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Abstract 

 
With the advent of blockchain technology, some 

management tasks of IoT networks can be moved from central 

systems to distributed validation authorities. Cloud-centric 

blockchain implementations for IoT have shown satisfactory 

performance. However, some features of blockchain are not 

necessary for IoT. For instance, a competitive consensus. This 

research presents the idea of customizing and encapsulating 

the features of blockchain into software-defined components 

to host them on edge devices. Thus, blockchain resources can 

be provisioned by edge devices (e-miners) working together 

closer to the things layer in a cooperative manner. This 

research uses Edison SoC as e-miners to test the software-

defined blockchain components. 

 

 

1. Introduction  

 
Internet of Things (IoT) networks enable connectivity with 

the real world anytime and anywhere [1]. The pervasiveness 
characteristic of IoT networks would make IoT devices (aka 
things [2]) the primary enablers of data [3]. 

IoT networks have experimented exponential scalability 
[3]. This scalability introduces management challenges at the 
constrained network. For instance, verification of identities and 
correct configurations of the resources of the things network, 
provenance data to analyze the behaviour of the things 
network, and validation of transactions from the things and 
over them.  

Some studies have designed blockchain-based 
implementations to handle some of these challenges. For 
instance, Kaku et al. [4] present a blockchain-based system to 
handle provenance of responses in IoT. This kind of 
implementations is considered a cloud-centric one [5], in which 
there is a service layer that connects the things network and the 
services hosted in the cloud.  

Cloud-centric blockchain implementations would not 
involve any challenge because cloud computing provides 
access to virtualized and scalable services over the Internet [6]. 
Besides, even though the cloud represents a robust and reliable 
architecture for IoT analytics, its consolidated power might not 
fit the dynamic characteristics of IoT networks [7]. These 
systems introduce significant latency, network traffic and 
bandwidth consumption [8]. 

Fog computing extends the cloud features toward the edge 
of IoT networks to deal with specific characteristics of some 
networking scenarios such as a broad set of heterogeneous 
nodes, geographical location, and real-time communication [6] 
[9]. Cisco explains that fog nodes can directly access physical 
IoT devices, consequently reducing latency and bandwidth 
consumption [8]. According to Bonomi et al. [10], IoT analytic 
tasks can be moved to a fog network as well. In our most 
recent work, we implemented a blockchain-based middleware 
called Amatista [11]. Amatista implements zero-trust 
hierarchical management in a blockchain-based fashion. 

This research proposes going to a deeper level, the edge 
level [12], and separate the features of blockchain to 
encapsulate them into software-defined components [13][14]. 
Thus, the edge network can host these software-defined 
blockchain components. This approach eliminates the 
dependency on either the cloud or fog network.  This approach 
breaks the barrier of the constrained computing capabilities 
because each component can be hosted on a different physical 
device but working collaboratively to build a blockchain 
system. 

The rest of the paper is organized as follows. Section 2 
studies blockchain in IoT. Section 3 introduces software-
defined components in IoT, and the architecture proposed by 
this research. Section 4 presents the experiments and 
evaluations. Finally, section 5 presents the conclusions of this 
research. 

 

2. Blockchain & IoT 

 
2.1. Blockchain 
 

Blockchain protocols started attracting the attention of 
researchers in 2009 when Satoshi Nakamoto (an online 
pseudonym) introduced the Bitcoin cryptocurrency system 
[15]. The blockchain that supports Bitcoin cryptocurrency is a 
public peer-to-peer distributed ledger that records all 
transactions within the Bitcoin network. This is the 
characteristic of distributed in-chain database and 
synchronization across the network.  

Bitcoin implements a public blockchain network, which is 
open to any participant on the Internet [15]. Participants that 
are part of the Bitcoin network are called miners because their 
task is mining blocks of transactions to be written in the chain.  

Mining is the name that the process of verifying blocks of 
transactions in Bitcoin receives [15]. In Bitcoin, the consensus 
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mechanism that the network uses for mining is called proof of 
work. The proof-of-work mechanism states that a miner must 
solve a cryptographic problem to gain the right of writing the 
block to the chain. Miners must proof trustworthiness solving 
the cryptographic problem, which requires high computing 
power.  

Other consensus algorithms do not require that participants 
spend high computing power. For instance, Practical Byzantine 
Fault Tolerance (PBFT) algorithm [16] or Round Robin (RR) 
scheduling [17]. 

The consensus is the feature of blockchain that prevents the 
execution of incorrect or unreliable transactions. This feature 
encourages reliability between nodes that do not know each 
other [18]. 

