41 research outputs found

    Provenance for Aggregate Queries

    Get PDF
    We study in this paper provenance information for queries with aggregation. Provenance information was studied in the context of various query languages that do not allow for aggregation, and recent work has suggested to capture provenance by annotating the different database tuples with elements of a commutative semiring and propagating the annotations through query evaluation. We show that aggregate queries pose novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we annotate with provenance information not just tuples but also the individual values within tuples, using provenance to describe the values computation. We realize this approach in a concrete construction, first for "simple" queries where the aggregation operator is the last one applied, and then for arbitrary (positive) relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context. Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such queries on provenance annotated databases

    On the Limitations of Provenance for Queries With Difference

    Get PDF
    The annotation of the results of database transformations was shown to be very effective for various applications. Until recently, most works in this context focused on positive query languages. The provenance semirings is a particular approach that was proven effective for these languages, and it was shown that when propagating provenance with semirings, the expected equivalence axioms of the corresponding query languages are satisfied. There have been several attempts to extend the framework to account for relational algebra queries with difference. We show here that these suggestions fail to satisfy some expected equivalence axioms (that in particular hold for queries on "standard" set and bag databases). Interestingly, we show that this is not a pitfall of these particular attempts, but rather every such attempt is bound to fail in satisfying these axioms, for some semirings. Finally, we show particular semirings for which an extension for supporting difference is (im)possible.Comment: TAPP 201

    First-Order Provenance Games

    Full text link
    We propose a new model of provenance, based on a game-theoretic approach to query evaluation. First, we study games G in their own right, and ask how to explain that a position x in G is won, lost, or drawn. The resulting notion of game provenance is closely related to winning strategies, and excludes from provenance all "bad moves", i.e., those which unnecessarily allow the opponent to improve the outcome of a play. In this way, the value of a position is determined by its game provenance. We then define provenance games by viewing the evaluation of a first-order query as a game between two players who argue whether a tuple is in the query answer. For RA+ queries, we show that game provenance is equivalent to the most general semiring of provenance polynomials N[X]. Variants of our game yield other known semirings. However, unlike semiring provenance, game provenance also provides a "built-in" way to handle negation and thus to answer why-not questions: In (provenance) games, the reason why x is not won, is the same as why x is lost or drawn (the latter is possible for games with draws). Since first-order provenance games are draw-free, they yield a new provenance model that combines how- and why-not provenance

    Labeling Workflow Views with Fine-Grained Dependencies

    Get PDF
    This paper considers the problem of efficiently answering reachability queries over views of provenance graphs, derived from executions of workflows that may include recursion. Such views include composite modules and model fine-grained dependencies between module inputs and outputs. A novel view-adaptive dynamic labeling scheme is developed for efficient query evaluation, in which view specifications are labeled statically (i.e. as they are created) and data items are labeled dynamically as they are produced during a workflow execution. Although the combination of fine-grained dependencies and recursive workflows entail, in general, long (linear-size) data labels, we show that for a large natural class of workflows and views, labels are compact (logarithmic-size) and reachability queries can be evaluated in constant time. Experimental results demonstrate the benefit of this approach over the state-of-the-art technique when applied for labeling multiple views.Comment: VLDB201

    A Formal Study of Collaborative Access Control in Distributed Datalog

    Get PDF
    We formalize and study a declaratively specified collaborative access control mechanism for data dissemination in a distributed environment. Data dissemination is specified using distributed datalog. Access control is also defined by datalog-style rules, at the relation level for extensional relations, and at the tuple level for intensional ones, based on the derivation of tuples. The model also includes a mechanism for "declassifying" data, that allows circumventing overly restrictive access control. We consider the complexity of determining whether a peer is allowed to access a given fact, and address the problem of achieving the goal of disseminating certain information under some access control policy. We also investigate the problem of information leakage, which occurs when a peer is able to infer facts to which the peer is not allowed access by the policy. Finally, we consider access control extended to facts equipped with provenance information, motivated by the many applications where such information is required. We provide semantics for access control with provenance, and establish the complexity of determining whether a peer may access a given fact together with its provenance. This work is motivated by the access control of the Webdamlog system, whose core features it formalizes
    corecore