2,332 research outputs found

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Experimental Evaluation of Large Scale WiFi Multicast Rate Control

    Full text link
    WiFi multicast to very large groups has gained attention as a solution for multimedia delivery in crowded areas. Yet, most recently proposed schemes do not provide performance guarantees and none have been tested at scale. To address the issue of providing high multicast throughput with performance guarantees, we present the design and experimental evaluation of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. MuDRA relies on feedback from some nodes collected via a light-weight protocol and dynamically adjusts the rate adaptation response time. Our experimental evaluation of MuDRA on the ORBIT testbed with over 150 nodes shows that MuDRA outperforms other schemes and supports high throughput multicast flows to hundreds of receivers while meeting quality requirements. MuDRA can support multiple high quality video streams, where 90% of the nodes report excellent or very good video quality

    Is Our Model for Contention Resolution Wrong?

    Full text link
    Randomized binary exponential backoff (BEB) is a popular algorithm for coordinating access to a shared channel. With an operational history exceeding four decades, BEB is currently an important component of several wireless standards. Despite this track record, prior theoretical results indicate that under bursty traffic (1) BEB yields poor makespan and (2) superior algorithms are possible. To date, the degree to which these findings manifest in practice has not been resolved. To address this issue, we examine one of the strongest cases against BEB: nn packets that simultaneously begin contending for the wireless channel. Using Network Simulator 3, we compare against more recent algorithms that are inspired by BEB, but whose makespan guarantees are superior. Surprisingly, we discover that these newer algorithms significantly underperform. Through further investigation, we identify as the culprit a flawed but common abstraction regarding the cost of collisions. Our experimental results are complemented by analytical arguments that the number of collisions -- and not solely makespan -- is an important metric to optimize. We believe that these findings have implications for the design of contention-resolution algorithms.Comment: Accepted to the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017

    Supporting Service Differentiation with Enhancements of the IEEE 802.11 MAC Protocol: Models and Analysis

    Get PDF
    As one of the fastest growing wireless access technologies, Wireless LANs must evolve to support adequate degrees of service differentiation. Unfortunately, current WLAN standards like IEEE 802.11 Distributed Coordination Function (DCF) lack this ability. Work is in progress to define an enhanced version capable of supporting QoS for multimedia traffic at the MAC layer. In this paper, we aim at gaining insight into three mechanisms to differentiate among traffic categories, i.e., differentiating the minimum contention window size, the Inter-Frame Spacing (IFS) and the length of the packet payload according to the priority of different traffic categories. We propose an analysis model to compute the throughput and packet transmission delays. In additions, we derive approximations to get simpler but more meaningful relationships among different parameters. Comparisons with discrete-event simulation results show that a very good accuracy of performance evaluation can be achieved by using the proposed analysis model

    Performance analysis under finite load and improvements for multirate 802.11

    Get PDF
    Automatic rate adaptation in CSMA/CA wireless networks may cause drastic throughput degradation for high speed bit rate stations (STAs). The CSMA/CA medium access method guarantees equal long-term channel access probability to all hosts when they are saturated. In previous work it has been shown that the saturation throughput of any STA is limited by the saturation throughput of the STA with the lowest bit rate in the same infrastructure. In order to overcome this problem, we ¯rst introduce in this paper a new model for ¯nite load sources with multirate capabilities. We use our model to investigate the throughput degradation outside and inside the saturation regime. We de¯ne a new fairness index based on the channel occupation time to have more suitable de¯nition of fairness in multirate environments. Further, we propose two simple but powerful mechanisms to partly bypass the observed decline in performance and meet the proposed fairness. Finally, we use our model for ¯nite load sources to evaluate our proposed mechanisms in terms of total throughput and MAC layer delay for various network con¯gurations
    corecore