Unlike Bitcoin, there are also private blockchain networks. 
Private blockchain networks limit the access of participants 
and the execution of transactions [19]. The way a private 
blockchain network validates and accepts participants and 
transactions may vary, depending on internal rules or 
technology [20]. Ripple [21] and Hyperledger Fabric [22] are 
examples of private blockchain networks. 

Blockchain protocols do not allow changes in the 
transactions that a mined block contains  [23]. This is the 
characteristic of immutability. This approach encourages data 
sharing between parties that do not trust each other.  

Some blockchain technologies allow storing business rules 
(programming functions) in-chain. Thus, we can define more 
complex interactions between parties. This feature is generally 
known as smart contracts [24]. Smart contracts is the name that 
Ethereum uses to call this in-chain programmed functions [25]. 
In this research, we have adopted the name of smart contracts 
as well. Depending on the blockchain technology, smart 
contracts might receive other names. For instance, Hyperledger 
Fabric calls it in-chain code [22]. Additionally, each 
blockchain technology might have their protocol and different 
programming languages to build and deploy smart contracts in 
the network, in case they support them. 

In blockchain-based implementations, transactions between 
parties are stored and validated in a distributed manner without 
depending on a central validation authority [15].  

 
2.2. Blockchain for IoT 

 
In blockchain systems with a cryptocurrency, like Bitcoin 

[15], miners compete between each other to gain the 
cryptocurrency reward after mining a block. This approach 
encourages miners to invest resources in the blockchain 
network, but at the same time, it makes the miners behave 
individually.  

IoT networks do not have the computing power to make 
miners compete for [26][27]. This is the main reason why 
blockchain implementations for IoT are mostly hosted in the 
cloud. For instance, Sharma et al. [28] present a cloud-centric 
blockchain architecture to address data-related issues in IoT, 
such as availability and delivery. 

Additionally, Dorri et al. [29] present a blockchain-based 
framework to handle security and privacy in IoT. However, in 
this solution, miners work as central validation authorities. 
There is no consensus achieved between miners. 

 Implementing blockchain in the cloud means that all the 
blockchain features are executed together by powerful nodes 
[30]. The cloud introduces the benefits of efficient use and 
orchestration of resources, on-demand self-service and rapid 
deployment, and elasticity [30]. However, these benefits 
introduce high costs. It would be expensive to store every 
single IoT transaction in a cloud blockchain.  

Some works have implemented blockchain towards fog 
networks to deal with the lack of engagement over the things 
that cloud blockchain implementations present. For instance, in 
our previous works, we designed fog solutions that store virtual 
resource configuration [31], enhance the fog network with 
some artificial intelligence features [32] and provide multi-
tenancy [33].  

Even though, blockchain protocols have contributed to IoT 
management, until now we have depended on either the cloud 
or the fog to implement them. Again, this is mainly because 
traditional blockchain implementations make miners compete 
between each other, which requires high computing power. 
High computing power is not part of the IoT paradigm [1]. 

Nowadays, edge computing allows applications to execute 
some processing tasks closer to the things network [12].  This 
approach would contribute to fulfilling the things-oriented 
vision of IoT [34]. The things-oriented vision of IoT states that 
the enhancement of the things is the priority. However, the 
limited computing power of edge devices makes it impossible 
to implement an entire blockchain node in one single physical 
edge device. That is why it becomes necessary to separate the 
features of blockchain and encapsulate them into components 
that can be hosted by edge nodes physically separated but 
cooperatively committed.  

This research seeks to develop a private blockchain 
implementation for IoT that does not require a cryptocurrency 
mechanism reward and distributes blockchain features towards 
the edge network to provide similar functionalities to the ones 
that cloud/fog-centric blockchain provides but at the edge 
level. This research visualizes blockchain as a virtual system 
that can be encapsulated into software-defined components. 
Thus, there is no limitation of physical computing capabilities.  

 
3. Software-defined blockchain architecture 

 
Software-defined concepts were initially developed to 

customize virtual Internet networks [13][14][35] and manage 
network functionalities  [36][37].  

Similarly, we could use this concept for IoT networks. 
According to Nastic et al. [38], “Software-defined IoT units are 
used to encapsulate the IoT resources and lower level 
functionality in the IoT cloud and abstract their provisioning 
and governance, at runtime.”  

This research builds software-defined components of 
specific features of blockchain to deploy them at the edge of 
IoT networks.  According to Biswas et al. [39], IoT networks 
would benefit from software-defined ecosystems or virtual 
systems. 

