5 research outputs found

    Pseudospectral methods for density functional theory in bounded and unbounded domains

    Get PDF
    Classical Density Functional Theory (DFT) is a statistical-mechanical framework to analyze fluids, which accounts for nanoscale fluid inhomogeneities and non-local intermolecular interactions. DFT can be applied to a wide range of interfacial phenomena, as well as problems in adsorption, colloidal science and phase transitions in fluids. Typical DFT equations are highly non-linear, stiff and contain several convolution terms. We propose a novel, efficient pseudo-spectral collocation scheme for computing the non-local terms in real space with the help of a specialized Gauss quadrature. Due to the exponential accuracy of the quadrature and a convenient choice of collocation points near interfaces, we can use grids with a significantly lower number of nodes than most other reported methods. We demonstrate the capabilities of our numerical methodology by studying equilibrium and dynamic two-dimensional test cases with single- and multispecies hard-sphere and hard-disc particles modelled with fundamental measure theory, with and without van der Waals attractive forces, in bounded and unbounded physical domains. We show that our results satisfy statistical mechanical sum rules

    A Finite-Volume Method for Fluctuating Dynamical Density Functional Theory

    Get PDF
    We introduce a finite-volume numerical scheme for solving stochastic gradient-flow equations. Such equations are of crucial importance within the framework of fluctuating hydrodynamics and dynamic density functional theory. Our proposed scheme deals with general free-energy functionals, including, for instance, external fields or interaction potentials. This allows us to simulate a range of physical phenomena where thermal fluctuations play a crucial role, such as nucleation and other energy-barrier crossing transitions. A positivity-preserving algorithm for the density is derived based on a hybrid space discretization of the deterministic and the stochastic terms and different implicit and explicit time integrators. We show through numerous applications that not only our scheme is able to accurately reproduce the statistical properties (structure factor and correlations) of the physical system, but, because of the multiplicative noise, it allows us to simulate energy barrier crossing dynamics, which cannot be captured by mean-field approaches
    corecore