11]. Amatista implements zero-trust
hierarchical management in a blockchain-based fashion.

This research proposes going to a deeper level, the edge
level [12], and separate the features of blockchain to
encapsulate them into software-defined components [13][14].
Thus, the edge network can host these software-defined
blockchain components. This approach eliminates the
dependency on either the cloud or fog network. This approach
breaks the barrier of the constrained computing capabilities
because each component can be hosted on a different physical
device but working collaboratively to build a blockchain
system.

The rest of the paper is organized as follows. Section 2
studies blockchain in IoT. Section 3 introduces software-
defined components in IoT, and the architecture proposed by
this research. Section 4 presents the experiments and
evaluations. Finally, section 5 presents the conclusions of this
research.

2. Blockchain & IoT

2.1. Blockchain

Blockchain protocols started attracting the attention of
researchers in 2009 when Satoshi Nakamoto (an online
pseudonym) introduced the Bitcoin cryptocurrency system
[15]. The blockchain that supports Bitcoin cryptocurrency is a
public peer-to-peer distributed ledger that records all
transactions within the Bitcoin network. This is the
characteristic of distributed in-chain database and
synchronization across the network.

Bitcoin implements a public blockchain network, which is
open to any participant on the Internet [15]. Participants that
are part of the Bitcoin network are called miners because their
task is mining blocks of transactions to be written in the chain.

Mining is the name that the process of verifying blocks of
transactions in Bitcoin receives [15]. In Bitcoin, the consensus

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60144
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7079

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mechanism that the network uses for mining is called proof of
work. The proof-of-work mechanism states that a miner must
solve a cryptographic problem to gain the right of writing the
block to the chain. Miners must proof trustworthiness solving
the cryptographic problem, which requires high computing
power.

Other consensus algorithms do not require that participants
spend high computing power. For instance, Practical Byzantine
Fault Tolerance (PBFT) algorithm [16] or Round Robin (RR)
scheduling [17].

The consensus is the feature of blockchain that prevents the
execution of incorrect or unreliable transactions. This feature
encourages reliability between nodes that do not know each
other [18].

Unlike Bitcoin, there are also private blockchain networks.
Private blockchain networks limit the access of participants
and the execution of transactions [19]. The way a private
blockchain network validates and accepts participants and
transactions may vary, depending on internal rules or
technology [20]. Ripple [21] and Hyperledger Fabric [22] are
examples of private blockchain networks.

Blockchain protocols do not allow changes in the
transactions that a mined block contains [23]. This is the
characteristic of immutability. This approach encourages data
sharing between parties that do not trust each other.

Some blockchain technologies allow storing business rules
(programming functions) in-chain. Thus, we can define more
complex interactions between parties. This feature is generally
known as smart contracts [24]. Smart contracts is the name that
Ethereum uses to call this in-chain programmed functions [25].
In this research, we have adopted the name of smart contracts
as well. Depending on the blockchain technology, smart
contracts might receive other names. For instance, Hyperledger
Fabric calls it in-chain code [22]. Additionally, each
blockchain technology might have their protocol and different
programming languages to build and deploy smart contracts in
the network, in case they support them.

In blockchain-based implementations, transactions between
parties are stored and validated in a distributed manner without
depending on a central validation authority [15].

2.2. Blockchain for IoT

In blockchain systems with a cryptocurrency, like Bitcoin

[15], miners compete between each other to gain the
cryptocurrency reward after mining a block. This approach
encourages miners to invest resources in the blockchain
network, but at the same time, it makes the miners behave
individually.

IoT networks do not have the computing power to make
miners compete for [26][27]. This is the main reason why
blockchain implementations for IoT are mostly hosted in the
cloud. For instance, Sharma et al. [28] present a cloud-centric
blockchain architecture to address data-related issues in IoT,
such as availability and delivery.

Additionally, Dorri et al. [29] present a blockchain-based
framework to handle security and privacy in IoT. However, in
this solution, miners work as central validation authorities.
There is no consensus achieved between miners.