The primary barrier to implement a blockchain technology 
at the edge of IoT networks is the lack of computing 
capabilities [1]. This research aims that it is not necessary to 
implement an entire blockchain technology at the edge of IoT 
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networks, but only those features of blockchain that are 
necessary to guarantee a reliable operation of the things.  

Additionally, this research aims that it is not necessary to 
implement all the features of blockchain in one single edge 
node, but the encapsulation of specific features towards 
different edge nodes. Thus, we can get a distributed software-
defined blockchain system that is not limited by physical 
devices and is not dependent on either the cloud or the fog 
network.   

This research breaks the limitations of computing 
capabilities by building software-defined blockchain 
components that are independent enough to be hosted in 
separated edge devices and at the same time cooperative 
enough to build a virtual blockchain system.  

 
3.1.  Software-defined blockchain components hosted 

towards edge nodes 

 
Deploying software-defined blockchain components onto 

edge devices introduces the following benefits.  
The edge network gains autonomy. There would not be 

necessary to have a bridge layer that connects the things 
network with the cloud, because the edge network would 
handle some management tasks independently, such as the 
verification of transactions, provenance, and access control. 

Reduced latency. As edge nodes would implement 
management tasks closer to the things network, bandwidth 
consumption would decrease, and the performance of the IoT 
infrastructure would improve. Moreover, the most important is 
that this improvement would not be because the management 
tasks are moved to the cloud but distributed across the edge of 
the IoT network. 

Time-efficient management. Different edge nodes would 
execute operations over different segments of things, which 
would optimize the management time. For instance, updating 
the configuration of a group of things and updating the access 
policies of another group of things would be handled by edge 
nodes separately. This approach shifts the focus from a static 
data-centric IoT to a dynamic resource-centric (things-oriented 
vision of IoT [34]).  

Independent authorities. An edge node does not necessarily 
have to execute all the blockchain components hosted on it 
over the same group of things all the time. For instance, an 
edge node can participate in the consensus of a specific group 
of things, and it can execute smart contracts that affect an 
entirely different group of things. 

Provenance. All the transactions from and over the things 
layer can be tracked. 

No computing capabilities limitation.  From the perspective 
of this work, this is the most important benefit of building 
software-defined blockchain components. As we encapsulate 
the blockchain features into separated components, they can be 
distributed towards different edge nodes.  Moreover, any edge 
node can decide to terminate any of these components at any 
time. 

 
 

3.2. Challenges when implementing software-defined 

blockchain components towards edge nodes 

 
Implementing software-defined blockchain components at 

the edge level introduces some challenges.  
First, the size of the transaction must be limited to the 

maximum size admitted by the communication protocol 
between the things and the edge network. Second, as a 
cryptocurrency is not necessary, there could be a lack of 
incentive for edge nodes to validate transactions accurately. 
Finally, edge nodes do not have enough computing storage to 
store a large chain of blocks.  

This research implements the following actions to handle 
the challenges mentioned above respectively. First, sensors 
build small transactions that can be sent faster across the 
network. Second, instead of having a crypto-currency reward 
mechanism, there is a provenance reputation mechanism. 
Finally, edge nodes only keep a chain of metadata of the last n 
blocks in memory and store those n block files locally. 

 
3.3.  Architecture 

 
This work calls the edge nodes that host software-defined 

blockchain components e-miners. 
Figure 1 shows the architecture that this research proposes. 

The first layer represents the network of sensors and actuators 
at different scenarios.  

The second layer represents the e-miners that host the 
software-defined blockchain components. We represent e-
miners as turtles because even though they have limited 
computing power, they still can show a good performance 
executing the software-defined components saved in their 
shell.  

This work builds three software-defined blockchain 
components, smart contracts, consensus, and in-chain data 
storage. Each e-miner can implement any of these software-
defined blockchain components.  

 
 

 

Figure 1. General architecture of software-defined blockchain 

components towards edge hosts. 
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3.3.1.  Smart contracts 

 
Traditional smart contracts in the form of Distributed 

Applications (DApps) in Ethereum [40] distribute a copy of the 
smart contracts to all participants in the network. Besides, 
participants can not terminate the smart contract unless there is 
an ending function that starts working when a condition is met.  

The large size of IoT networks makes it necessary to 
segment the execution of smart contracts. This research 
introduces a publish/subscribe policy that allows e-miners to 
select what smart contract to execute.  Additionally, because of 
the energy limitation of e-miners, this research allows them to 
terminate the execution of a smart contract if that smart 
contract is being executed by other e-miners, depending on the 
specific context. 

