7,005 research outputs found

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Heuristic optimization of clusters of heat pumps: A simulation and case study of residential frequency reserve

    Get PDF
    The technological challenges of adapting energy systems to the addition of more renewables are intricately interrelated with the ways in which markets incentivize their development and deployment. Households with own onsite distributed generation augmented by electrical and thermal storage capacities (prosumers), can adjust energy use based on the current needs of the electricity grid. Heat pumps, as an established technology for enhancing energy efficiency, are increasingly seen as having potential for shifting electricity use and contributing to Demand Response (DR). Using a model developed and validated with monitoring data of a household in a plus-energy neighborhood in southern Germany, the technical and financial viability of utilizing household heat pumps to provide power in the market for Frequency Restoration Reserve (FRR) are studied. The research aims to evaluate the flexible electrical load offered by a cluster of buildings whose heat pumps are activated depending on selected rule-based participation strategies. Given the prevailing prices for FRR in Germany, the modelled cluster was unable to reduce overall electricity costs and thus was unable to show that DR participation as a cluster with the heat pumps is financially viable. Five strategies that differed in the respective contractual requirements that would need to be agreed upon between the cluster manager and the aggregator were studied. The relatively high degree of flexibility necessary for the heat pumps to participate in FRR activations could be provided to varying extents in all strategies, but the minimum running time of the heat pumps turned out to be the primary limiting physical (and financial) factor. The frequency, price and duration of the activation calls from the FRR are also vital to compensate the increase of the heat pumps’ energy use. With respect to thermal comfort and self-sufficiency constraints, the buildings were only able to accept up to 34% of the activation calls while remaining within set comfort parameters. This, however, also depends on the characteristics of the buildings. Finally, a sensitivity analysis showed that if the FRR market changed and the energy prices were more advantageous, the proposed approaches could become financially viable. This work suggests the need for further study of the role of heat pumps in flexibility markets and research questions concerning the aggregation of local clusters of such flexible technologies.Comisión Europea 69596

    Impact of operation strategies of large scale battery systems on distribution grid planning in Germany

    Get PDF
    Due to the increasing penetration of fluctuating distributed generation electrical grids require reinforcement, in order to secure a grid operation in accordance with given technical specifications. This grid reinforcement often leads to over-dimensioning of the distribution grids. Therefore, traditional and recent advances in distribution grid planning are analysed and possible alternative applications with large scale battery storage systems are reviewed. The review starts with an examination of possible revenue streams along the value chain of the German electricity market. The resulting operation strategies of the two most promising business cases are discussed in detail, and a project overview in which these strategies are applied is presented. Finally, the impact of the operation strategies are assessed with regard to distribution grid planning.Postprint (author's final draft

    Optimal household energy management and participation in ancillary services with PV production

    Get PDF
    The work presented in this paper deals with a project aiming to increase the value of photovoltaic (PV) solar production for residential application. To contribute to the development of the new functionalities for such system and the efficient control system to optimize its operation, this paper defines the possibility for the proposed system to participate to the ancillary services, particularly in active power service provider. This service of PV-based system for housing application, as it does not exist today, has led to a market design proposition in the distribution system. The mathematical model for calculating the optimal operation of system (sources, load, and the exchange power with the grid) results in a linear mix integer optimization problem where the objective is to maximize the profit obtained by participating to electricity market. The approach is illustrated in an example study case. The PV producer could benefit from its intervention on balancing market or ancillary services market despite of the impact on the profit of several kinds of uncertainty, as the intermittence of PV source.energy management ; ancillary services ; PV production ; household application

    Cooperative energy management for a cluster of households prosumers

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe increment of electrical and electronic appliances for improving the lifestyle of residential consumers had led to a larger demand of energy. In order to supply their energy requirements, the consumers have changed the paradigm by integrating renewable energy sources to their power grid. Therefore, consumers become prosumers in which they internally generate and consume energy looking for an autonomous operation. This paper proposes an energy management system for coordinating the operation of distributed household prosumers. It was found that better performance is achieved when cooperative operation with other prosumers in a neighborhood environment is achieved. Simulation and experimental results validate the proposed strategy by comparing the performance of islanded prosumers with the operation in cooperative modePeer ReviewedPostprint (author's final draft
    corecore