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Abstract We present an algorithm for the rigorous integration of delay differential
equations (DDEs) of the form x'(t) = f (x(t —t), x(t)). As an application, we give a
computer-assisted proof of the existence of two attracting periodic orbits (before and
after the first period-doubling bifurcation) in the Mackey-Glass equation.
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1 Introduction

The goal of this paper is to present an algorithm for the rigorous integration of delay
differential equations (DDEs) of the form

X(t) = f (x(t —t), x(1)), xeR (1)
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where 0 < t e R.

Despite its apparent simplicity, Eq. (1) generates all kinds of possible dynamical
behaviors: from simple stationary solutions to chaotic attractors. For example, this
happens for the well-known Mackey-Glass equation:

X(t) = P Wemmmmmmemeeeeeee y m(t), x eR, @)

for which numerical experiments show the existence of a series of period-doubling
bifurcations which lead to the creation of an apparent chaotic attractor [16,17]. Later
in the paper, we will apply our rigorous integrator to this equation.

There are many important works that establish the existence and the shape of
a (global) attractor under various assumptions on f in Eq. (1). Much is known
about systems of the form x = —Ax(t) + f (x(t — 1)) when f is strictly mono-
tonic, either positive or negative [9]. Let us mention here a few developments in
this direction. Mallet-Paret and Sell used discrete Lyapunov functionals to prove
a Poincare-Bendixson-type theorem for special kind of monotone systems [19].
Krisztin et al. have conducted a thorough study on systems having a monotone pos-
itive feedback, including studies on the conditions needed to obtain the shape of a
global attractor; see [11] and references therein. In the case of a monotonic positive
feedback f and under some assumptions on the stationary solutions, Krisztin and Vas
proved that there exist large amplitude slowly oscillatory periodic solutions (LSOPs)
which revolve around more than one stationary solution. Together with their unstable
manifolds, connecting them with the classical spindle-like structure, they constitute
the full global attractor for the system [10]. In arecent work, Vas showed that f may
be chosen such that the structure of the global attractor may be arbitrarily complicated
(containing an arbitrary number of unstable LSOPs) [30].

Lani-Wayda and Walther were able to construct systems of the form x =
f (x(t — 1)) for which they proved the existence of transversal homoclinic trajec-
tory, and a hyperbolic set on which the dynamics are chaotic [13].

Srzednicki and Lani-Wayda proved, by the use of the generalized Lefshetz fixed
point theorem, the existence of multiple periodic orbits and the existence of chaos for
some periodic, tooth-shaped (piecewise linear) f [12].

The results from [10,12,13,30], while impressive, are established for functions
which are close to piecewise affine ones. The authors of these works construct equa-
tions where an interesting behavior appears; however, itis not clear how to apply their
techniques for some well-known equations.

In recent years, there appeared many computer-assisted proofs of various dynam-
ical properties for ordinary differential equations and (dissipative) partial differential
equations by an application of arguments from the geometric theory of dynamical
systems plus the rigorous integration; see, for example, [2,7,20,29,32,36] and ref-
erences therein. By the computer-assisted proof, we understand a computer program
which rigorously checks assumptions of abstract theorems. This paper is an attempt
to extend this approach to the case of DDEs by creating a rigorous forward-in-time
integration scheme for Eq. (1). By the rigorous integration we understand a computer
procedure which produces rigorous bounds for the true solution. In the case of DDEs,
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the integrator should reflect the fact that, after the integration time longer than the
delay t,the solution becomes smoother, which gives the compactness of the evolution
operator. Having an integrator, one should be able to directly apply standard tools
from dynamics such as Poincare maps, various fixed point theorem. In this paper,
as an application, we present computer-assisted proofs of the existence of two stable
periodic orbits for Mackey-Glass equation; however, we do not prove that these orbits
are attracting.

There are several papers that deal with computer-assisted proofs of periodic solu-
tionsto DDEs [8,14,33], but the approach used there is very different from our method.
These works transform the question of the existence of periodic orbits into aboundary
value problem (BVP), which is then solved by using the Newton-Kantorovich theorem
[8,14] or the local Brouwer degree [33]. It is clear that the rigorous integration may
be used to obtain more diverse spectrum of results. There are also several interesting
results that apply rigorous numerical computations to solve problems for DDEs [3,4],
but they do not rely on the rigorous, forward-in-time integration of DDEs.

The rest of the paper is organized as follows. Section 2 describes the theory and
algorithms for the integration of Eq. (1). Section 3 defines the notion of the Poincare
map and discusses computation of the Poincare map using the rigorous integrator.
Section 4 presents an application of the method to prove the existence of two stable
periodic orbits in the Mackey-Glass equation (Eq. (2)). Here, we investigate case for
n = 6 (before the first period-doubling bifurcation) and for n = 8 (after the first
period-doubling bifurcation). To the best of our knowledge, these are the firstrigorous
proofs ofthe existence ofthese orbits. The presented method has been also successfully
used by the first author to prove the existence of multiple periodic orbits in some other
nonlinear DDEs [25].

1.1 Notation

We use the following notation. For a function f : R ~ R, by f (k), we denote the
kth derivative of f .By f [k], we denote the term 1 mf (k). In the context of piecewise
smooth maps by f (k)(t- ) and f (k)(t+), we denote the one-sided derivatives f w.r.t.
t.

For F :Rm” Rnby DF(z), we denote the matrix ( _(z)). .
\ dxj ie[t1,...n}j
For a given set A, by cl (A) and int (A), we denote the closure and interior of A,

respectively (in a given topology, e.g., defined by the norm in the considered Banach
space).

Let A = nn=I[ai, bi] for ai < bi, ai,bi e R. Then, we call A an interval set
(a product of closed intervals in Rn). For any A ¢ Rn, we denote by hull(A) a
minimal interval set, such that A ¢ hull(A). If A ¢ R is bounded then hull(A) =
[inf(A), sup(A)]. For sets A ¢ R, B ¢ R, a e R and for some binary operation
0 :RXxR » R wedefineAoB = [aob:ae A, be B}andaoA = Aoa = [a}«A.
Analogously, forg :R » R and aset A e R we define g(A) = {g(a) |a e A}

For v e Rnby niv fori e [1,2,...,n}, we denote the projection of v onto the
ith coordinate. For vectors u,v e Rn by u mv, we denote the standard scalar product:
umv = J2n=1niv mniu
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We denote by Cr (D, R) the space of all functions of class Cr over a compact set
D ¢ R, equipped with the supremum Cr norm: ||g|| = Y,r=0supxeD |g(I\x )|. In
case D = [—t,0], when t is known from the context, we will write Ck instead of
Ck ([-t,0], R).

For a given functionx :[—1,a) * R, a e R+ U(c”j foranyt e [0, a) we denote
by xt a function such that xt(s) = x(t + s) foralls e [-1,0].

We will often use a symbol in square brackets, e.g., [r], to denote a set in Rm.
Usually it will happen in formulas used in algorithms, when we would like to stress
the fact that a given variable represents a set. If both variables r and [r] are used
simultaneously, then usually r represents a value in [r]; however, this is not implied
by default and it will be always stated explicitly. Please note that the notation [r] does
not impose that the set [r] is of any particular shape, e.g., an interval box. We will
always explicitly state if the set is an interval box.

For any set X by mid(X), we denote the midpointofhull(X) and by diam (X) the
diameter of hull(X).

1.2 Basic Properties of Solutions to DDEs

For the convenience of the reader, we recall (without proofs) several classical results
for DDEs [5].
We define the semiflow y associated with Eq. (1) by:

y © R+ x CO([—tOL,R) o (t,f) ~ xfe CO([—t, 0], R). (3)

where xf : [—t,af) » R is asolution to a Cauchy problem:

Ix = f (x(t- t),x(t)), t>o,

- 4)
[x (t) = f(t), tel[—t, o],

foramaximal af e R+ U (c»j such that the solution exists for allt < a f.

Lemma 1 [Continuous (local) semiflow] Iff is (locally) Lipshitz, theny is a (local)
continuous semiflow on Co([—t, 0], R).

Lemma 2 [Smoothing property] Assume f isofclassCm, m>0. Letn eN be given
and lett > n m.Ifx0e Cothen xt = y(t,x0) isofclass at least C min(m+ 1,n).

