32,354 research outputs found

    Validating specifications of dynamic systems using automated reasoning techniques

    Get PDF
    In this paper, we propose a new approach to validating formal specifications of observable behavior of discrete dynamic systems. By observable behavior we mean system behavior as observed by users or other systems in the environment of the system. Validation of a formal specification of an informal domain tries to answer the question whether the specification actually describes the intended domain. This differs from the verification problem, which deals with the correspondence between formal objects, e.g. between a formal specification of a system and an implementation of it. We consider formal specifications of object-oriented dynamic systems that are subject to static and dynamic integrity constraints. To validate that such a specification expresses the intended behavior, we propose to use a tool that can answer reachability queries. In a reachability query we ask whether the system can evolve from one state into another without violating the integrity constraints. If the query is answered positively, the system should exhibit an example path between the states; if the answer is negative, the system should explain why this is so. An example path produced by the tool can be used to produce scenarios for presentations of system behavior, but can also be used as a basis for acceptance testing. In this paper, we discuss the use of planning and theoremproving techniques to answer such queries, and illustrate the use of reachability queries in the context of information system development

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Rigorous Design of Fault-Tolerant Transactions for Replicated Database Systems using Event B

    No full text
    System availability is improved by the replication of data objects in a distributed database system. However, during updates, the complexity of keeping replicas identical arises due to failures of sites and race conditions among conflicting transactions. Fault tolerance and reliability are key issues to be addressed in the design and architecture of these systems. Event B is a formal technique which provides a framework for developing mathematical models of distributed systems by rigorous description of the problem, gradually introducing solutions in refinement steps, and verification of solutions by discharge of proof obligations. In this paper, we present a formal development of a distributed system using Event B that ensures atomic commitment of distributed transactions consisting of communicating transaction components at participating sites. This formal approach carries the development of the system from an initial abstract specification of transactional updates on a one copy database to a detailed design containing replicated databases in refinement. Through refinement we verify that the design of the replicated database confirms to the one copy database abstraction

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability
    • ā€¦
    corecore