 Implementing blockchain in the cloud means that all the
blockchain features are executed together by powerful nodes
[30]. The cloud introduces the benefits of efficient use and
orchestration of resources, on-demand self-service and rapid
deployment, and elasticity [30]. However, these benefits
introduce high costs. It would be expensive to store every
single IoT transaction in a cloud blockchain.

Some works have implemented blockchain towards fog
networks to deal with the lack of engagement over the things
that cloud blockchain implementations present. For instance, in
our previous works, we designed fog solutions that store virtual
resource configuration [31], enhance the fog network with
some artificial intelligence features [32] and provide multi-
tenancy [33].

Even though, blockchain protocols have contributed to IoT
management, until now we have depended on either the cloud
or the fog to implement them. Again, this is mainly because
traditional blockchain implementations make miners compete
between each other, which requires high computing power.
High computing power is not part of the IoT paradigm [1].

Nowadays, edge computing allows applications to execute
some processing tasks closer to the things network [12]. This
approach would contribute to fulfilling the things-oriented
vision of IoT [34]. The things-oriented vision of IoT states that
the enhancement of the things is the priority. However, the
limited computing power of edge devices makes it impossible
to implement an entire blockchain node in one single physical
edge device. That is why it becomes necessary to separate the
features of blockchain and encapsulate them into components
that can be hosted by edge nodes physically separated but
cooperatively committed.

This research seeks to develop a private blockchain
implementation for IoT that does not require a cryptocurrency
mechanism reward and distributes blockchain features towards
the edge network to provide similar functionalities to the ones
that cloud/fog-centric blockchain provides but at the edge
level. This research visualizes blockchain as a virtual system
that can be encapsulated into software-defined components.
Thus, there is no limitation of physical computing capabilities.

3. Software-defined blockchain architecture

Software-defined concepts were initially developed to

customize virtual Internet networks [13][14][35] and manage
network functionalities [36][37].

Similarly, we could use this concept for IoT networks.
According to Nastic et al. [38], “Software-defined IoT units are
used to encapsulate the IoT resources and lower level
functionality in the IoT cloud and abstract their provisioning
and governance, at runtime.”

This research builds software-defined components of
specific features of blockchain to deploy them at the edge of
IoT networks. According to Biswas et al. [39], IoT networks
would benefit from software-defined ecosystems or virtual
systems.

The primary barrier to implement a blockchain technology
at the edge of IoT networks is the lack of computing
capabilities [1]. This research aims that it is not necessary to
implement an entire blockchain technology at the edge of IoT

Page 7080

networks, but only those features of blockchain that are
necessary to guarantee a reliable operation of the things.

Additionally, this research aims that it is not necessary to
implement all the features of blockchain in one single edge
node, but the encapsulation of specific features towards
different edge nodes. Thus, we can get a distributed software-
defined blockchain system that is not limited by physical
devices and is not dependent on either the cloud or the fog
network.

This research breaks the limitations of computing
capabilities by building software-defined blockchain
components that are independent enough to be hosted in
separated edge devices and at the same time cooperative
enough to build a virtual blockchain system.

3.1. Software-defined blockchain components hosted

towards edge nodes

Deploying software-defined blockchain components onto

edge devices introduces the following benefits.
The edge network gains autonomy. There would not be

necessary to have a bridge layer that connects the things
network with the cloud, because the edge network would
handle some management tasks independently, such as the
verification of transactions, provenance, and access control.

Reduced latency. As edge nodes would implement
management tasks closer to the things network, bandwidth
consumption would decrease, and the performance of the IoT
infrastructure would improve. Moreover, the most important is
that this improvement would not be because the management
tasks are moved to the cloud but distributed across the edge of
the IoT network.

Time-efficient management. Different edge nodes would
execute operations over different segments of things, which
would optimize the management time. For instance, updating
the configuration of a group of things and updating the access
policies of another group of things would be handled by edge
nodes separately. This approach shifts the focus from a static
data-centric IoT to a dynamic resource-centric (things-oriented
vision of IoT [34]).