The smoothing of solutions gives rise to some interesting objects in DDEs [31].
Assume for a while that f e C*“ . Then for any n > 0, there exists a set (in fact a
manifold) Mn ¢ Cn, such that M n is forward invariant undery.

It is easy to see that forn = 1we have:

M1:= {xeC1|x'(o = f (x(—t),x(0))},

and the conditions for M n with n > 1 can be simply obtained by differentiating both
sides of (1). We follow [31] and we call M n a Cn solution manifold.

ﬁoCJI
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Notice that Mn ¢ Mk fork < n and "(Kt,® :Mn "~ Mn+k.

2 Rigorous Integration of DDEs

This section is a reorganized excerpt from the Ph.D. dissertation of the first author
(Robert Szczelina). A detailed analysis of results from numerical experiments with
the proposed methods, more elaborate description of the algorithms, and detailed
pseudo-codes of the routines can be found in the original dissertation [24].

2.1 Finite Representation of “Sufficiently Smooth” Functions

Here, we would like to present the basic blocks used in the algorithm for the rigorous
integration of Eq. (1). The idea is to implement the Taylor method for Eq. (1) based
on the piecewise polynomial representation of the solutions plus a remainder term.
We will work on the equally spaced grid and we will fix the step size of the Taylor
method to match the selected grid.

Remark 1 In this section, for the sake of simplicity of presentation, we assume that
t = 1. All computations can be easily redone for any delay t.

We also assume thatr.h.s. f of Eq. (1) is “sufficiently smooth” for various expres-
sions to make sense. The class of f in (1) restricts the possible order of the Taylor
method that can be used in our algorithms, that is, if f is of class Cn, then we can use
Taylor method of order at most n. Therefore, thorough the paper it can be assumed
thatf e C*“ .Thisis areasonable assumption in the case of applications of computer-
assisted proofs where r.h.s. of equations are usually presented as a composition of
elementary functions. The Mackey-Glass equation (2) is a good example (away from
X = - 1)

We fix two integers n > 0and p > 0 and we seth = p.

Definition 1 By Cp,we denote the set of all functionsg :[—1, 0 ] R such that, for
ie {t,..., p}, we have:

e gis (n + 1)-times differentiable on (—i mh, —i mh + h),
¢ gk (—i mh+) exists for all k e {0,...,n + 1} and £Ij\ng))rg(k)(—i mh + % =

g (k)(—i mh+),
¢ gn+1)is continuous and bounded on (—i mh, —i mh + h).

From now on, we will abuse the notation and we will denote the right derivative
g (k)(—i mh+) by g (k)(—i mh) unless explicitly stated otherwise. The same holds for
g [KlI(— wh+). Under this notation, it is clear that we can represent g e Cp by a
piecewise Taylor expansion on each interval [ mh, —i mh + h). Fort = —i mh + £
and 1 < i <p,o0 < £ < h we can write:

n
g(t) = J2 g[Kl(—i wh) mEk + g [n+1] (—i mh + £(£)) mEn+1, (5)
k=0
FoCTI
u
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with %(e) e [o, h].

In our approach, we store the piecewise Taylor expansion as a finite collection
of coefficients g[k](-i mh) and interval bounds on g[n+1](-) over the whole interval
[—iwh, -i sh+h]forie{l,..., p}. Ouralgorithm for the rigorous integration of (1)
will then produce rigorous bounds on the solutions to (1) for initial functions defined
by such piecewise Taylor expansion.

Please note that we are using here awordfunctions instead of a singlefunction, as,
because of the bounds on g [n+ 1] over intervals [—i mh, —i mh + h], the finite piecewise
Taylor expansion describes an infinite set of functions in general. This motivates the
following definitions.

Definition 2 Letg e Cp andletl :{1,..., p}x{0,..., n}~{1,..., p m(n + 1)}
be any bijection.
A minimal (p, n)-representation of g is a pair g = (a, B) such that

ae 'm(«+i)+ib ¢ Rp is an interval set

n\a = g(0)niB = inf g[nt1 (—ih + %), sup g[n+t1 (—ih + %
%(0,h) %e(0,h)

Kl+m,k)a = g[k](—ih+) for1 < i <p, o<k <n

Please note, that the index function | should be simply understood as an ordering in
which, during computations, we store coefficients in a finite-dimensional vector— its
precise definition is only important from the programming point of view, see Sect. 2.4
for a particular example of I. So, in this paper for theoretical considerations, we would
like to use the following g notation instead:

e g°%[°] := nuia,

e gi[k] := n 1+i(i,k)a,
e gi,[n+] :=n B

We call gI'~ the (i,k)th coefficient ofthe representation and g1,[”+ 1] the ith remainder
ofthe representation. The interval set B is called the remainder ofthe representation.
We will call the constantm = p m(n + 2) + 1the size of the (p, n)-representation.
W hen parameters n and p are known from the context, we will omit them and we will
call g the minimal representation of g.

Definition 3 We say that G ¢ Cp is a (p, n)-f-set (or (p, n)-functions set) if there
exists bounded set [g] = (A, C) ¢ Rp'(n+1)+1 X Rp = Rm such that

G = |f eCp|f c[g] forthe minimal(p, n)-representation fo ff J.

As the set [g] contains the minimal representation of f forany f e G, we will also say
that [g] is a (p, n)-representation of G. We will also use G and [g] interchangeably
and we will write f e [g] for short, if the context is clear.
FQ: 7L
. u
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Please note that the minimal (p, n)-representation g of g defines (p, n)-f-setG ¢ Cp,
which, in general, contains more than the sole function g. Also, in general, for any
(p, n)-f-set G there are functions g e G which are discontinuous at grid points —i mh
(see (5)). Sometimes, we will need to assume higher regularity, therefore we define:

Definition 4 Let G = [g] be a (p, n)-f-set. The Ck-supportof G is defined as:

Supp(k)([g]) := Supp(k)(G) := G n Ck.

For convenience we also set:

Supp([g]) := Supp(G) := G.

Please note that, in general, Cp d Supp(G) = Supp(0)(G) ¢ Co.ltmay also happen

that Supp(k)(G) = 0 for non-empty G even fork = 0.

Now we present three simple facts about the convexity of the support sets. These
properties will be important in the context of the computer-assisted proofs and in an
application of Theorem 11 to (p, n)-f-sets in Sect. 4.

Lemma 3 For (p, n)-representations [j>], [f] ¢ Rm,m = p(n +2)+1, thefollowing
statements hold true:

- 1f[g] ¢ [f], then Supp([g]l) ¢ Supp([f]).
- If[g] is a convex setin Rm, then Supp([g]) is a convex setin Cp.

- If[g] is a convex setin Rm, then Supp([g]) n Ck is a convex setfor any k > 0.

We omit the easy proof.
To extract information on g[K] *—p + e” for any i and k having only information

stored in a (p, n)-representation, we introduce the following definition.

Definition 5 Let (p, n)-representation g be given. We define

cfk](e) =W k) mel—k mgi,[I\
I=k '

foro<e<i1,1<i<pando<k<n+ 1.

We will omitsubscriptg in cg[k](e) ifitis clear from the context. The following lemma
follows immediately from the Taylor formula, so we skip the proof:

Lemma 4 Assume g e Cp and its (p, n)-representation g are given. Thenfor 0 <

e<p,1<i<pando<k<n+.1

gM L +en e cl'[k(e)

holds.

EocTI
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Before proceeding to the presentation of the integration procedure, we would like
to discuss the problem of obtaining Taylor coefficients of a solution x to Eq. (1) at
a given time t (whenever they exist). From Eq. (1), we have (we remind that, at grid
points, by the derivative we mean the right derivative):

dk—1
x (K)(t) = dtk-1f (x(t — 1)’ x (t))m

For example, in case ofk = 1, we obviously have:
x (D)) = £ (x(t —1), x(1)),

and in case k = 2, by applying the chain rule, we get:

x{2)(t) = d - (x(t —1), x(t)) W (1)(—1)
dz1

+d - (x(t —1), x(t)) = (1)(0)
dz2

If we define a function F(i) :R4 " R as

df df
F(1)(z1,22°23"z24) = — z1,23) mz2 + — z1,23) mz4,
(O( ) dzl( ) dZ3( )

then we see that
x (2>(t) = F(t) (x(t —1), x(1)(t —1), x (1), x 1) (" .

