387 research outputs found

    Pressure compensator control – a novel independent metering architecture

    Get PDF
    This contribution presents an operating strategy for a novel valve structure for mobile machines’ working hydraulics which combines the flexibility and energetic benefits of individual metering with the functionality of common primary pressure compensation (IPC). The aim is to set up a system that uses a minimal amount of sensors and simple control algorithms. A control strategy theoretically described in /1/ is modified to facilitate the practical implementation on a mini excavator implement as a test rig. This test rig consists only of components that are currently available off-the-shelf to show that it is possible to develop an individual metering system under these economic restrictions. The novel is more energy efficient than common flow sharing systems but provides the same functionality. The control algorithm is experimentally evaluated in terms of functionality and energy consumption. Simulations show potential for further improvements

    Volume 2 – Conference: Wednesday, March 9

    Get PDF
    10. Internationales Fluidtechnisches Kolloquium:Group 1 | 2: Novel System Structures Group 3 | 5: Pumps Group 4: Thermal Behaviour Group 6: Industrial Hydraulic

    Controller Development for a Separate Meter-In Separate Meter-Out Fluid Power Valve for Mobile Applications

    Get PDF

    The Working Hydraulics of Valve-Controlled Mobile Machines: Classification and Review

    Get PDF
    Productivity, reliability, controllability, flexibility and affordable costs represent key aspects in mobile machines. Additionally, due to the high fuel price and to the introduction of stringent emission regulations for diesel engines, the reduction of fuel consumption while persevering the existing performance is the current demand. In order to satisfy and maximize the above requirements, different hydraulic system architectures have been developed during the last decades. Both academia and industry have been investing considerable resources delivering numerous outcomes that require a classification. This review paper closes this gap by analyzing and classifying the working hydraulics of non-hybrid, valve-controlled mobile machines starting from the 1980s to the state-of-the-art. Hydraulic layouts are addressed and categorized by both discussing their fundamentals and evolutions, and by pointing out their pros and cons in a way to provide the readers with a comprehensive overview of the systems currently available on the market and at the research stage

    Energy Efficient Engine (E3) controls and accessories detail design report

    Get PDF
    An Energy Efficient Engine program has been established by NASA to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, a new turbofan engine was designed. This report describes the fuel and control system for this engine. The system design is based on many of the proven concepts and component designs used on the General Electric CF6 family of engines. One significant difference is the incorporation of digital electronic computation in place of the hydromechanical computation currently used

    Integrated control and estimation based on sliding mode control applied to electrohydraulic actuator

    Get PDF
    Many problems in tracking control have been identified over the years, such as the availability of systems states, the presence of noise and system uncertainties, and speed of response, just to name a few. This thesis is concerned with developing novel integrated control and estimation algorithms to overcome some of these problems in order to achieve an efficient tracking performance. Since there are some significant advantages associated with Sliding Mode Control (SMC) or Variable Structure Control (VSC), (fast regulation rate and robustness to uncertainties), this research reviews and extends new filtering concepts for state estimation, referred to as the Variable Structure Filter (VSF)and Smooth Variable Structure Filter (SVSF). These are based on the philosophy of Sliding Mode Control.The VSF filter is designed to estimate some of the states of a plant when noise and uncertainties are presented. This is accomplished by refining an estimate of the states in an iterative fashion using two filter gains, one based on a noiseless system with no uncertainties and the second gain which reflects these uncertainties. The VSF is combined “seamlessly” with the Sliding Mode Controller to produce an integrated controller called a Sliding Mode Controller and Filter (SMCF). This new controller is shown to be a robust and effective integrated control strategy for linear systems. For nonlinear systems, a novel integrated control strategy called the Smooth Sliding Mode Controller and Filter (SSMCF), fuses the SMC and SVSF in a particular form to address nonlinearities. The gain term in the SVSF is redefined to form a new algorithm called the “SVSF with revised gain” in order to obtain a better estimation performance. Its performance is compared to that of the Extended Kalman Filter (EKF) when applied to a particular nonlinear plant.The SMCF and SSMCF are applied to the experimental prototype of a precision positioning hydraulic system called an ElectroHydraulic Actuator (EHA) system. The EHA system is known to display nonlinear characteristics but can approximate linear behavior under certain operating conditions, making it ideal to test the robustness of the proposed controllers.The main conclusion drawn in this research was that the SMCF and SSMCF as developed and implemented, do exhibit robust and high performance state estimation and trajectory tracking control given modeling uncertainties and noise. The controllers were applied to a prototype EHA which demonstrated the use of the controllers in a “real world” application. It was also concluded that the application of the concepts of VSC for the controller can alleviate a challenging mechanical problem caused by a slip-stick characteristic in friction. Another conclusion is that the revised form of the SVSF could obtain robust and fast state estimation for nonlinear systems.The original contributions of the research include: i) proposing the SMCF and SSMCF, ii) applying the Sliding Mode Controller to suppress cross-over oscillations caused by the slip-stick characteristics in friction which often occur in mechanical systems, iii) the first application of the SVSF for state estimation and iv) a comparative study of the SVSF and Extended Kalman Filter (EKF) to the EHA demonstrating the superiority of the SVSF for state estimation performance under both steady-state and transient conditions for the application considered.The dissertation is written in a paper format unlike the traditional Ph.D thesis manuscript. The content of the thesis discourse is based on five manuscripts which are appended at the end of the thesis. Fundamental principles and concepts associated with SMC, VSF, SVSF and the fused controllers are introduced. For each paper, the objectives, approaches, typical results, conclusions and major contributions are presented. Major conclusions are summarized and original contributions reiterated

