7,013 research outputs found

    Proving Non-Termination via Loop Acceleration

    Full text link
    We present the first approach to prove non-termination of integer programs that is based on loop acceleration. If our technique cannot show non-termination of a loop, it tries to accelerate it instead in order to find paths to other non-terminating loops automatically. The prerequisites for our novel loop acceleration technique generalize a simple yet effective non-termination criterion. Thus, we can use the same program transformations to facilitate both non-termination proving and loop acceleration. In particular, we present a novel invariant inference technique that is tailored to our approach. An extensive evaluation of our fully automated tool LoAT shows that it is competitive with the state of the art

    Proving Non-Termination via Loop Acceleration

    Get PDF
    We present the first approach to prove non-termination of integer programs that is based on loop acceleration. If our technique cannot show non-termination of a loop, it tries to accelerate it instead in order to find paths to other non-terminating loops automatically. The prerequisites for our novel loop acceleration technique generalize a simple yet effective non-termination criterion. Thus, we can use the same program transformations to facilitate both non-termination proving and loop acceleration. In particular, we present a novel invariant inference technique that is tailored to our approach. An extensive evaluation of our fully automated tool LoAT shows that it is competitive with the state of the art

    A Calculus for Modular Loop Acceleration and Non-Termination Proofs

    Get PDF
    Loop acceleration can be used to prove safety, reachability, runtime bounds, and (non-)termination of programs. To this end, a variety of acceleration techniques has been proposed. However, so far all of them have been monolithic, i.e., a single loop could not be accelerated using a combination of several different acceleration techniques. In contrast, we present a calculus that allows for combining acceleration techniques in a modular way and we show how to integrate many existing acceleration techniques into our calculus. Moreover, we propose two novel acceleration techniques that can be incorporated into our calculus seamlessly. Some of these acceleration techniques apply only to non-terminating loops. Thus, combining them with our novel calculus results in a new, modular approach for proving non-termination. An empirical evaluation demonstrates the applicability of our approach, both for loop acceleration and for proving non-termination.Comment: arXiv admin note: substantial text overlap with arXiv:2001.0151

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape

    Proving Non-Termination by Acceleration Driven Clause Learning

    Full text link
    We recently proposed Acceleration Driven Clause Learning (ADCL), a novel calculus to analyze satisfiability of Constrained Horn Clauses (CHCs). Here, we adapt ADCL to transition systems and introduce ADCL-NT, a variant for disproving termination. We implemented ADCL-NT in our tool LoAT and evaluate it against the state of the art

    A Calculus for Modular Loop Acceleration

    Get PDF

    A Calculus for Modular Loop Acceleration

    Get PDF
    Loop acceleration can be used to prove safety, reachability, runtime bounds, and (non-)termination of programs operating on integers. To this end, a variety of acceleration techniques has been proposed. However, all of them are monolithic: Either they accelerate a loop successfully or they fail completely. In contrast, we present a calculus that allows for combining acceleration techniques in a modular way and we show how to integrate many existing acceleration techniques into our calculus. Moreover, we propose two novel acceleration techniques that can be incorporated into our calculus seamlessly. An empirical evaluation demonstrates the applicability of our approach

    A Calculus for Modular Loop Acceleration

    Get PDF
    Loop acceleration can be used to prove safety, reachability, runtime bounds, and (non-)termination of programs operating on integers. To this end, a variety of acceleration techniques has been proposed. However, all of them are monolithic: Either they accelerate a loop successfully or they fail completely. In contrast, we present a calculus that allows for combining acceleration techniques in a modular way and we show how to integrate many existing acceleration techniques into our calculus. Moreover, we propose two novel acceleration techniques that can be incorporated into our calculus seamlessly. An empirical evaluation demonstrates the applicability of our approach
    • …
    corecore