Now, by arecursive application of the chain rule, we can obtain a family of functions
Ff = {Fk) :R2'(+D ~ R }eN such that:

X k+1)(1) = FKR (x(=1+ t), .. x(K(=1+ 1), x(1),..."x (K1) .

By setting

F[k](z1,... z2(k+1)) = kjF(k) (o!mz1,..."k 'mzk+1, o! mzk+2,. .. k mz2-(k+1)),
(s)

we can write similar identity in terms of the Taylor coefficients x [k]:

x [k+1](t) = k_: . mF[K] (,\X l(—1+ 1),..."x [KI(—1+ t), x [0](t),... X [k](t)) . (M)
As we are using the Taylor coefficients instead of derivatives to represent our (p, n)-
f-sets, this notation would be more suitable to describe computer algorithms. From
now on, we will also slightly abuse the notation and we will denote F[k] by F[K]

EOCTI
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and F(k) by F (k). This is reasonable, since, for a function F : R ~ R defined by
F(t) :=f (x(t —1), x(t)), we have:

F@)() = FK (xO)(—1+ t),..., x(K(—1+ 1), x©)(t),..., x(KI(1)),
FIKI(Y) = FIK (X[OI(—1+ t),..., x [KI(—1+ t), x[o](t),..., x[K\t)).

Remark 2 The task of obtaining family Ff by directly and analytically applying the
chain rule may seem quite tedious, especially, if one will be required to supply this
family as implementations of computer procedures. It turns out, that this is not the case
for awide class of functions. In fact, only ther.h.s. of Eq. (1) needs to be implemented
and the derivatives may be obtained by the means ofthe automatic differentiation (AD)
[21,26]. We use Taylor coefficients x [K] to follow the notation and implementation of
AD inthe CAPD library [1] which provide a set ofrigorous interval arithmetic routines
used in our programs.

2.2 One Step of the Integration with Fixed-Size Step h = p

We are given (p, n)-f-set xo and the task is to obtain xh—a (p, n)-f-set such that
y(h, x0) C xh. We will denote the procedure of computing xh by Ih, that is:

xh = 1h (x0).

First of all, we consider how xo and xh = 1h(x0) relate to each other. Their mutual
alignment is shown in Fig. 1.

We see that x” overlap with x0—,[k], so they can be simply shifted to the new
representation—we call this procedure the shift part. Other coefficients need to be
estimated using the dynamics generated by Eq. (1). We call this procedure theforward
part. This procedure will be divided into three subroutines:

1. computing coefficients x I'[k fork e{1,..., n},
2. computing the remainder x1’[n+1,

3. computing the estimate for xh(0) (stored in x°,[0]).

Forward Part: Subroutine 1
This procedure is immediately obtained by arecursive application of Eq. (7):

D.[o] _ 7ol

=L = e ] QpI0 zplic 1] gl

x h [k—]\
where 1 < k < n.

FoCTI
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Fig. 1 A graphical presentation of the integrator scheme. We setn = 2and p = 4.A (p, n)-representation
is depicted as dots at grid points and rectangles stretching on the whole intervals between consecutive grid
points. The dot is used to stress the fact that the corresponding coefficient represents the value ata given grid
point. Rectangles are used to stress the fact that remainders are boundsfor derivative over whole intervals.
Below the time line we have an initial (p, n)-representation. Above the time line, we see a representation
after one step of size h = 1. Black solid dots and gray rectangles represent the values we do not need to
compute—this is the shiftpart. Theforwardpart, i.e., the elements to be computed, are presented as empty
dots and an empty rectangle. The doubly bordered dot represents the exact value of the solution at the time
t = h = p (in practical rigorous computations it is an interval bound on the value). The doubly bordered
empty rectangle is an enclosure for the n + 1th derivative on the interval [o, h]

IL:JOCJI
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Forward Part: Subroutine 2
This subroutine can be derived from the mean value theorem. We have fore < h:

X (n+1)(€)= —(—r—]——;l—i—)—!————x(n+1)\(l(\)l) ------ + ienex (1+2)(£) We =

(n+1 )!

FI (x (=1),..., x[M —1), x(0),..., x[n](0), )

(n+ 1)
+ Fn+] (x(—1+ £),..., x[n+L(—1+ £),
X(£),..., x[n+t1](£)) me

for some 0 < £ < e. Letus look at the two terms that appear on the r.h.s. of Eq. (8).
The question is: Can we estimate them by having only xo and already computed x * [K]
from Subroutine 1? Let us discuss each of these terms separately.

By Lemma 4, we have forO < k < n+ 1

x[Kl(— + £) e cfo[K ([0, h])

Moreover, by Definition 2, we know that:

X [K](—1) e xp,[K
x [K](0) e xh,[K]

So those terms can be easily obtained. The problem appears when it comes to x (£)
and x [K](£), for £ e (o, h)

Assume for a moment that we have some a priori estimates for x ([0, h]), i.e., a
set Z ¢ R such that x ([0, h]) C Z.We call this set the rough enclosure of x on the
interval [0, h]. Having rough enclosure Z, we could apply Eq. (7) (as in the case of
Subroutine 1) to obtain the estimates on x [K] ([0, h]) for k > 0. So the question is:
how to find a candidate Z and prove that x ([0, h]) C Z ? The following lemma gives
a procedure to test the later.

Lemmab5 LetY ¢ R beaclosedinterval and let x0 be afunction defined on [—1, 0],
Assume that thefollowing holds true:

Z := xo0(0) + [0, h] mf (X0 ([—1, —1+ h]),Y) C int(Y). (8)
Then the solution x (t) of Eq, (1) with the initial condition x0 exists on the interval
[0, h] and
x ([0, h]) C Z.
Proof We can treat Eq. (1) on the interval [0, h] as a non-autonomous ODE of the

form:
x' = f (a(t), x),

1 Springer
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where a(t) = x(t) fort e [—1, —1+ h] is a known function. Now the conclusion
follows from the proof of the analogous theorem for ODEs. The proof can be found
in [35]. O

Using Lemma 5, a heuristic iterative algorithm may be designed such that it starts
by guessing an initial Y, and then it applies Eq. (8) to obtain Z . In a case of failure
of the inclusion, i.e., Z ¢ Y, a bigger Y is taken in the next iteration. Please note
that this iteration may never stop or produce unacceptably big Y, especially when the
step size h is large. Finding arough enclosure is the only place in the algorithm of the
integrator that can in fact fail to produce any estimates. In such a case, we are not able
to proceed with the integration, and we signalize an error.

Now we can summarize the algorithm for Subroutine 2 as follows:

clK := cp,[KI([o,h]), ke(O,....,n + 1}
d[o] := Z asin Eq.(8),

d[K := 1 wF[k=](c[o], ..., c[k=],d[o], ..., d[k—=]) , ke (1, ,n+ 1}
B o=—n + by JEMRXQLT xpAN} aglol o ag[n])

b* := F[n+1](cfo], ..., c[n+1],d[o],..., d[n+1]),

x,1,[n+1] := a* + b* mfo, h]

Remark 3 Please note that the term a* is computed the same way as other coefficients
in Subroutine 1 and the rough enclosure do not influence this term. In fact this is
the n + 1th derivative of the flow w.r.t. time. It is possible to keep track of those
coefficients during the integration and after p steps (full delay) those coefficients may
be used to build a (p, n + 1)-representation ofthe solutions—this is a direct reflection
of consequences of Lemma 2.

This factis also important for the compactness of the evolution operator— an essen-
tial property that allows for an application of the topological fixed point theorems in
infinite-dimensional spaces.

