2,998 research outputs found

    Hierarchical fuzzy logic based approach for object tracking

    Get PDF
    In this paper a novel tracking approach based on fuzzy concepts is introduced. A methodology for both single and multiple object tracking is presented. The aim of this methodology is to use these concepts as a tool to, while maintaining the needed accuracy, reduce the complexity usually involved in object tracking problems. Several dynamic fuzzy sets are constructed according to both kinematic and non-kinematic properties that distinguish the object to be tracked. Meanwhile kinematic related fuzzy sets model the object's motion pattern, the non-kinematic fuzzy sets model the object's appearance. The tracking task is performed through the fusion of these fuzzy models by means of an inference engine. This way, object detection and matching steps are performed exclusively using inference rules on fuzzy sets. In the multiple object methodology, each object is associated with a confidence degree and a hierarchical implementation is performed based on that confidence degree.info:eu-repo/semantics/publishedVersio

    Combining case based reasoning with neural networks

    Get PDF
    This paper presents a neural network based technique for mapping problem situations to problem solutions for Case-Based Reasoning (CBR) applications. Both neural networks and CBR are instance-based learning techniques, although neural nets work with numerical data and CBR systems work with symbolic data. This paper discusses how the application scope of both paradigms could be enhanced by the use of hybrid concepts. To make the use of neural networks possible, the problem's situation and solution features are transformed into continuous features, using techniques similar to CBR's definition of similarity metrics. Radial Basis Function (RBF) neural nets are used to create a multivariable, continuous input-output mapping. As the mapping is continuous, this technique also provides generalisation between cases, replacing the domain specific solution adaptation techniques required by conventional CBR. This continuous representation also allows, as in fuzzy logic, an associated membership measure to be output with each symbolic feature, aiding the prioritisation of various possible solutions. A further advantage is that, as the RBF neurons are only active in a limited area of the input space, the solution can be accompanied by local estimates of accuracy, based on the sufficiency of the cases present in that area as well as the results measured during testing. We describe how the application of this technique could be of benefit to the real world problem of sales advisory systems, among others

    Incorporating Index of Fuzziness and Adaptive Thresholding for Image Segmentation

    Get PDF
    Binary Segmentation of an image played an important role in many image processing application. An image that was having no bimodal (or nearly) histogram accompanied by low-contrast was still a challenging segmentation problem to address. In this paper, we proposed a new segmentation strategy to images with very irregular histogram and had not significant contrast using index of fuzziness and adaptive thresholding. Index of fuzziness was used to determine the initial threshold, while adaptive thresholding was used to refine the coarse segmentation results. The used data were grayscale images from related papers previously. Moreover, the proposed method would be tested on the grayscale images of malaria parasite candidates from thickblood smear that had the same problem with this research. The experimental results showed that the proposed method achieved higher segmentation accuracy and lower estimation error than other methods. The method also effective proven to segment malaria parasite candidates from thickblood smears image

    Automatic and semi-automatic extraction of curvilinear features from SAR images

    Get PDF
    Extraction of curvilinear features from synthetic aperture radar (SAR) images is important for automatic recognition of various targets, such as fences, surrounding the buildings. The bright pixels which constitute curvilinear features in SAR images are usually disrupted and also degraded by high amount of speckle noise which makes extraction of such curvilinear features very difficult. In this paper an approach for the extraction of curvilinear features from SAR images is presented. The proposed approach is based on searching the curvilinear features as an optimum unidirectional path crossing over the vertices of the features determined after a despeckling operation. The proposed method can be used in a semi-automatic mode if the user supplies the starting vertex or in an automatic mode otherwise. In the semi-automatic mode, the proposed method produces reasonably accurate real-time solutions for SAR images

    MOTION CONTROL ANALYSIS OF TWO COLLABORATIVE ARM ROBOTS IN FRUIT PACKAGING SYSTEM

    Get PDF
    As robots' use increases in every sector of human life, the demand for cheap and efficient robots has also enlarged. The use of two or more simple robot is preferable to the use of one sophisticated robot. The agriculture industry can benefit from installing a robot, from seeding to the packaging of the product. A precise analysis is required for the installation of two collaborative robots. This paper discusses the motion control analysis of two collaborative arms robots in the fruit packaging system. The study begins with the relative motion analysis between two robots, starting with kinematics modeling, image processing for object detection, and the Fuzzy Logic Controller's design to show the relationship between the robot inputs and outputs. The analysis is carried out using SCILAB, open-source software for numerical computing engineering. This paper is intended as the initial analysis of the feasibility of the real experimental system
    • …
    corecore