Independent authorities. An edge node does not necessarily
have to execute all the blockchain components hosted on it
over the same group of things all the time. For instance, an
edge node can participate in the consensus of a specific group
of things, and it can execute smart contracts that affect an
entirely different group of things.

Provenance. All the transactions from and over the things
layer can be tracked.

No computing capabilities limitation. From the perspective
of this work, this is the most important benefit of building
software-defined blockchain components. As we encapsulate
the blockchain features into separated components, they can be
distributed towards different edge nodes. Moreover, any edge
node can decide to terminate any of these components at any
time.

3.2. Challenges when implementing software-defined

blockchain components towards edge nodes

Implementing software-defined blockchain components at

the edge level introduces some challenges.
First, the size of the transaction must be limited to the

maximum size admitted by the communication protocol
between the things and the edge network. Second, as a
cryptocurrency is not necessary, there could be a lack of
incentive for edge nodes to validate transactions accurately.
Finally, edge nodes do not have enough computing storage to
store a large chain of blocks.

This research implements the following actions to handle
the challenges mentioned above respectively. First, sensors
build small transactions that can be sent faster across the
network. Second, instead of having a crypto-currency reward
mechanism, there is a provenance reputation mechanism.
Finally, edge nodes only keep a chain of metadata of the last n
blocks in memory and store those n block files locally.

3.3. Architecture

This work calls the edge nodes that host software-defined

blockchain components e-miners.
Figure 1 shows the architecture that this research proposes.

The first layer represents the network of sensors and actuators
at different scenarios.

The second layer represents the e-miners that host the
software-defined blockchain components. We represent e-
miners as turtles because even though they have limited
computing power, they still can show a good performance
executing the software-defined components saved in their
shell.

This work builds three software-defined blockchain
components, smart contracts, consensus, and in-chain data
storage. Each e-miner can implement any of these software-
defined blockchain components.

Figure 1. General architecture of software-defined blockchain

components towards edge hosts.

Page 7081

3.3.1. Smart contracts

Traditional smart contracts in the form of Distributed

Applications (DApps) in Ethereum [40] distribute a copy of the
smart contracts to all participants in the network. Besides,
participants can not terminate the smart contract unless there is
an ending function that starts working when a condition is met.

The large size of IoT networks makes it necessary to
segment the execution of smart contracts. This research
introduces a publish/subscribe policy that allows e-miners to
select what smart contract to execute. Additionally, because of
the energy limitation of e-miners, this research allows them to
terminate the execution of a smart contract if that smart
contract is being executed by other e-miners, depending on the
specific context.

3.3.2. Consensus

Traditional consensus mechanisms like the proof of work

of Bitcoin [15] or the proof of stake of Ethereum [25] require
that all the nodes in the network participate in the consensus
process.

In IoT, every node mining every block and verifying every
single transaction would cause the network to collapse. We
introduce a publish/subscribe policy that allows e-miners to
participate in the consensus of blocks that come from specific
observed things or other e-miners.

Additionally, in IoT, the primary goal of e-miners would
not be to compete to write a block in the chain to get the
cryptocurrency reward but ensure that each block of
transactions is a valid one before executing and writing it.

According to Tschorsch et al. [41], blockchain can work
satisfactorily without having a cryptocurrency. However, the
lack of cryptocurrency would also mean the lack of motivation
for e-miners.

For this research, we have implemented a practical
Byzantine fault tolerance algorithm (PBFT) [16]. Instead of
receiving a cryptocurrency reward, e-miners receive a score
reward for building their provenance reputation. Also, the e-
miner leader that wrote the block must wait a specific time to
send another block (round robins algorithm [42]). Thus, the
other e-miners can be leaders as well. Each node is responsible
for keeping a high reputation to continue being trustable to
write blocks in the chain.