Forward Part: Subroutine 3
The last subroutine of the forward part can be simply obtained by using Definition 2

and Eq. (5):
n

xA,o]: = £ x1'* hk+ x fn+t1]-hn+t.
k=0

Notice that the possible influence of the usually overestimated rough enclosure Z is
present only in the last term of the order hn+1, so for small h (large enough p), it
should not be aproblem.
The Integrator: Altogether

Strictly speaking, the mapping Ih does not produce a (p, n)-f-set which exactly
represents xh = y(h, xo0). Instead, it returns some bigger set [xh] such that xh is
contained in it. O f course, we are interested in obtaining aresult as close as possible to
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the set of true solutions represented by p(h, xo0). So, for technical reasons which will
be apparentin Sect. 2.3, we decompose lhinto Ilh = @+ R suchthat @ :Rm” Rm
and R : P (Rm)~ P (Rm).Let @(x) = $ and put:

$i,K := xi—L[K], ie{2, 9)
$ 1-[0] := xo,[0], (10)
1 = L . F [k—] s/xp,[o] X pik—=1$ 1[0 L k—] ke {1, |n}
| (11)
n
sof == 7 (12)
k=0

Let R(x) = r and put:
rip+a]  xi—= bt o 6 by,
rulpvl = 2 b o, ny,
rofo] _ y m(a* + b* m[o,h]).

The map @ is called the Taylorpart, while the map R is called the Remainder part.
This decomposition is important for an efficient reduction of negative effects caused
by using interval arithmetic, primarily the wrapping effect, but also the dependency
problem to some extent.

2.3 Reducing the Wrapping Effect

A representation of objects in computations as the interval sets has its drawbacks.
Possibly the most severe ofthem are the phenomena called the wrapping effect and the
dependencyproblem. Theirinfluence is so dominant that they are discussed in virtually
every paper in the field of rigorous computations (see [35] and references therein).
The dependency problem arises in interval arithmetic when two values theoretically
representing the same (or dependent) value are combined. The most trivial example
is an operation x x which is always 0, but it is not the case for intervals. For
example, applying the operation to the interval x = [—1, 1] gives as the result the
interval [—2, 2] which contains o, but it is far bigger than we would like it to be.

The wrapping effect arises when one intends to represent aresult of some evaluation
on sets as a simple interval set. Figure 2 illustrates this when we consider the rotation
of the square.

One of the mostly used and efficient methods for reducing the impact of the wrap-
ping effect and the dependency problem was proposed by Lohner [15]. In the context
of the iteration of maps and the integration of ODEs, he proposed to represent sets by
parallelograms, i.e., interval sets in other coordinate systems. In the sequel, we follow
[35], and we sketch the Lohner methods briefly.

By J we denote a computation of Ih(m) using point-wise evaluation of the Taylor
part, i.e.,

FoCTI
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Fig. 2 An illustration of the wrapping effect problem for a classical, idealized mathematical pendulum
ODE x = —x. The picture shows a set of solutions in a phase space (x,x). The gray boxes present points
of initial box moved by the flow. The colored boxes present the wrapping effect occurring at each step when
we want to enclose the moving points in a product of intervals in the basic coordinate system. For example,
the blue square on the left encloses the image of the first iteration. Its image is then presented with blue
rhombus which is enclosed again by an orange square. Then the process goes on (Color figure online)

J(x]) := 1 U ®(x) I+ R(XxD-
\xe[x] )

Let us consider an iteration:
[xk] = J ([xk—]), ke N
with initial set [xo].
Let us denote xk = mid([xk]) and [rk] = [xk] —xk. By a simple argument based
on the mean value theorem [35], it can be shown that:

[xk+1] C @(xk) + [D O ([xk])] m[rk] + R([xK]).

We can reformulate the problem of computing [xk+i] to the following system of
equations:

[AK] = [DO([XkDI. (13)
xk+1 = mid ([0(xk) + R([XkD]), (14)
[Zk+1] = @([xk]) + R([xk]) —xk+1, (15)
[rk+1] = [AK] m[rk] + [Zk+1]. (16)

Now the reduction in the wrapping effect could be obtained by choosing suitable
representations of sets [rk] and a careful evaluation of Eq. (16). The terminology used
for this in [35] is the rearrangement computations. We will briefly discuss possible
methods of handling Eq. (16).

ﬁOC?l
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Method 0 (Interval Set): Representation of [rk] by an interval box and the direct
evaluation of (16) is equivalent to directly computing Ih([xk+1]). This method is
called an interval set and is the least effective.

Method 1 (Parallelepiped): we require that [rk] = Bk m[rk] for [rk] being an interval
box and Bk being an invertible matrix. Then (16) becomes:

[rk+1] = Bk+l "B—+1[Ak]Bk+1 ' [rk] + B— \[zk+1]) .

Since it is difficult to obtain the exact matrix inverse in computer calculations, we will
use interval matrices [Bk] and [B—1] that contain Bk and B—1, respectively. Thus the
equation on [r] becomes:

[rk+1] = ([Bk+\][[AK][Bk+1~ m[rk] + [Bk+1] 1[Zk+1].

If [Bk]’s are well-chosen, then the formula in brackets can be evaluated to produce a
matrix close to identity with very small diameter, thus the wrapping effect reduction
is achieved. The Parallelepiped method is obtained when Bk+ 1 is chosen such that
Bk+1 e [AK][Bk+ 1]. This approach is of limited use because of the need to compute
the matrix inverse of a general matrix Bk+1, which may fail or produce unacceptable
results if Bk+ 1is ill-conditioned.

Method 2 (Cuboid): this is a modification of Method 1. In this method, we choose
U e [Ak][Bk+1], and we do the floating point approximate QR decomposition of
U = Q mR, where Q is close to an orthogonal matrix. Next we obtain matrix [Q] by
applying the interval (rigorous) Gram-Schmidt method to Q, so there exist orthogonal
matrix Q e [Q]and Q— = QT e [Q]T.We set Bk+1 = [Q], B— = [Q]T.
Method 3 (Doubleton): this representation is used in our computations as it proved
to be the most efficientin numerical tests [24] and in other applications; see [35] and
references therein. The original idea by Lohner is to separate the errors introduced
due to the large size of initial data and the local errors introduced by the numerical
method at every step. Namely, we set:

[rk+1] = [Ek+1][r0] + [k+1]
[rk+1] = [AK][rk] + [Zk+1]
[Ek+1] = [AK][EK] Eo= Id

where [rk] is evaluated by any method 0-2. To reduce the possible wrapping effect in
the product [AK][EK], Lohner proposed the following:

[rk+1] = Ck+1[r0] + [k+1]
[~+1] = [AK][rk] + [Zk+1] + ([AK]Ck —Ck+1) [ro]
r0 =10 Co= Id Ck+1 e [Ak]Ck.

Again, [I] is evaluated by any method 0-2. Please note that there is no need to inverse
a matrix in the doubleton representation when [I is evaluated either by Method 0 or
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Method 2, so this approach is suitable for the case where Ak may be close to singular.
In the computer-assisted proofs presented in this paper, we use Method 0 to represent
[r] because it is less computationally expensive and, in our current setting, using the
other methods have not improved the results. This is puzzling, as it contradicts our
experience with ODEs where Method 2 is preferable, and thus it might be worthwhile
to investigate this phenomena in some later study.

2.4 Optimization Exploiting the Block Structure of D®(x)

In our setting, [Ak] = D@ (xk), where xk is the (p, n)-f-set in the kth step of
integration. As [Ak] ism x m matrix, where m is the size of (p, n)-representation
(m =p m(n + 2) + 1), and therefore, if we decide to represent the error part [r] in
doubleton by interval box (Lohner Method 0), then the matrix multiplications involv-
ing the matrix [Ak] take the most of the execution time in one step of integration in
the Lohner algorithm, especially for large n and/or p. From Eqgs. (9- 12), we see that
D@ (x) has a nice block structure and contains a large number of zero entries, i.e.,
it is a sparse matrix. This structure is well visible when we use the following index
function I:

1(0,0) = 1,
I(i,k) =1+ (i—1)m(n+ 1)+ k, 1<i<p,0<k<n,
I(i,n+ 1)=1+ p m(n+ 1)+ i, 1< i< p.

Under this index function, [AK] is of the form:

All 0 A130
® o © 1d o o

(0] 0 0O O

where A11 isn + 1 x 1 matrix (column vector), A3 isn+ 1x n+ 2,and Id is an
identity matrix of size (p —1)m(n +1). Therefore, we use this index function to define
blocks for all matrices and vectors appearing in all methods discussed in Sect. 2.3,
as, with such block representation of matrices and vectors, we can easily program the
multiplication by a matrix or a vector so that all the operations on any zero block are
avoided. We will refer to this as the optimized algorithm.