 
3.3.2.  Consensus  

 
Traditional consensus mechanisms like the proof of work 

of Bitcoin [15] or the proof of stake of Ethereum [25] require 
that all the nodes in the network participate in the consensus 
process. 

In IoT, every node mining every block and verifying every 
single transaction would cause the network to collapse. We 
introduce a publish/subscribe policy that allows e-miners to 
participate in the consensus of blocks that come from specific 
observed things or other e-miners.  

Additionally, in IoT, the primary goal of e-miners would 
not be to compete to write a block in the chain to get the 
cryptocurrency reward but ensure that each block of 
transactions is a valid one before executing and writing it.  

According to Tschorsch et al. [41], blockchain can work 
satisfactorily without having a cryptocurrency. However, the 
lack of cryptocurrency would also mean the lack of motivation 
for e-miners. 

For this research, we have implemented a practical 
Byzantine fault tolerance algorithm (PBFT) [16].  Instead of 
receiving a cryptocurrency reward, e-miners receive a score 
reward for building their provenance reputation. Also, the e-
miner leader that wrote the block must wait a specific time to 
send another block (round robins algorithm [42]). Thus, the 
other e-miners can be leaders as well. Each node is responsible 
for keeping a high reputation to continue being trustable to 
write blocks in the chain.  

 
3.3.3.  In-chain data storage 

 
Traditional blockchain data storing requires that all the 

information of transactions is written in the chain. 
In IoT, e-miners would not be able to synchronize the entire 

chain because of the limited storage capabilities. 
 Ripple [21] is an example of a blockchain that modifies the 

in-chain storage. Ripple does not store the provenance of 
transactions in-chain but only the previous and the new balance 
with no chargebacks, which makes the network more efficient 
and scalable.  

Following the Ripple’s example, this research implements 
in-chain metadata storage. E-miners store blocks of metadata 

of an n number of previous blocks mined. Also, e-miners store 
the files of those n previous blocks mined.   

Because of the limited computing capabilities of e-miners, 
there is the need to have a distributed repository close to them. 
E-miners discharge the in-chain metadata and local files to a 
fog repository regularly. 

This research designs software-defined blockchain 
components as independent artifacts. We can customize and 
update them at any time separately. For instance, we can 
implement new smart contracts without affecting neither the 
consensus nor the in-chain data components. In the same 
manner, we can implement a new consensus mechanism 
without affecting neither the smart contracts nor the in-chain 
data storage. 

 
3.3.4.  Technology and communication 

 
We have used the Constrained Application Protocol 

(CoAP) [43] to communicate the e-miners with the things 
network. CoAP was designed to run on devices with limited 
memory. Additionally, CoAP runs on UDP by default, which 
saves bandwidth. CoAP follows a REST [33] approach and 
supports GET, POST, PUT, and DELETE operations. This 
approach facilitates the direct engagement of things when 
executing smart contracts over them. 

We have used HTTP protocol to handle the communication 
between e-miners. The size of the block of transactions that e-
miners build is too big to use CoAP. However, e-miners 
implement a CoAP interface to receive the transactions from 
the things network. 

We designed the software-defined blockchain components 
as full state resources following REST using Go Language 
[44]. 

 

4. Evaluations 

 
This section evaluates the performance of e-miners running 

software-defined blockchain components. Figure 2 shows the 
architecture for the experiments. The architecture involves two 
layers. The first layer represents the simulated sensors. This 
layer is formed by one Intel Edison System on a Chip (SoC) 
[45] (table 1) plugged on a Spark module [46]. The second 
layer represents the e-miners. Three Edison SoC's plugged on 
Arduino boards form this layer. The three e-miners host the in-
chain data and consensus software-defined blockchain 
components. The first e-miner (red turtle) also hosts the smart 
contract software-defined blockchain component.  
 

 

Figure 2. The architecture for experiments. 
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Table 1. Specifications of Edison SoC [45] 

Edison System on a Chip 

Operating 

System 

Linux Yocto 

CPU 500 MHz dual-core, dual threaded Intel 

Atom and a 100 MHz 32-bit Intel Quark 

microcontroller 

RAM 4GB LPDDR2 SDRAM 

 

 
All the software-defined blockchain components have been 

evaluated under three different intervals between transactions 
from sensors, 50, 100 and 200 milliseconds. The sensors send 
one thousand transactions. 