    A review of electrohydraulic independent metering technology

    Get PDF
    The subject of this paper is the review of advanced technology used in hydraulic systems. The technology in question is termed Independent Metering (IM); this is used in hydraulically driven mobile machinery, such as agricultural, construction, municipal, and forestry vehicles. The idea behind the concept is to modify the connection between the actuator, which could be a cylinder or a motor, and a flow control valve. Traditionally, spool hydraulic valves were used to control the fluid flow into and out of hydraulic actuators. This keeps the meter-in and the meter-out of the actuator mechanically connected due to the construction of these valves. This connection makes the control system blind to pressure changes in one of the hydraulic chambers in the actuator. This, in turn, reduces the overall system controllability. It also increases energy losses, especially under an overrunning load. These two main weaknesses led researchers to break this mechanical connection and get into a new technology with different characteristics. The proposed technology was called Independent Metering. New and more complex control techniques can now be applied to the hydraulic systems using this technology that were not possible before or could be applied to more conventional servo design. This paper reviews Independent Metering (IM) and the technologies used or developed in this field to date. The paper reviews the state of art hydraulic technologies and indicates the links between them and IM. It also reviews the different types of hydraulic valves used when implementing IM. This review also discusses some control algorithms, IM layouts, IM challenges, and identifies where further improvements may be achieved

    The Hydraulic Power Generation and Transmission on Agricultural Tractors: Feasible architectures to reduce dissipation and fuel consumption-Part i

    Get PDF
    This paper is aimed at investigating the benefits in terms of energy efficiency of new electro-hydraulic architectures for power distribution systems of a medium-size agricultural tractor, with a focus on the hydraulic high-pressure circuit. The work is part of a wider industrial research project called TASC (Smart and Clean Agricultural Tractors [1]). Traditional and alternative architectures have been modelled and energetically compared through simulation, using a lumped parameter approach. Experimental data previously acquired have been used to validate the models and to replicate real working conditions of the machine in the simulation environment. A typical on-field manoeuvre has been used as duty cycle, to perform an effective energetic analysis. The standard hydraulic circuit is a multi-users load sensing system that uses a single variable displacement pump to feed steering, trailer brake and auxiliary utilities in that order. The key idea of the proposed solutions is the separation of steering from the other implements, to optimize the entire energy management. In particular, the paper investigates new and flexible solutions for the auxiliary utilities, including an electro-hydraulic load sensing architecture with variable pump margin, an electronic flow matching and flow sharing architecture, and an electronic strategy for automatic pressure compensation. The simulation results show that good energy saving can be achieved with the alternative architectures, so that physical prototyping of the most promising solutions will be realized as next step of the project

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit
    • …
    corecore