3.3.3. In-chain data storage

Traditional blockchain data storing requires that all the

information of transactions is written in the chain.
In IoT, e-miners would not be able to synchronize the entire

chain because of the limited storage capabilities.
 Ripple [21] is an example of a blockchain that modifies the

in-chain storage. Ripple does not store the provenance of
transactions in-chain but only the previous and the new balance
with no chargebacks, which makes the network more efficient
and scalable.

Following the Ripple’s example, this research implements
in-chain metadata storage. E-miners store blocks of metadata

of an n number of previous blocks mined. Also, e-miners store
the files of those n previous blocks mined.

Because of the limited computing capabilities of e-miners,
there is the need to have a distributed repository close to them.
E-miners discharge the in-chain metadata and local files to a
fog repository regularly.

This research designs software-defined blockchain
components as independent artifacts. We can customize and
update them at any time separately. For instance, we can
implement new smart contracts without affecting neither the
consensus nor the in-chain data components. In the same
manner, we can implement a new consensus mechanism
without affecting neither the smart contracts nor the in-chain
data storage.

3.3.4. Technology and communication

We have used the Constrained Application Protocol

(CoAP) [43] to communicate the e-miners with the things
network. CoAP was designed to run on devices with limited
memory. Additionally, CoAP runs on UDP by default, which
saves bandwidth. CoAP follows a REST [33] approach and
supports GET, POST, PUT, and DELETE operations. This
approach facilitates the direct engagement of things when
executing smart contracts over them.

We have used HTTP protocol to handle the communication
between e-miners. The size of the block of transactions that e-
miners build is too big to use CoAP. However, e-miners
implement a CoAP interface to receive the transactions from
the things network.

We designed the software-defined blockchain components
as full state resources following REST using Go Language
[44].

4. Evaluations

This section evaluates the performance of e-miners running

software-defined blockchain components. Figure 2 shows the
architecture for the experiments. The architecture involves two
layers. The first layer represents the simulated sensors. This
layer is formed by one Intel Edison System on a Chip (SoC)
[45] (table 1) plugged on a Spark module [46]. The second
layer represents the e-miners. Three Edison SoC's plugged on
Arduino boards form this layer. The three e-miners host the in-
chain data and consensus software-defined blockchain
components. The first e-miner (red turtle) also hosts the smart
contract software-defined blockchain component.

Figure 2. The architecture for experiments.

Page 7082

Table 1. Specifications of Edison SoC [45]

Edison System on a Chip

Operating

System

Linux Yocto

CPU 500 MHz dual-core, dual threaded Intel

Atom and a 100 MHz 32-bit Intel Quark

microcontroller

RAM 4GB LPDDR2 SDRAM

All the software-defined blockchain components have been

evaluated under three different intervals between transactions
from sensors, 50, 100 and 200 milliseconds. The sensors send
one thousand transactions.

4.1. Evaluation of smart contract software-defined

component

For this experiment, we have designed a smart contract that

observes the sensor and analyzes each transaction that it sends.
The sensor and the e-miner communicate through the
Constrained Application Protocol (CoAP [43]).

Figure 3 shows an example of a transaction that a sensor
sends. The transaction has three fields, the hash of the message,
the message, and the signature. The hash of the message is
generated using SHA-1 [47] algorithm. The sensor encrypts the
message and signs the transaction using RSA [48] public-key
cryptosystem with a key size of 2048 bits.

The encrypted message contains the raw data in JSON
format. The structure of the row data has two fields, the
temperature value (v) and the measurement symbol (c,
Celsius). The size of the entire transaction is 1099 bytes. The
size might vary depending on the value of the temperature
field.

Figure 3. Example of a transaction that a sensor sends.

When the e-miner receives a transaction, it executes the

following tasks. First, the e-miner verifies the signature of the
transaction. Second, the e-miner decrypts the message,
generates the hash value of the decrypted message again, and
compares both hashes to verify that the message has not been
altered. Finally, the e-miner calls the smart contract that
analyzes the raw data. The smart contract triggers an alarm
each time the received data meets a pre-defined condition.

