71,726 research outputs found

    A Forensically Sound Adversary Model for Mobile Devices

    Full text link
    In this paper, we propose an adversary model to facilitate forensic investigations of mobile devices (e.g. Android, iOS and Windows smartphones) that can be readily adapted to the latest mobile device technologies. This is essential given the ongoing and rapidly changing nature of mobile device technologies. An integral principle and significant constraint upon forensic practitioners is that of forensic soundness. Our adversary model specifically considers and integrates the constraints of forensic soundness on the adversary, in our case, a forensic practitioner. One construction of the adversary model is an evidence collection and analysis methodology for Android devices. Using the methodology with six popular cloud apps, we were successful in extracting various information of forensic interest in both the external and internal storage of the mobile device

    UAV-Empowered Disaster-Resilient Edge Architecture for Delay-Sensitive Communication

    Full text link
    The fifth-generation (5G) communication systems will enable enhanced mobile broadband, ultra-reliable low latency, and massive connectivity services. The broadband and low-latency services are indispensable to public safety (PS) communication during natural or man-made disasters. Recently, the third generation partnership project long term evolution (3GPPLTE) has emerged as a promising candidate to enable broadband PS communications. In this article, first we present six major PS-LTE enabling services and the current status of PS-LTE in 3GPP releases. Then, we discuss the spectrum bands allocated for PS-LTE in major countries by international telecommunication union (ITU). Finally, we propose a disaster resilient three-layered architecture for PS-LTE (DR-PSLTE). This architecture consists of a software-defined network (SDN) layer to provide centralized control, an unmanned air vehicle (UAV) cloudlet layer to facilitate edge computing or to enable emergency communication link, and a radio access layer. The proposed architecture is flexible and combines the benefits of SDNs and edge computing to efficiently meet the delay requirements of various PS-LTE services. Numerical results verified that under the proposed DR-PSLTE architecture, delay is reduced by 20% as compared with the conventional centralized computing architecture.Comment: 9,

    A personal networking solution

    Get PDF
    This paper presents an overview of research being conducted on Personal Networking Solutions within the Mobile VCE Personal Distributed Environment Work Area. In particular it attempts to highlight areas of commonality with the MAGNET initiative. These areas include trust of foreign devices and service providers, dynamic real-time service negotiation to permit context-aware service delivery, an automated controller algorithm for wireless ad hoc networks, and routing protocols for ad hoc networking environments. Where possible references are provided to Mobile VCE publications to enable further reading

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Third Revolution Digital Technology in Disaster Early Warning

    Get PDF
    Networking societies with electronic based technologies can change social morphology, where key social structures and activities are organized around electronically processed information networks. The application of information and communications technologies (ICT) has been shown to have a positive impact across the emergency or disaster lifecycle. For example, utility of mobile, internet and social network technology, commercial and amateur radio networks, television and video networks and open access technologies for processing data and distributing information can be highlighted. Early warning is the key function during an emergency. Early warning system is an interrelated set of hazard warning, risk assessment, communication and preparedness activities that enable individuals, communities, businesses and others to take timely action to reduce their risks. Third revolution digital technology with semantic features such as standard protocols can facilitate standard data exchange therefore proactive decision making. As a result, people belong to any given hierarchy can access the information simultaneously and make decisions on their own challenging the traditional power relations. Within this context, this paper attempts to explore the use of third revolution digital technology for improving early warning

    Design mobile satellite system architecture as an integral part of the cellular access digital network

    Get PDF
    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols

    Quality of Service challenges for Voice over Internet Protocol (VoIP) within the wireless environment

    Get PDF
    corecore