3,429 research outputs found

    Mechanized semantics

    Get PDF
    The goal of this lecture is to show how modern theorem provers---in this case, the Coq proof assistant---can be used to mechanize the specification of programming languages and their semantics, and to reason over individual programs and over generic program transformations, as typically found in compilers. The topics covered include: operational semantics (small-step, big-step, definitional interpreters); a simple form of denotational semantics; axiomatic semantics and Hoare logic; generation of verification conditions, with application to program proof; compilation to virtual machine code and its proof of correctness; an example of an optimizing program transformation (dead code elimination) and its proof of correctness

    Theorem proving support in programming language semantics

    Get PDF
    We describe several views of the semantics of a simple programming language as formal documents in the calculus of inductive constructions that can be verified by the Coq proof system. Covered aspects are natural semantics, denotational semantics, axiomatic semantics, and abstract interpretation. Descriptions as recursive functions are also provided whenever suitable, thus yielding a a verification condition generator and a static analyser that can be run inside the theorem prover for use in reflective proofs. Extraction of an interpreter from the denotational semantics is also described. All different aspects are formally proved sound with respect to the natural semantics specification.Comment: Propos\'e pour publication dans l'ouvrage \`a la m\'emoire de Gilles Kah

    Research in mathematical theory of computation

    Get PDF
    Research progress in the following areas is reviewed: (1) new version of computer program LCF (logic for computable functions) including a facility to search for proofs automatically; (2) the description of the language PASCAL in terms of both LCF and in first order logic; (3) discussion of LISP semantics in LCF and attempt to prove the correctness of the London compilers in a formal way; (4) design of both special purpose and domain independent proving procedures specifically program correctness in mind; (5) design of languages for describing such proof procedures; and (6) the embedding of ideas in the first order checker

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Verification Conditions are Code

    No full text
    This paper presents a new theoretical result concerning Hoare Logic. It is shown here that the verification conditions which support a Hoare Logic program derivation are themselves sufficient to construct a correct implementation of the given pre-, post- condition specification. This property is mainly of theoretical interest, though it is possible that it may have some practical use, for example if predicative programming methodology is adopted. The result is shown to hold for both the original, partial correctness, Hoare logic, and also a variant for total correctness derivations

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • ā€¦
    corecore