Figures 4, 5, and 6 present the results of the evaluation of
the smart contract software-defined component under the three
intervals of transactions, 50, 100, and 200 milliseconds

respectively. The x-axis represents the number of transactions
that the sensor sends, which is one thousand. The y-axis
represents the time in milliseconds that the e-miner takes to
execute the smart contract component and trigger the event if
necessary.

Figure 4. Evaluation of smart contract. Interval of transactions,

50ms.

Figure 5. Evaluation of smart contract. Interval of transactions,

100ms.

Figure 6. Evaluation of smart contract. Interval of transactions,

200ms.

As can be seen in figures 4, 5, and 6, the response patterns

for the three intervals of transactions is very similar.
The response times keep consistently low during the first

100 transactions. The e-miner takes 2.8 milliseconds on
average to execute the smart contract during the first 100
transactions. However, after the 100th transaction, the response
times rise from 2.8 milliseconds to 172 milliseconds when the
interval between transactions is 50 milliseconds, 168
milliseconds when the interval between transactions is 100
milliseconds, and 156 milliseconds when the interval between
transactions is 200 milliseconds.

This behaviour is due to the configuration of the in-chain
data component and file storage. For this experiment, we

Page 7083

configured the in-chain data component and the local file
storage to work after every 100 consensus achievements. After
the e-miner receives consensus approval of 100 blocks, the in-
chain data component starts building one in-chain block of
metadata for each validated block. Additionally, a file for each
block is written locally.

If we had configured the two components to start working
at a different number of consensus achievements, the increase
in the response time would have happened at that specific
number. The in-chain component that the e-miner keeps in
memory and the files that the e-miner stores locally make the
response times increase.

The decrease in the average response times during the first
100 transactions (172, 168, and 156 milliseconds) shows that
the bigger the interval between transactions is, the faster the
response from the e-miner becomes. The delay intervals in
which the sensor sends transactions affects the performance of
the e-miner executing the smart contract software-defined
component.

The graphs also show some peaks in all the intervals of
transactions. This is due to the block fabric activation, the
erasing process of the in-chain data component, and the erasing
of the local file storage. After the e-miner receives 10
transactions, it builds the block that contains those 10
transactions and propagates it for consensus. Additionally,
when the in-chain component has 10 blocks, the e-miner erases
the in-chain storage and moves the local files to a permanent
Fog storage.

These picks increase by 9 points on average to reach
response times of up to 286 milliseconds when the interval
between transactions is 50 milliseconds, 8 points on average to
reach response times of up to 272 milliseconds when the
interval between transactions is 100 milliseconds, and 7 points
on average to reach response times of up to 200 milliseconds
when the interval between transactions is 200 milliseconds.
The bigger the interval between transactions is, the lower the
peaks reach.

4.2. Evaluation of consensus software-defined

component

For this experiment, we have implemented the Practical

Byzantine Fault tolerance algorithm (PBFT) [16] between the
three e-miners. After an e-miner finishes mining 10
transactions, it builds a block and propagates it to the other e-
miners to get consensus approval.

Figure 7 shows an example of the block that the e-miner
builds. The block has four fields, previous hash, data hash,
message, and signature.

The e-miner generates the hashes using SHA-1 [47]
algorithm.

The body of the message field is an array of 10 transactions
from the sensor. The e-miner encrypts each transaction of the
message separately for each e-miner using the public key (RSA
[48] public-key cryptosystem with a key size of 2048 bits) of
each e-miner that participates in the consensus. Finally, the e-
miner signs the block, using its RSA public key with a key size
of 2048 bits as well. For this experiment, the size of the block
is 11644 bytes.

Figure 7. Structure of a block built by an e-miner.