 
4.1.  Evaluation of smart contract software-defined 

component 

 
For this experiment, we have designed a smart contract that 

observes the sensor and analyzes each transaction that it sends. 
The sensor and the e-miner communicate through the 
Constrained Application Protocol (CoAP [43]). 

Figure 3 shows an example of a transaction that a sensor 
sends. The transaction has three fields, the hash of the message, 
the message, and the signature.  The hash of the message is 
generated using SHA-1 [47] algorithm. The sensor encrypts the 
message and signs the transaction using RSA [48] public-key 
cryptosystem with a key size of 2048 bits. 

The encrypted message contains the raw data in JSON 
format. The structure of the row data has two fields, the 
temperature value (v) and the measurement symbol (c, 
Celsius). The size of the entire transaction is 1099 bytes. The 
size might vary depending on the value of the temperature 
field.  

 

 

Figure 3. Example of a transaction that a sensor sends. 

 
When the e-miner receives a transaction, it executes the 

following tasks.  First, the e-miner verifies the signature of the 
transaction. Second, the e-miner decrypts the message, 
generates the hash value of the decrypted message again, and 
compares both hashes to verify that the message has not been 
altered. Finally, the e-miner calls the smart contract that 
analyzes the raw data. The smart contract triggers an alarm 
each time the received data meets a pre-defined condition.  

Figures 4, 5, and 6 present the results of the evaluation of 
the smart contract software-defined component under the three 
intervals of transactions, 50, 100, and 200 milliseconds 

respectively. The x-axis represents the number of transactions 
that the sensor sends, which is one thousand. The y-axis 
represents the time in milliseconds that the e-miner takes to 
execute the smart contract component and trigger the event if 
necessary.  

 

 

Figure 4. Evaluation of smart contract. Interval of transactions, 

50ms. 

 

 

Figure 5. Evaluation of smart contract. Interval of transactions, 

100ms. 

 

 

Figure 6. Evaluation of smart contract. Interval of transactions, 

200ms. 

 
As can be seen in figures 4, 5, and 6, the response patterns 

for the three intervals of transactions is very similar.  
The response times keep consistently low during the first 

100 transactions. The e-miner takes 2.8 milliseconds on 
average to execute the smart contract during the first 100 
transactions. However, after the 100th transaction, the response 
times rise from 2.8 milliseconds to 172 milliseconds when the 
interval between transactions is 50 milliseconds, 168 
milliseconds when the interval between transactions is 100 
milliseconds, and 156 milliseconds when the interval between 
transactions is 200 milliseconds.  

This behaviour is due to the configuration of the in-chain 
data component and file storage. For this experiment, we 
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configured the in-chain data component and the local file 
storage to work after every 100 consensus achievements. After 
the e-miner receives consensus approval of 100 blocks, the in-
chain data component starts building one in-chain block of 
metadata for each validated block. Additionally, a file for each 
block is written locally.  

If we had configured the two components to start working 
at a different number of consensus achievements, the increase 
in the response time would have happened at that specific 
number. The in-chain component that the e-miner keeps in 
memory and the files that the e-miner stores locally make the 
response times increase. 

The decrease in the average response times during the first 
100 transactions (172, 168, and 156 milliseconds) shows that 
the bigger the interval between transactions is, the faster the 
response from the e-miner becomes. The delay intervals in 
which the sensor sends transactions affects the performance of 
the e-miner executing the smart contract software-defined 
component.  

The graphs also show some peaks in all the intervals of 
transactions. This is due to the block fabric activation, the 
erasing process of the in-chain data component, and the erasing 
of the local file storage. After the e-miner receives 10 
transactions, it builds the block that contains those 10 
transactions and propagates it for consensus. Additionally, 
when the in-chain component has 10 blocks, the e-miner erases 
the in-chain storage and moves the local files to a permanent 
Fog storage. 

These picks increase by 9 points on average to reach 
response times of up to 286 milliseconds when the interval 
between transactions is 50 milliseconds, 8 points on average to 
reach response times of up to 272 milliseconds when the 
interval between transactions is 100 milliseconds, and 7 points 
on average to reach response times of up to 200 milliseconds 
when the interval between transactions is 200 milliseconds. 
The bigger the interval between transactions is, the lower the 
peaks reach. 

 
4.2.  Evaluation of consensus software-defined 

component 

 
For this experiment, we have implemented the Practical 

Byzantine Fault tolerance algorithm (PBFT) [16] between the 
three e-miners. After an e-miner finishes mining 10 
transactions, it builds a block and propagates it to the other e-
miners to get consensus approval.  