If we have an arbitrary matrix C, then the cost of computing [Ak] mC by a stan-
dard algorithm for the matrix multiplication is of order O (n3 mp 3) in both the scalar
addition and multiplication operations (we remind, that p, n are the parameters of
(p, n)-representation). In the case of the optimized algorithm, the block structure and
sparseness of [Ak]reduce the computational costto O (n2mp 2) in scalar additions and
0 (n3) in scalar multiplications.

The computation times for the computer-assisted proofs discussed in Sect. 4 on the
2.50 GHz processor (see Sect. 4 for a detailed specification) are presented in Table 1.
We see that the optimized algorithm is much faster than the direct multiplication, the
speed-up is evident especially for the larger (p, n)-representations.

EoCTI
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Table 1 A comparison of the execution times for computer-assisted proofs for standard and optimized
matrix multiplication on 2.5 GHz processor (no multi-threading)

Proof (p, p) Standard multiplication Optimized multiplication
Theorem 12 (32, 4) 455 128
Theorem 13 (128, 4) 133 min 12 min

3 Poincare Map for Delay Differential Equations
3.1 Definition ofa Poincare Map

We begin with the definition of the (transversal) section of the semiflow p associated
with (1).First, we would like to recall the ODE setting where, foraflowp :R xRm~
Rm, a (local) transversal section S is usually defined as a (subset of) smooth manifold
M of codimension one satisfying the transversality condition:

d
— p(t,x0)|t=0 = f (x0) e TXOM , x0 e S, a7)
where TxM denotes the tangent bundle atx .1f M is a hyperplane
M = {XxeRm|smx = a}

for some given normal vector s e Rm, ||s|| = 0 and a e R, then condition (17)
becomes
s mf (x0) = 0, xoe S.

We will use a similar approach in the context of the semiflow p associated with
(1). We will restrict ourselves to the linear sections, and we will use the fact that from
Eq. (4) and Lemma 2, it follows

d
dtp(t,xo)|t=to  xto

for any to > t. Moreover, xto is of class Cp— wherever to > n mt. This observation
will be crucial for the definition of a transversal section in the DDE context and, later,
for the rigorous computation of Poincare maps.

Definition 6 Let p be the semiflow associated with the system (1).Letn e N, s :
Cp ™ R be acontinuous affine mapping, i.e., s(x) = I(x) + a, where | is a bounded
linear functional and a e R. We define a global Cn-section as a hyperplane:

S = {xeCp]|s(x)= 0}

Any convex and bounded subset S ¢ S is called a local Cn-section (or simply a
section).
FoCTI
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A section S is said to be transversal if there exists a convex open set W ¢ Cn such
that
Wnb5 = U, W = W—U U U W+,

where
W—= (x e W | s(x)< 0}, W+= (x e W |s(x) > 0}, cl(U)=cl (S),

satisfying the condition
I (x)> 0, Vxe Wn Cn+1. (18)

We will refer to (18) as the transversality condition.

Remark 4 Please note that the requirement x e W n Cn+1 in (18) is essential to
guarantee that x and thus I(x) in (18) are well defined, as, for xo e Cn+1and t > 0,
it might happen that y(t,x0) is of class Ck, k < n + 1 (the loss of regularity), but
Lemma 2 states thatwe only need to “long enough” integrate the initial functions to get
rid of this problem completely. These two phenomena are illustrated in the following
example.

Let xo e W for W as in Definition 6. In general, it happens thaty(e, x0) / Cn for
small e > 0. This may seem at first to contradict intuition from Lemma 2, but in fact
it is not. Consider the following r.h.s. of Eq. (1):

f (z1,22) = Z1, Vz1,Z2 e R

Let xo = 1be an initial function and let x be a solution to Eq. (1) with x |[4,0] = xo
and delay t = 1. We see thatx(t) is C“ on [—1, 0). However, att = 0, we have

0=x'(09 = 1= x"(o+) = f (x(—1), x (0)),

soxt:[-1, 0] —R is only ofclass Co for any t e (0, 1). This is a very undesirable
phenomena, butthe solution will be smoothed after a full delay, according to Lemma 2.
Asx(t)= 1+ 1lon [0, 1], we have att = 1

1= x'"(r)=x'"(1+) = f (x(0), x (1)).

One can show again that x (2)(1— = x (2)(1+), therefore x is of class C1 on (1, 2),
and the smoothing of solutions goes on with the increasing t.

This shows for any xo e Cn, if m > n mt, then we have “only” y(m, x0) e Cn
in a general case. On the other hand, “long enough” integration time m can be used
to guarantee that every initial function x e Co has a well defined image in Cn under
mapping y(m, m). This is essential in the following construction of a Poincare map for
DDEs (Theorem 5 and Definition 7).

Theorem 5 Assumen e N, V ¢ CO.Let S be a local transversal Cn-sectionfor (1)
and let W be as in Definition 6. Letm = (n + 1) mt.

ﬁoCJI
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Assume that there existtl,t2 e R, a < t1 < t2, such that thefollowing conditions
holdfor all x e V:

p([t1, t2], x) C W, <p(tl,x) e W— and p(t2,x)e W+. (19)

Then, for each x0 e V, there exists unique tS(x0) e (t1,t2) such that
p (tS(x0), x0) e S, Also, tS : V ~ [t1,tz2] is continuous,

Proof Let xo e V. By assumptions, p(t,x0) = xt e W fort e [tl,t2] but also
xt e Cn+1, by the assumption on constants a, t1, t2 (by Lemma 2). So s (xt) is well
defined and Condition (18) guarantees that

d Ed \
—s(p(t,x)) =1 (—p(t,x)\ = I(xt) > o, t e [t,t2].

Therefore, the function defined by s(t) := s(xt) is continuous and strictly increas-
ing on [t1,t2]. Now, from (19), it follows there exists unique to e (t1,t2) such that
s (p(t0,x0)) = c. Together with continuity of p (Lemma 1), this implies continuity of
ts 1V N (L, t2). m|

Definition 7 The same assumptions as in Theorem 5, in particular assume t1 > t m
(n + 1) = a. We define the transition map to the section S after (at least) a by

P>a:V "~ S CCn, P>a(x0):= p (ts(x0), x0),

for tS defined as in Theorem 5.1f V ¢ S, then the map P>a will be called the Poincare
return map on the section S after a .

Finally, we state the last and the most important theorem that will allow us to apply
topological fixed point theorems to P>a.

Theorem 6 Consider Poincare map (aftera) P>a : S D V ~ Sfor some section S
under the same assumptions as in Theorem 5, especially assume (n + 1) mt < a <
tS(V) e [tz,t2],

Assume additionally that p([a, t2], V) is bounded in Cn,

Then the map P>a is continuous and compact in Cn, ie,, if K ¢ V is bounded,
then cl (P>a(K)) is compactin Cn,

Proof By Theorem 5, P>a is well defined for any xo e V sincet:1 > a > (n+ 1) mt
and P>a (x0) e Cn+1.

The continuity follows immediately from the continuity of tS (Theorem 5) and p
(Lemma 1).

Let D = P>a (V). From our assumptions, it follows that D is bounded in Cn. A
known consequence of the Arzela-Ascoli Theorem is that, if D C Cn is closed and
bounded, x e D, x (n+ 1) exists, and there is M such that supt |x(n+1)(t) < M for all
x e D, then D iscompact (in Cn-norm). Therefore, to finish the proof, it is enough to
show that there is a uniform bound on P>a (x)(n+ 1). For this, it is sufficient to have a
uniform bound on (p(t,x))(n+1) fort e [a, supxeV tS]. The existence of this bound
follows from boundedness of derivatives up to order n and formula (7). 0O
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The restriction on the transition time may seem a bit unnatural since each solution
becomes C*“ eventually, as discussed in Remark 4. In fact, it should be possible to
work directly with the solutions on the Cn solution manifold Mn (i.e., Mn ¢ Cn and
<p(t, Mn) ¢ Mn for allt > 0). When we restrict the flow to the solutions manifold
M n, then we do not need to demand that the transition time to the section is bigger
than m = (n + 1) mt. Instead, to obtain the compactness, we need to shift the set
forward only by one full delay. Therefore, we obtain the following theoretical result:

Theorem 7 Consider Poincare map (after t) P>t : S DV~ Sfor some section§,
where V. ¢ Mn, Lettland t2 be like in Theorem 5,

Assume that p([0, t2], V) is bounded in Cn,

Then the map P>t : V »~ Sn Mniscontinuous and compact inCn, ie,, ifKk ¢ V
is bounded, then cl (P>m(K)) is compact in Cn,

At the present stage of the development of our algorithm, we do not have the
constructive parametrization of the manifold M n, therefore we need to use the “long
enough” integration time m in the rigorous numerical computations.