 Figures 8, 9 and 10 present the results of this experiment.
The x-axis represents the number of blocks that the e-miner
fabrics and propagates to request consensus approval, which is
100. The y-axis represents the time in seconds that the three e-
miners take to achieve consensus.
 The graphs show that the time to achieve consensus follows
the same pattern in the three scenarios. After the e-miner builds
the block, it takes around 2.1 seconds to achieve consensus
between the three e-miners.
 The interval between transactions does not affect the
performance of the three e-miners when collaborating to
achieve consensus.
 The response times of the consensus component are higher
than the response times of the smart-contract component
because the consensus component evaluates the attributes of
the block and the attributes of each transaction individually.
 The e-miner validates the signature of the e-miner that
propagated the block. Also, the e-miner validates the hashes of
the block. After that, the e-miner decrypts every transaction to
verify the signature of the device that initially submitted it and
compares the hashes of each transaction. The e-miner also
executes the smart-contract component for each decrypted
transaction. This approach ensures that before executing the
rules of the consensus mechanism, the verification processes of
the block and every single transaction are executed by all e-
miners that previously accepted to validate that specific group
of things.

Figure 8. Evaluation of consensus. Interval of transactions, 50ms.

Page 7084

Figure 9. Evaluation of consensus. Interval of transactions,

100ms.

Figure 10. Evaluation of consensus. Interval of transactions,

200ms.

4.3. Evaluation of in-chain data software-defined

component

E-miners keep in-chain metadata of the previously mined

blocks in memory to optimize the performance when querying
data that does not require the specification of transactions.

When the consensus is achieved, the metadata of the mined
block is kept in memory. An in-chain block has three fields,
previous hash, data hash, and the signature of the e-miner that
mined it.

Additionally, when the consensus is achieved, a file with

all the data of the validated block is stored locally. E-miners

store a file for each mined block locally in JSON format. The

e-miner moves these files to a persistent repository in a Fog

node every time 10 blocks achieve consensus. For this

experiment in which the block fabric is activated every 10

transactions, the size of each metadata block is 636 bytes.

5. Conclusions

This research introduces the novel idea of encapsulating the

features of blockchain into software-defined components to
distribute them towards edge devices.

This work encapsulates three features of blockchain into
software-defined components, smart contract, consensus, and
in-chain data. These software-defined blockchain components
are customized to fulfill the requirements of IoT networks.

 We call each device hosting a software-defined blockchain
component an e-miner (edge miner). An e-miner can host any

of the blockchain components separately. This approach breaks
the barrier of limited computing capabilities at the edge level
when integrating blockchain solutions in IoT.

This research uses Edison SoC as e-miners. The results of
the experiments show that the characteristics of these e-miners
can successfully host the three blockchain components.
Additionally, the results of evaluations show that the
blockchain components perform well working separated but
collaborating and supporting each other to get a blockchain
implementation at the edge of the IoT network.

Results of tests may vary due to differences in physical
resources, programming languages, or communication
protocols.

Overall, this research makes the following contributions to
IoT systems. First, this research introduces the idea of building
software-defined blockchain components for IoT. Second,
enables customization of software-defined blockchain
components to deal with the characteristics and requirements
of IoT networks. Finally, introduces the definition of e-miners,
which are edge devices that host specific software-defined
blockchain components.

This research shifts the focus towards edge-centric IoT
implementations of cooperative blockchain components. This
focus allows us to integrate private blockchain solutions in IoT
close to things network.

6. References

[1] L. Tan, “Future internet: The Internet of Things,” 2010 3rd Int.

Conf. Adv. Comput. Theory Eng., pp. V5-376-V5-380, 2010.

[2] K. Ashton, “That ‘Internet of Things’ Thing - RFID Journal,”

RFiD J., vol. 22, no. 7, pp. 97–114, 2009.

[3] P. N. Howard, “Sketching out the Internet of Things trendline,”

Brookings, 2015. [Online]. Available:

https://www.brookings.edu/blog/techtank/2015/06/09/sketchin

g-out-the-internet-of-things-trendline/. [Accessed: 05-Mar-

2018].

[4] E. Kaku, R. Orji, J. Pry, K. Sofranko, R. K. Lomotey, and R.

Deters, “Privacy Improvement Architecture for IoT,” 2018.

[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet

of Things (IoT): A vision, architectural elements, and future

directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7, pp.

