19,012 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Photonic entanglement as a resource in quantum computation and quantum communication

    Full text link
    Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments that will underline the advantages of photonic entanglement for quantum information processing.Comment: 33 pages, 4 figures, OSA styl

    Prolog to the section on wireless communications technology

    No full text
    The authors take a look at the existing 3G systems in service and investigate the capabilities of 4G, and while the theoretical throughput of these cellular systems is expected to be high, the future promises to offer more technological improvements and innovations.<br/

    Context-Aware Security for 6G Wireless The Role of Physical Layer Security

    Full text link
    Sixth generation systems are expected to face new security challenges, while opening up new frontiers towards context awareness in the wireless edge. The workhorse behind this projected technological leap will be a whole new set of sensing capabilities predicted for 6G devices, in addition to the ability to achieve high precision localization. The combination of these enhanced traits can give rise to a new breed of context-aware security protocols, following the quality of security (QoSec) paradigm. In this framework, physical layer security solutions emerge as competitive candidates for low complexity, low-delay and low-footprint, adaptive, flexible and context aware security schemes, leveraging the physical layer of the communications in genuinely cross-layer protocols, for the first time.Comment: arXiv admin note: text overlap with arXiv:2011.0732
    corecore