3.2 Rigorous Computation of Poincare Maps

The restriction of the integration procedure Ih (Sect. 2) to the fixed-size step h = p
is a serious obstacle when we consider computation of Poincare map P>m :V ~ S.
Obviously, if we assume for simplicity thatm = qmp,q e NandtS(V) ¢ m+ [£1, £2]
with o < £1 < £2 < p, then we have to find a method to compute image of the set
after small time £ e [£ 1, £2]. The definition of the (p, n)-representation together with
Eq. (5) give a hint how to compute the value of the function (and the derivatives up
to the order n) for some intermediate time 0 < £ < h. But again, we face yet another
obstacle, as computing the (p, n)-f-set representing p(£, x0) for all initial functions
X0 in some given (p, n)-f-set turns out to be impossible. It can be seen from the very
same example as in Remark 4. In the example, x£ would be only Co att = —£. So if
£ is not a multiple of h, then, for any n > o, there is no (p, n)-representation of x£,
unless we restrict the computations to the set Cp n Cn+1 (or to the solutions manifold
M n). This is again a reason for an appearance of the “long enough” integration time
in Definition 7.
This discussion motivates the following definition and lemma.

Definition 8 Let xo be a (p, n)-representation, and let xh = Ih(x0) and cxo be as
in Definition 5. For £ e [0, h] we define (p, n)-f-set x£ by the following (p, n)-
representation:

X =4k (£), ie{,...pH,ke{O,....,n + 1}
XE'[n+1 := hulrxtin+1], xh[n+1) , ief{1,... p},
n+1
X«.m = il""k'-£k.
k=0
FQ: 7L
u
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For a given x0 we denote:
le(x0) = xe

Function le will be called the shift by e or the e-step integrator.

Remark 8 le(x0) is constructed in such a way that it contains all solutions to (4) for
initial functions x0 e Supp(x0) n M n+1 after time t = e.

Theorem 9 Assume thate e [0, h], x0 isa (p, n)-f-set, Let define
xj = lh(xj—), j e N.

Ifn ep < g e N, then
p(q =h + e, x) e le("q)

for all x e x0,

Proof Sinceq > nep, thenqg *h > n «t and the proof follows from Lemmas 2,4 and
Definition 2. O

Now, the application of Ih and le to compute P>a is straightforward.
Program P>a
Input:

1. asection S;
2. a(p, n)-f-setx0 C S;
3.a=(n+ 1) et;

Output:

1. ge N, 0O<el<e2< p suchthattS(x0) Cqep + [el,e2]fora <q-=p;
2. (p, n)-f-set x>a such that P>a (x0) e x>a for all x0 e x0;

Algorithm:

1. do atleast (n + 1) «p iterations of Ih to guarantee the Cn+1regularity of solutions
for all initial functions (so the map P>(,,+1).r is well defined and compact).

2. findg > (n+1)-pandele2 < h (forexample by thebinary search algorithm) such
that for the assumptions of Theorem 5 are guaranteed for section S,t1= qe*h+ el
t2=q *h + e2 and set W defined by

W := Cnn (l[et,e2] > 15 (X0) m

3. By assumptions and by Theorems 5 and 9, we know that we have Pt1(x0) e W n S
for each x0 e V.Moreover, by Theorem 6, the map Ptl is compact (in Cn).

Please note, that the operator I[et,e2] should be interpreted as computation of the
sum (Jee[el €2] le(-) or as any reasonable bound on this sum. In our program, we just
evaluate le with e = [el,e2].
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Remark 10 [Controlling the wrapping effect for le] We can use the decomposition of
Is into @e and Re such that the Lohner algorithm can again be used in the last step
of the integration as described in Sect. 2.3. We skip the details and refer to the source
code documentation of the library available at [24].

Now, the question arises: How to represent the section S in a manner suitable for
computation of the program P>m?

3.3 (p, n)-Sections

Since we areusing the (p, n)-representations to describe functions in Cn,itis advisable
to define sections in such a way that it would be easy to rigorously check whether
x e S for all functions represented by a given (p, n)-f-set. The straightforward way is
to require | in the definition of S to depend only on representation coefficients x I,[k].

Definition 9 Let h,k e R for (i,k) e C = {1,..., p}x{0,..., n}U {(0, 0)}. We
assume that at least one li,k is not equal to zero. Leta e R be given. Forx e Cp we
define a linear continuous map | : Cn "~ R by

I(x) = J2 I,kx[KI(—i mh). (20)
(i,k)eC

The section S = {x e Cn 11(x) —a = 0} is called a (p, n)-section.

3.4 Choosing an Optimal Section

Numerical experiments with the rigorous integrator have shown that the choice of
a good section is a key factor to obtain sufficiently good bounds on images of the
Poincare map to be used in computer-assisted proofs reported in Sect. 4. The section
has to be chosen so that the diameter of the bounds on transition time tS should be as
small as possible; see Fig. 3.

We will discuss the problem of choosing optimal section in the ODEs case. Later,
in Sect. 4, we will apply a heuristic procedure based on this discussion to obtain a
good candidate for an optimal section in the DDEs setting.

Let us consider an ODE of the form:

x'= f(x), f eCi1, xeRnN. (21)

Let xo be a periodic orbit of period T of the flow p induced by (21). Then, f (x0) is
aright eigenvector of the matrix M = pp (T, x0) with eigenvalue X = 1. Let | be a
row vector which is a left eigenvector of M corresponding to X = 1. Let us assume,
that the periodic orbit passing through xo is hyperbolic. In such a case, the left and
right eigenvectors corresponding to the eigenvalue X = 1 are uniquely defined up to a
multiplier and we have

| mf (x0) = o-

<1 Springer



Found Comput Math (2018) 18:1299-1332 1321

Fig. 3 Left: an illustration of the problem with big difference in transition time tS for poorly chosen

section S.If seq ¢ —+ [e1,e2]and |e1 —e"|is large, then I[e1,e2] produces estimates on solutio
from the section (blue rectangles), so the interval enclosure W of all solutions tend to be very large (green

rectangle). Right: if the section is chosen carefully, then all the solution obtained from |~ ~2] are close to

the section, so the set W is small

We normalize | so that
I «f (x0) = 1.

Forany givenrow vector v e Rn,letus consider asection Sv = {x |v-x —v-x0 = 0}.
We define
vhr = {x e Rn|vex = 0}

hence, vz is the tangent space to the section Sv.
Under the above assumptions, we have the following lemma.

Lemmase Ifvef (x0) = 0, then Sv is locally transversal and

dtsy ( v elp (T, x0)
ET N ol ¢2)

where tS, is the transition time to the section Sv, defined in some neighborhood ofx0,
Moreover,

dtSy (x0) b = 0, forb e v\ (23)
dx
iffv = alfor somea = o

Proof The transition time to section Sv is defined by the following implicit equation
vV ep(tSv (Xx), x) —Vv exo0 = 0.

From this, we immediately obtain (22).
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The second assertion is obtained as follows. At first, assume (23). We have

dts V ml- (T, x0)
~rSL(x0) mf (x0) = dx uf (x0
dx (0 (x0) Va f (x0) (x0)
di \
Do AP ) mf (xOM S e - m(v mf (x0)) = -1
V mf (x0) \d x J V =uf (x0)
Therefore, Vis proportional to I.
The other direction of the second assertion is obvious. 0

In simple words, Lemma 6 states that choosing the left eigenvector of the mon-
odromy matrix pP(t,x0) gives a section such that the return time to this section is
constant in the first order approximation.

4 The Existence of Periodic Orbits in Mackey-Glass Equation

The Mackey-Glass system (2) is one of the best known delay differential equations.
The original work of Mackey and Glass [17] spawned wide attention, being cited by
many papers with a broad spectrum of topics: from theoretical mathematical works
to neural networks and electrical engineering. Numerical experiments show that, as
either parameter € [17] or n [16] is increased, the system undergoes a series ofperiod-
doubling bifurcations, and they lead to the creation of an apparent chaotic attractor.