1645–1660, Sep. 2013.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog

Computing and Its Role in the Internet of Things,” Proc. first

Ed. MCC Work. Mob. cloud Comput., pp. 13–16, 2012.

[7] R. Cortés, X. Bonnaire, O. Marin, and P. Sens, “Stream

Processing of Healthcare Sensor Data: Studying User Traces to

Identify Challenges from a Big Data Perspective,” Procedia

Comput. Sci., vol. 52, pp. 1004–1009, 2015.

[8] Cisco Systems, “Fog Computing and the Internet of Things:

Extend the Cloud to Where the Things Are,” 2015.

[9] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in

the Fog: Towards a Comprehensive Definition of Fog

Computing,” ACM SIGCOMM Comput. Commun. Rev., vol.

44, no. 5, pp. 27–32, 2014.

[10] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog

Computing: A Platform for Internet of Things and Analytics,”

Big Data Internet Things A Roadmap Smart Environ., pp. 169–

186, 2014.

[11] M. Samaniego, C. Science, R. Deters, and C. Science, “Zero-

Page 7085

Trust Hierarchical Management in IoT,” 2018 IEEE Int.

Congr. Internet Things, pp. 88–95, 2015.

[12] Satyanarayanan Mahadev, “The Emergence of Edge

Computing,” p. 10, 2017.

[13] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka,

and T. Turletti, “A survey of software-defined networking:

Past, present, and future of programmable networks,” IEEE

Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[14] Morreale and Anderson, Software Defined Networking Design

and Deployment. 2012.

[15] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash

System,” p. 9, 2008.

[16] M. Castro and B. Liskov, “Practical Byzantine Fault

Tolerance,” Proc. Symp. Oper. Syst. Des. Implement., no.

February, pp. 1–14, 1999.

[17] A. Singh, P. Goyal, and S. Batra, “An optimized round robin

scheduling algorithm for CPU scheduling,” Int. J. Comput. Sci.

Eng., vol. 02, no. 07, pp. 2383–2385, 2010.

[18] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An

Overview of Blockchain Technology: Architecture, Consensus,

and Future Trends,” Proc. - 2017 IEEE 6th Int. Congr. Big

Data, BigData Congr. 2017, pp. 557–564, 2017.

[19] V. Buterin, “On Public and Private Blockchains,” Ethereum

Blog Crypto Renaiss. salon, pp. 1–24, 2015.

[20] P. Jayachandran, “The difference between public and private

blockchains,” Blockchain Unleashed: IBM Blockchain Blog,

2017. [Online]. Available:

https://www.ibm.com/blogs/blockchain/2017/05/the-

difference-between-public-and-private-blockchain/. [Accessed:

11-May-2018].

[21] D. Schwartz, N. Youngs, and A. Britto, “The Ripple protocol

consensus algorithm.,” in Ripple Labs Inc White Paper, 2014,

p. 5.

[22] “Hyperledger Fabric – Hyperledger.” [Online]. Available:

https://www.hyperledger.org/projects/fabric. [Accessed: 17-

Mar-2018].

[23] H. Kakavand, N. Kost De Sevres, and B. Chilton, “The

Blockchain Revolution: An Analysis of Regulation and

Technology Related to Distributed Ledger Technologies,”

SSRN Electron. J., 2017.

[24] K. Christidis and M. Devetsikiotis, “Blockchains and Smart

Contracts for the Internet of Things,” IEEE Access, vol. 4, pp.

2292–2303, 2016.

[25] “Ethereum Project,” 2015. [Online]. Available:

https://www.ethereum.org/. [Accessed: 18-Mar-2018].

[26] X. Xingmei, Z. Jing, and W. He, “Research on the basic

characteristics, the key technologies, the network architecture

and security problems of the Internet of things,” in

Proceedings of 2013 3rd International Conference on

Computer Science and Network Technology, 2013, pp. 825–

828.

[27] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and

M. Ayyash, “Internet of Things: A Survey on Enabling

Technologies, Protocols and Applications,” IEEE Commun.