Figure 7 shows an example of the block that the e-miner 
builds. The block has four fields, previous hash, data hash, 
message, and signature.  

The e-miner generates the hashes using SHA-1 [47] 
algorithm.  

The body of the message field is an array of 10 transactions 
from the sensor. The e-miner encrypts each transaction of the 
message separately for each e-miner using the public key (RSA 
[48] public-key cryptosystem with a key size of 2048 bits) of 
each e-miner that participates in the consensus. Finally, the e-
miner signs the block, using its RSA public key with a key size 
of 2048 bits as well. For this experiment, the size of the block 
is 11644 bytes. 

 

Figure 7.  Structure of a block built by an e-miner. 

  
 Figures 8, 9 and 10 present the results of this experiment.  
The x-axis represents the number of blocks that the e-miner 
fabrics and propagates to request consensus approval, which is 
100. The y-axis represents the time in seconds that the three e-
miners take to achieve consensus.  
 The graphs show that the time to achieve consensus follows 
the same pattern in the three scenarios. After the e-miner builds 
the block, it takes around 2.1 seconds to achieve consensus 
between the three e-miners. 
 The interval between transactions does not affect the 
performance of the three e-miners when collaborating to 
achieve consensus.  
 The response times of the consensus component are higher 
than the response times of the smart-contract component 
because the consensus component evaluates the attributes of 
the block and the attributes of each transaction individually. 
 The e-miner validates the signature of the e-miner that 
propagated the block. Also, the e-miner validates the hashes of 
the block. After that, the e-miner decrypts every transaction to 
verify the signature of the device that initially submitted it and 
compares the hashes of each transaction. The e-miner also 
executes the smart-contract component for each decrypted 
transaction. This approach ensures that before executing the 
rules of the consensus mechanism, the verification processes of 
the block and every single transaction are executed by all e-
miners that previously accepted to validate that specific group 
of things.  
  

 

Figure 8. Evaluation of consensus. Interval of transactions, 50ms. 
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Figure 9. Evaluation of consensus. Interval of transactions, 

100ms. 

 

 

Figure 10. Evaluation of consensus. Interval of transactions, 

200ms. 

 
4.3.  Evaluation of in-chain data software-defined 

component 

 
E-miners keep in-chain metadata of the previously mined 

blocks in memory to optimize the performance when querying 
data that does not require the specification of transactions.  

When the consensus is achieved, the metadata of the mined 
block is kept in memory. An in-chain block has three fields, 
previous hash, data hash, and the signature of the e-miner that 
mined it.   

Additionally, when the consensus is achieved, a file with 

all the data of the validated block is stored locally.  E-miners 

store a file for each mined block locally in JSON format. The 

e-miner moves these files to a persistent repository in a Fog 

node every time 10 blocks achieve consensus. For this 

experiment in which the block fabric is activated every 10 

transactions, the size of each metadata block is 636 bytes. 

 

5. Conclusions 

 
This research introduces the novel idea of encapsulating the 

features of blockchain into software-defined components to 
distribute them towards edge devices. 

This work encapsulates three features of blockchain into 
software-defined components, smart contract, consensus, and 
in-chain data. These software-defined blockchain components 
are customized to fulfill the requirements of IoT networks. 

 We call each device hosting a software-defined blockchain 
component an e-miner (edge miner). An e-miner can host any 

of the blockchain components separately. This approach breaks 
the barrier of limited computing capabilities at the edge level 
when integrating blockchain solutions in IoT. 

This research uses Edison SoC as e-miners. The results of 
the experiments show that the characteristics of these e-miners 
can successfully host the three blockchain components. 
Additionally, the results of evaluations show that the 
blockchain components perform well working separated but 
collaborating and supporting each other to get a blockchain 
implementation at the edge of the IoT network.  

Results of tests may vary due to differences in physical 
resources, programming languages, or communication 
protocols.  

Overall, this research makes the following contributions to 
IoT systems. First, this research introduces the idea of building 
software-defined blockchain components for IoT. Second, 
enables customization of software-defined blockchain 
components to deal with the characteristics and requirements 
of IoT networks. Finally, introduces the definition of e-miners, 
which are edge devices that host specific software-defined 
blockchain components. 

This research shifts the focus towards edge-centric IoT 
implementations of cooperative blockchain components. This 
focus allows us to integrate private blockchain solutions in IoT 
close to things network. 
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