In this section, we present computer-assisted proofs of the existence of attracting
periodic orbits in Mackey-Glass system (2).We use the classical values ofparameters:
t = 2,jJ3= 2andy = 1,and we investigate the existence of periodic orbits with
n = 6 (before the first period doubling) and n = 8 (after the first period doubling)
[16]. We would like to stress, that we are not proving that these orbits are attracting.
This would require some C 1-estimates for the Poincare map defined by (2).

4.1 Outline ofthe Method for Proving Periodic Orbits

The scheme of a computer-assisted proof of a periodic orbit consists of several steps:

1. find a good, finite representation ofbounded sets in the phase space Ck (or in other
suitable function space),

2. choose suitable section S and some a priori initial set V on the section,

3. compute image of V by Poincare map P>m on section S,

4. provethatthe map P>m,thesetV ,andtheset W := P>m(V) all satisfy assumptions
of some fixed point theorem so that it implies the existence of a fixed point for
P>min V. This gives rise to the periodic orbitin Eq. (1).

To this point, we have presented ingredients needed in steps 1 and 3. In Step 4, we
will use the Schauder fixed point theorem [27,34]:

Theorem 11 [Schauder Fixed Point Theorem] Let X be a Banach space, let V ¢ X

be non-empty, convex, bounded set and let P : V — X be continuous mapping such
that P (V) ¢ K ¢ V and K is compact. Then the map P has afixed point in V.
FQ: 7L
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Theorem 11 is suitable for proving the existence of periodic orbits for which there is a
numerical evidence that they are attracting. The unstable periodic orbits can be treated
by adopting the covering relations approach from [e], which may be applied in the
context of infinite-dimensional phase space (for such an adaptation in the context of
dissipative PDEs; see [37]).

In Sect. 3.4, we have presented some theoretical background on the selection of
a suitable section that is the foundation of Step 2. Now, we would like to put more
emphasis on technical details, as the procedure in Step 2 introduces some difficul-
ties due to large size of the data defining (p, n)-representations. In the proofs we use
(32,4)- and (128,4)-f-sets with representation sizes m = 193 and m = 769, respec-
tively. Thus we are not able to simply “guess” good coordinates or refine them “by
hand”—we need an automated way to do that.

The following discussion is a bit technical and involves some heuristics, and thus
it is probably relevant only for people interested in implementing their own version
of the software. Those interested only in the actual proofs of the existence of periodic
orbits should move to Sect. 4.3.

4.2 Finding Suitable Section and Good Initial Set fora Computer-Assisted Proof

Here we give an outline for the selection of a good initial data for the proof of the
existence of an apparently attracting orbit. It consists of the following steps:

1. find a good numerical approximation xo of a periodic solution to Eq. (1),

2. find agood section S—by this we mean the difference between transition times t1
and t2 (as defined in Theorem 5) is as small as possible (in the vicinity of xo),

3. choose a good coordinate frame in S for the initial (p, n)-representation, and then
choose the (p, n)-f-set V ¢ S, such thatxo e V and P>m(V) c V.

We will now describe shortly how each of the above steps was implemented. In this
description, we refer to non-rigorous computations, that is algorithms: defined as
in Sect. 2, and le defined as in Sect. 3, but with the remainder terms depending on the
rough enclosure ignored and explicitly setto 0. Using non-rigorous integrators Ih and
le, we construct a finite-dimensional semiflow p that approximates p by

p(t,x) := 180 leg(x) t=qgmh+e e< h

Now, the procedure for finding good initial conditions can be described as follows:
Step 1. Since we are looking for an attracting orbit, we start by non-rigorously inte-
grating forward in time an initial function xo = 1.1 for some arbitrary, long time Titer,
until we see that x.Titer approach the apparently stable periodic orbit. Then, we refine
x.Titer by the Newton algorithm applied to x ~ P>m(x) —x, where the map P>mis a
non-rigorous version of P>mdefined as a first return map for semiflow p to a simple
section S = {x | x (0) = xTiter (0)}. The output of this step is a numerical candidate
for the periodic solution xo, given by its (p, n)-representation xo such that xo and
P>m(x0) are close.

Step 2. This is an essential step, as numerical experiments with the rigorous integrator
have shown that the choice of a good section is the key factor to obtain tight bounds
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on the image of the Poincare map. We use an observation from Sect. 3.4, and we find
the left eigenvector | of the matrix dp (T, x0) corresponding to eigenvalue 1, where T
is an apparent period of the approximate periodic orbit for the non-rigorous semiflow

. Please note that | might be considered a (p, n)-representation with remainder part
set to o, and therefore, we can define a (p, n)-section by

| mx —1 mx0 = 0, (24)

where the dot product is computed using the coordinates of (p, n)-representation,
i.e., in the vector space Rm, where m is the size of a (p, n)-representation, m =
(n+2)mp + 1.

Step 3. Having a good candidate for the section S (defined by (24)), we need to
introduce the coordinates on it. For this, we create the following matrix:

Now, let C denote the matrix obtained after orthonormalization of columns of A.
Please note that matrix C acts on the variables corresponding to the remainder terms
as an identity. This follows from the fact that li,[n+1] = 0. It is easy to see that all
(p, n)-representations that lie on the section S are given by:

y " xo+ Cy,

for all y such thatnly = o.

Now, on section S, using the coordinates defined by the matrix C, we define a
candidate set [V], in a form of (p, n)-f-set in a following manner. Let [r] ¢ Rm—p
(these correspond to variables x 1~ fork < n) and [B] ¢ Rp (these are bounds for
x I 1]—theremainders) be two interval boxes centered ato such thatdiam (n1[r]) =
0. We put [r0] := [r] x [B], and we define (p, n)-f-set [V] by:

[V] := xo+ C m[ro].

Diameters of n [ro] for i > 2 are selected experimentally to follow some expo-
nential law in parameter k (i.e., diam&ig™r]) & ak for 1 < i < n), as the
periodic solutions to Eq. (2) are at least of class C* and, if x(t) > —1 for all t,
then they should be analytic [18,22]. The remainder [B] is chosen initially such that
diam (B) ~ diam ([ro]). Therefore, the initial selection of [ro] may not be good
enough to satisfy assumptions of Theorem 11 right away. As the dynamics of the sys-
tem is strongly contracting, we hope to obtain a good initial condition by the following
iteration. We start with [V]o = [V] and we compute [V] +1 = P>m([V] ) n [V],
until the condition P>m([V]i) ¢ [V]i is eventually met at some istop. Then, the initial
set for the computer-assisted proofis [V] = Vistop. Both initial sets that are used in
computer-assisted proofs in this paper were generated with such procedure (see source
codes).
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Observe thatwe are notvery careful in the choice ofcoordinates on the section— we
simply choose some basis orthonormal to the normal vector | of the section hyperplane.
Definitely better choice would be to use approximate eigenvectors of the Poincare
map, but in the case of strongly attracting periodic orbits, it is enough to choose a
good section. Observe also, that the orthonormal matrix is easy to invert rigorously,
which is an important step in the comparison of the initial set and its image by the
Poincare map.

4.3 Attracting Periodic Orbits in Mackey-Glass Equation forn = 6 and n = 8

In this section we present two theorems about the existence of periodic orbits in
M ackey-Glass equation. As they depend heavily on the estimates obtained from the
rigorous numerical computations, we would like to discuss first the textual presentation
of numbers used in this section and how they are related to the input/output values
used in rigorous computations.

In the rigorous numerics, we use intervals with ends being representable computer
numbers. The representable numbers are implemented asbinary3 2 orbinary64
data types defined in IEEE Standard for Floating Point Arithmetic (IEEE 754) [28],
so that they are stored (roughly speaking) as s mm me, where s is the sign bit, m is the
mantissa and e the exponent. Such arepresentation means that most numbers with a
finite representation in the decimal base are not representable (e.g., number 0.3333).
In this paper, for better readability, we are going to use the decimal representation
of numbers with the fixed precision (usually 4 decimal places), so we have rewritten
computer programs to handle those values rigorously. For example, if we write in the
text that a = 0.3333, then we put the following rigorous operation in the code:

a = [3333,3333] y [10,000, 10,000].