Surv. Tutorials, vol. PP, no. 99, pp. 1–1, 2015.

[28] P. K. Sharma, M. Y. Chen, and J. H. Park, “A Software

Defined Fog Node Based Distributed Blockchain Cloud

Architecture for IoT,” IEEE Access, vol. 6, pp. 115–124, 2018.

[29] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram,

“Blockchain for IoT security and privacy: The case study of a

smart home,” in 2017 IEEE International Conference on

Pervasive Computing and Communications Workshops

(PerCom Workshops), 2017, pp. 618–623.

[30] A. Botta, W. De Donato, V. Persico, and A. Pescape, “On the

integration of cloud computing and internet of things,” Proc. -

2014 Int. Conf. Futur. Internet Things Cloud, FiCloud 2014,

pp. 23–30, 2014.

[31] M. Samaniego and R. Deters, “Virtual Resources &

Blockchain for Configuration Management in IoT,” J.

Ubiquitous Syst. Pervasive Networks, vol. 9, no. 2, pp. 1–13,

2017.

[32] M. Samaniego and R. Deters, “Internet of Smart Things -

IoST: Using Blockchain and CLIPS to Make Things

Autonomous,” Proc. - 2017 IEEE 1st Int. Conf. Cogn. Comput.

ICCC 2017, pp. 9–16, 2017.

[33] M. Samaniego and R. Deters, “Supporting IoT Multi-Tenancy

on Edge Devices,” Proc. - 2016 IEEE Int. Conf. Internet

Things; IEEE Green Comput. Commun. IEEE Cyber, Phys.

Soc. Comput. IEEE Smart Data, iThings-GreenCom-CPSCom-

Smart Data 2016, vol. 7, pp. 66–73, 2017.

[34] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A

survey,” Comput. Networks, vol. 54, no. 15, pp. 2787–2805,

2010.

[35] N. M. M. K. Chowdhury and R. Boutaba, “A survey of

network virtualization,” Comput. Networks, vol. 54, no. 5, pp.

862–876, 2010.

[36] J. Chen, X. Zheng, and C. Rong, “Survey on software-defined

networking,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9106, no.

1, pp. 115–124, 2015.

[37] K. Kirkpatrick, “Software-defined Networking,” Commun.

ACM, vol. 56, no. 9, pp. 58–65, 2013.

[38] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S. Dustdar,

“Provisioning software-defined IoT cloud systems,” Proc. -

2014 Int. Conf. Futur. Internet Things Cloud, FiCloud 2014,

pp. 288–295, 2014.

[39] A. R. Biswas and R. Giaffreda, “IoT and Cloud Convergence:

Opportunities and Challenges,” 2014 IEEE World Forum

Internet Things, pp. 375–376, 2014.

[40] “Mapping the Landscape of Decentralized Apps: The Case of

Ethereum,” no. 2008, p. 60629, 2017.

[41] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A

technical survey on decentralized digital currencies,” IEEE

Commun. Surv. Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[42] W. Assumptions, “Scheduling: Introduction.” [Online].

Available: http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-

sched.pdf. [Accessed: 08-Oct-2016].

[43] Z. Shelby, “Constrained RESTful Environments (CoRE) Link

Format,” 2012.

[44] Golang.org, “The Go Programming Language,” 2016.

[Online]. Available:

https://golang.org/pkg/crypto/rsa/#example_EncryptOAEP.

[Accessed: 13-Aug-2017].

[45] INTEL, “The Intel® Edison Module | IoT | Intel® Software,”

2017. [Online]. Available: https://software.intel.com/en-

us/iot/hardware/edison. [Accessed: 02-Sep-2017].

[46] S. Ingenuity, “SparkFun Electronics,” 2009. [Online].

Available: https://www.sparkfun.com/. [Accessed: 02-Sep-

2017].

[47] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1

(SHA1),” 2001.

[48] J. Jonsson and B. Kaliski, “Public-Key Cryptography

Standards (PKCS) #1: RSA Cryptography Specifications

Version 2.1,” 2003.

Page 7086

