6,030 research outputs found

    Existence of periodic solutions of the FitzHugh-Nagumo equations for an explicit range of the small parameter

    Full text link
    The FitzHugh-Nagumo model describing propagation of nerve impulses in axon is given by fast-slow reaction-diffusion equations, with dependence on a parameter ϵ\epsilon representing the ratio of time scales. It is well known that for all sufficiently small ϵ>0\epsilon>0 the system possesses a periodic traveling wave. With aid of computer-assisted rigorous computations, we prove the existence of this periodic orbit in the traveling wave equation for an explicit range ϵ(0,0.0015]\epsilon \in (0, 0.0015]. Our approach is based on a novel method of combination of topological techniques of covering relations and isolating segments, for which we provide a self-contained theory. We show that the range of existence is wide enough, so the upper bound can be reached by standard validated continuation procedures. In particular, for the range ϵ[1.5×104,0.0015]\epsilon \in [1.5 \times 10^{-4}, 0.0015] we perform a rigorous continuation based on covering relations and not specifically tailored to the fast-slow setting. Moreover, we confirm that for ϵ=0.0015\epsilon=0.0015 the classical interval Newton-Moore method applied to a sequence of Poincar\'e maps already succeeds. Techniques described in this paper can be adapted to other fast-slow systems of similar structure

    Algorithm for rigorous integration of Delay Differential Equations and the computer-assisted proof of periodic orbits in the Mackey-Glass equation

    Get PDF
    We present an algorithm for the rigorous integration of Delay Differential Equations (DDEs) of the form x(t)=f(x(tτ),x(t))x'(t)=f(x(t-\tau),x(t)). As an application, we give a computer assisted proof of the existence of two attracting periodic orbits (before and after the first period-doubling bifurcation) in the Mackey-Glass equation

    Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing - a computer assisted proof

    Full text link
    We prove the existence of globally attracting solutions of the viscous Burgers equation with periodic boundary conditions on the line for some particular choices of viscosity and non-autonomous forcing. The attract- ing solution is periodic if the forcing is periodic. The method is general and can be applied to other similar partial differential equations. The proof is computer assisted.Comment: 38 pages, 1 figur

    Automatic validation of numerical solutions

    Get PDF

    Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof

    Full text link
    We present a computer assisted method for proving the existence of globally attracting fixed points of dissipative PDEs. An application to the viscous Burgers equation with periodic boundary conditions and a forcing function constant in time is presented as a case study. We establish the existence of a locally attracting fixed point by using rigorous numerics techniques. To prove that the fixed point is, in fact, globally attracting we introduce a technique relying on a construction of an absorbing set, capturing any sufficiently regular initial condition after a finite time. Then the absorbing set is rigorously integrated forward in time to verify that any sufficiently regular initial condition is in the basin of attraction of the fixed point.Comment: To appear in Topological Methods in Nonlinear Analysis, 201

    Computation of maximal local (un)stable manifold patches by the parameterization method

    Full text link
    In this work we develop some automatic procedures for computing high order polynomial expansions of local (un)stable manifolds for equilibria of differential equations. Our method incorporates validated truncation error bounds, and maximizes the size of the image of the polynomial approximation relative to some specified constraints. More precisely we use that the manifold computations depend heavily on the scalings of the eigenvectors: indeed we study the precise effects of these scalings on the estimates which determine the validated error bounds. This relationship between the eigenvector scalings and the error estimates plays a central role in our automatic procedures. In order to illustrate the utility of these methods we present several applications, including visualization of invariant manifolds in the Lorenz and FitzHugh-Nagumo systems and an automatic continuation scheme for (un)stable manifolds in a suspension bridge problem. In the present work we treat explicitly the case where the eigenvalues satisfy a certain non-resonance condition.Comment: Revised version, typos corrected, references adde
    corecore