1,512 research outputs found

    Optimizing physical protection system using domain experienced exploration method

    Get PDF
    Assessing physical protection system efficiency is mostly done manually by security experts due to the complexity of the assessment process and lack of tools. Computer aided numerical vulnerability analysis has been developed to quantitatively assess physical protection systems. A variety of methods have been proposed to optimize physical protection systems, where one of the most advanced approaches entails precisely defining which security components should be selected and where they should be placed at protected facilities, taking into consideration adversary type, to maximize the probability that an adversary will be stopped at minimum system cost. The most computationally intensive part of the optimization process is the evaluation. The evaluation involves recreating search space and finding optimal adversary’s attack paths from each entry point. We present the domain experienced exploration method that optimizes evaluation process during the search for optimum solutions, considering results from previous evaluations. Performed experiments show that using the presented method, in real-world domains, results in a reduction of evaluation iterations

    Non-Zero Sum Games for Reactive Synthesis

    Get PDF
    In this invited contribution, we summarize new solution concepts useful for the synthesis of reactive systems that we have introduced in several recent publications. These solution concepts are developed in the context of non-zero sum games played on graphs. They are part of the contributions obtained in the inVEST project funded by the European Research Council.Comment: LATA'16 invited pape

    A Novel Privacy Disclosure Risk Measure and Optimizing Privacy Preserving Data Publishing Techniques

    Get PDF
    A tremendous amount of individual-level data is generated each day, with a wide variety of uses. This data often contains sensitive information about individuals, which can be disclosed by “adversaries”. Even when direct identifiers such as social security numbers are masked, an adversary may be able to recognize an individual\u27s identity for a data record by looking at the values of quasi-identifiers (QID), known as identity disclosure, or can uncover sensitive attributes (SA) about an individual through attribute disclosure. In data privacy field, multiple disclosure risk measures have been proposed. These share two drawbacks: they do not consider identity and attribute disclosure concurrently, and they make restrictive assumptions on an adversary\u27s knowledge and disclosure target by assuming certain attributes are QIDs and SAs with clear boundary in between. In this study, we present a Flexible Adversary Disclosure Risk (FADR) measure that addresses these limitations, by presenting a single combined metric of identity and attribute disclosure, and considering all scenarios for an adversary’s knowledge and disclosure targets while providing the flexibility to model a specific disclosure preference. In addition, we employ FADR measure to develop our novel “RU Generalization” algorithm that anonymizes a sensitive dataset to be able to publish the data for public access while preserving the privacy of individuals in the dataset. The challenge is to preserve privacy without incurring excessive information loss. Our RU Generalization algorithm is a greedy heuristic algorithm, which aims at minimizing the combination of both disclosure risk and information loss, to obtain an optimized anonymized dataset. We have conducted a set of experiments on a benchmark dataset from 1994 Census database, to evaluate both our FADR measure and RU Generalization algorithm. We have shown the robustness of our FADR measure and the effectiveness of our RU Generalization algorithm by comparing with the benchmark anonymization algorithm

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    Trustworthiness in Mobile Cyber Physical Systems

    Get PDF
    Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS
    • 

    corecore