That is, all numbers presented here in theorems and/or proofs should be regarded by
the reader as the real, rigorous values, even if they are not representable in the sense
of IEEE 754 standard.

In the proofs, we referto computerprogramsm g _stable_neandm g_stable_ns.
Their source codes, together with instructions on the compilation process, can be
downloaded from [23]. The codes were tested on a laptop with Intel® Core™
17-2860QM CPU (2.50 GHz), 16 GB RAM under 64-bit Linux operating system
(Ubuntu 12.04 LTS) and C/C++ compiler gcc version 4.6.3.

4.3.1 Casen = 6

Our firstresult is for the periodic orbit for the parameter value before the first period-
doubling bifurcation.

With n = e, numerical experiments clearly show that the minimal period of the
periodic orbitis around 5.58. In our proof, however, due to the problem with the loss
of the regularity at the grid points, thus the need to use the “long enough” transition
time, we consider the second return to the section.
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Numerical experiments indicate that the orbit is attracting with the most significant
eigenvalues of the map P>m (again, this is the second return to the Poincare section)
estimated to be:

ReX —0.0437 —0.0437  0.0030 0.0030 —0.0028  0.0019 —0.0003 —0.0003  0.0005
ImX 0.0793 —0.0793  0.0097 —0.0097 0.0018 —0.0018
X 0.0905  0.0905 0.0102  0.0102 0.0028 0.0019  0.0019  0.0019 0.0005

Therefore, the contraction appears to be quite strong, so the choice of good coor-
dinates on the section appears to be not important.
We obtained the following theorem.

Theorem 12 There existsa T-periodic solutionx withperiod T e [10.9671, 10.9673]
to Eq. (2)for parametersy = 2,a = 1, t = 2 andn = 6. Moreover,

X —X co < 0.02
X =X ¢ < 0.05
X —x C2 < 0.08
r—Xx < 0.13
r—Xx 4 < 0.18

for x defined by

x (t) = 0.9773
2n 2n
—0.0031 mcos | — w2 mt | + 0.2398 msin w2 mt
~T ~T
2n 2n
+ 0.0165 mcos | = mi mt | —0.0043 msin T u4 mt
2n 2n
+ 0.0102 lcos(—T M6 Wt ) —0.0011 MSin T G mt
) 2n
—0.0007 mcos 12n mg mt ) + 0.0014 msin T mg mt

Proof Verification of assumptions of the Schauder theorem is done with the computer
assistance in the program m g _stable_nse. It uses the (p, n)-representation of the
phase space with p = 32 and n = 4. Initial (p, n)-f-set [xo] is provided directly in the
source code, and it was selected with procedure described in Sect. 4.2. For the map
P>m,m = (n + 1) mt = 10, which represents the second return to the section S, we
obtained:

tSe m+ [e] ¢ [10.9671, 10.9673],

t t
m=q— = 175 — ,

p p
[e] = [0.02960307544, 0.02971816895],
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which guarantees the Cn+1-regularity of the solutions and the compactness of the
map P>m (in Ck norm for k < n). The inclusion condition P>m ([x0]) ¢ [xo] of the
Schauder fixed point theorem is checked rigorously; see output of the program for
details. Together, these two facts guarantee the non-emptiness of Supp (n+1)([xo]).
The transversality is guaranteed with I(x) > 0.2828 for all x e Cn+1n P(x0). The
distance in Co norm is rigorously estimated to

lix —x ||Co < 0.01902867681.

Similarly, we have verified the other norms; see output of the program. 0O

The execution of the program realizing this proof took around 12 seconds on 2.50
GHz machine.

The diameter of the estimation for period T (also for the last step [e1, e2]) obtained
from the computer-assisted proofis close to 1.15 m10—4.

A graphical representation of the estimates obtained in the proofis found in Fig. 4.

4.3.2 Casen = 8

For n = 8 we consider the periodic orbit after the first period doubling. This time
the period of the orbit is long enough to overcome the initial loss of regularity, so we
consider the firstreturn Poincare map.

Numerical computation shows thatthe orbitis attracting with the 10 most significant
eigenvalues of the map P>mestimated to be:

ReX  0.3090 —0.1359 —0.0067 —7.58 m10— 6.58 W10— —1.230—4  2.184 w105
ImX 6.265 m10—6
X 0.3090 0.1359 0.0067 7.58 m10— 6.58 m10—4 12304 2272 w105

Theorem 13 There existsa T-periodic solutionx withperiod T e [11.1350, 11.1353]
to Eq. (2)for parametersy = 2, a = 1, t = 2 and n = 8. Moreover,

X —X o < 0.012

N

x —X ¢, < 0.06

X —X ¢c2 < 0.20
x —X 3
x —X o < 1.25

for x defined by

X (t) = 0.9480

,'2n \ . EZn
+ 0.0477 mcos (— mlmt 1—0.0689 msin | — mlmt
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X
1.4
1.2
1

(N

§ 0.8
0.6
0.4

0.4 0.6 0.8 1.2 1.4

X (t)

Fig. 4 Top: approximate function x (blue) and estimates on the value of the true solution obtained from
computer-assisted proof (red). Bottom: solution plotted as parametric curve r(t) = (x(t), x(t —t)) (Color
figure online)

+ 0.2516 *cos ( £n *2 «t" + 0.1120 «sin L2 ot

,'2n \ . (|2n
+0.0242 ecos (— + 3+t 1+0.0604«sin I = 3+t

,'2n \ . SZn
—0.0386 ecos (— < 4 M —0.0191 esin | — ¢4 ot
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1.4
1.2
0.8
0.6
0.4
0.4 0.6 0.8 1.2 1.4
X(t)

Fig. 5 Top: approximate function x (blue) and estimates on the value of the true solution obtained from
computer-assisted proof (red). Bottom: solution plotted as parametric curve r(t) = (x(t), x(t —t)) (Color
figure online)

+ 0.0132 ecos ( .5 . t» —0.0068 esin o5 ot

,'2n \ o (2n
—0.0197 ecos (— <+ 6t % 0.0198 esin | — <6 ot

,'2n \ o (2n
+ 0.0077 ecos (— * 7 ¢tj—0.0134 esin | — 7 ot
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0.0053 ecos
0.0005 <cos

0.0018 ecos

Proof The prooffollows the same lines as in the case of Theorem 12 (except this time
we consider the first return to the section). Therefore, we just list the parameters from
the proof.

p =128 n = 4
tS e a+ [e] C [11.1350, 11.1353],
t
a=0q°— = 712 — ,
p p
[e] = [0.01015698552, 0.01016088515],

I(x) > 0.2636, forx e Cn+1n P (x0)
X —X|lco < 0.01138319492 < 0.012.

|

The diameter of the estimation for period T (also for the last step [el, e2]) obtained
from the computer-assisted proofis close to 3.899 «10—6. A graphical representation
of the estimates obtained in the proofis found in Fig. 5.

The execution time was around 12min. This increase when compared to n = 6 is
due to much larger representation size in this case which affects the complexity of
matrix and automatic differentiation algorithms which we are using.

5 Outlook and Future Directions

The results presented in this work might be improved in several ways:

- An extension ofthe integration algorithm to the systems of delay equations in Rk
for k > 1. This is rather straightforward and it does not require any new ideas;

- A differentrepresentation of function sets. Currently, we use the piecewise Taylor
expansions, but other approaches, like the Chebyshev polynomials, mightbe better
as they may produce better approximations on longer intervals;

- avoiding the loss oftheregularity atthe beginning ofthe integration, which imposes
the requirement for the transition time to section tS to be “long enough.” The
complete solution would be to confine the initial condition to the invariant set
Mn C Cn.We are currently working on this matter;

Other goal would be to apply the integrator to prove the existence of hyperbolic
periodic orbits with one or more unstable directions, for example to establish the
existence of LSOPs [10] in some general smooth DDEs, or unstable periodic solutions
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to Mackey-Glass equation. Good theorems, suitable for that task, already exist; see
[37] for the analogous question in the dissipative PDEs setting.

The ultimate goal is to establish tools to prove chaotic dynamics in general DDEs,
such as Mackey-Glass equation.
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