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Abstract
We formalize and study a declaratively specified collaborative access control mechanism for data
dissemination in a distributed environment. Data dissemination is specified using distributed
datalog. Access control is also defined by datalog-style rules, at the relation level for extensional
relations, and at the tuple level for intensional ones, based on the derivation of tuples. The model
also includes a mechanism for “declassifying” data, that allows circumventing overly restrictive
access control. We consider the complexity of determining whether a peer is allowed to access
a given fact, and address the problem of achieving the goal of disseminating certain information
under some access control policy. We also investigate the problem of information leakage, which
occurs when a peer is able to infer facts to which the peer is not allowed access by the policy.
Finally, we consider access control extended to facts equipped with provenance information,
motivated by the many applications where such information is required. We provide semantics
for access control with provenance, and establish the complexity of determining whether a peer
may access a given fact together with its provenance. This work is motivated by the access
control of the Webdamlog system, whose core features it formalizes.
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1 Introduction

The personal data and favorite applications of Web users are typically distributed across many
heterogeneous devices and systems. In [19], a novel collaborative access control mechanism for
a distributed setting is introduced in the context of the language Webdamlog, a datalog-style
language designed for autonomous peers [3, 2]. The experimental results of [19] indicate
that the proposed mechanism is practically feasible, and deserves in-depth investigation. In
the present paper, we provide for the first time formal grounding for the mechanism of [19]
and answer basic questions about the semantics, expressiveness, and computational cost of
such a mechanism. In the formal development, we build upon distributed datalog [16, 20],
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10:2 A Formal Study of Collaborative Access Control in Distributed Datalog

which abstracts the core of Webdamlog, while ignoring certain features, such as updates and
delegation.

In this investigation, as in Webdamlog, access control is collaborative in the following
sense. The system provides the means to specify and infer access rights on disseminated
information, thus enabling peers to collectively enforce access control. The system is agnostic
as to how peers are motivated or coerced into conforming to the access control policy. This
can be achieved in various ways, from economic incentives to legal means (see, e.g., [28]),
possibly relying on techniques such as encryption or watermarking (see, e.g., [5]). We do not
address these aspects here.

The access control of [19] that we formalize and study here works as follows. First,
each peer specifies which other peers may access each of its extensional relations using
access-control-list rules. This provides in a standard manner an initial coarse-grained
(relation-at-a-time) access control, enforced locally by each peer. Next, facts can be derived
among peers using application rules. Access control is extended to such facts based on their
provenance: to see a propagated fact, a peer must have access to the extensional relations
used by the various peers in producing the fact. This enables controlling access to data
disseminated throughout the entire network, at a fine-grain (i.e., tuple) level. This capability
is a main distinguishing feature of Webdamlog’s access control model. The access control
also includes a hide mechanism that allows circumventing overly restrictive access control on
some disseminated facts, thus achieving a controlled form of “declassification” for selected
peers.

Access control in distributed datalog raises a variety of novel semantic, expressiveness
and complexity issues. How complex is it to check whether a peer has the right to access a
propagated fact? What are the appropriate complexity measures in this distributed setting?
Does the access control mechanism prevent leakage of unauthorized information? What
does it mean to extend access control to facts equipped with their provenance? Is there an
additional cost? These are some of the fundamental questions we study, described in more
detail next.

While the experimental results of [19] suggest that the computational cost of the proposed
mechanism is modest, we show formally that its complexity is reasonable. Specifically, we
prove that the data complexity of determining whether a peer can access a given fact is
ptime-complete (with and without hide).

We next consider the problem of information leakage, which occurs when a peer is able
to infer some facts to which the peer is not allowed access by the policy. We show that, while
undecidable in general, information leakage can be tested for certain restricted classes of
policies and is guaranteed not to occur for more restricted classes.

One of the challenges of access control is the intrinsic tension between access restrictions
and desired exchange of information. We consider the issue of achieving the goal of dis-
seminating certain information under some access control policy. The goal is specified as a
distributed datalog program. We show that it is undecidable whether a goal can be achieved
without declassification (i.e., without hide). We study the issue of finding a policy without
hide that achieves a maximum subset of the specified goal. While any goal can be achieved
by extensive use of hide, we show, more interestingly, how this can be done with minimal
declassification.

In many applications, it is important for inferred facts to come with provenance informa-
tion, i.e., with traces of their derivation. We demonstrate that adding such a requirement has
surprising negative effects on the complexity. For this, we introduce an intermediate measure
between data and combined complexity, called locally-bounded combined complexity that
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allows making finer distinctions than the classical measures in our context. The intuition is
that the peers are seen as part of the data and not of the schema, which is more in the spirit
of a Web setting. We show that the locally bounded complexity of query answering increases
from ptime-complete to pspace-complete when it is required that the query answer carries
provenance information.

The organization is as follows. Section 2 recalls the distributed datalog language [3]. In
Section 3, we formalize the core aspects of the access control mechanism of [19], establish
the complexity of answering queries under access control. Information leakage is studied in
Section 4. The issue of achieving some dissemination goal under a particular access control
policy is the topic of Section 5. Access control in the presence of provenance is investigated
in Section 6. Finally, we discuss related work and conclude.

2 Distributed Datalog

In this preliminary section, we formally define a variant of distributed datalog, which captures
the core of Webdamlog [3].

The language. We assume infinite disjoint sets Ext of extensional relation symbols, Int of
intensional relation symbols, P of peers (e.g. p, q), Dp of pure data values (e.g., a, b), and
V of variables (e.g., x, y,X, Y ). For relations, we use symbols such as R,S, T . The set D
of constants is P ∪ Dp ∪ Ext ∪ Int. A schema is a mapping σ whose domain dom(σ) is a
finite subset of P , that associates to each p a finite set σ(p) of relation symbols in Int ∪ Ext,
with associated arities. Let σ be a schema, p ∈ dom(σ). A relation R in σ(p) is denoted
by R@p, and its arity by arity(R@p). We denote ext(p) = σ(p) ∩ Ext, int(p) = σ(p) ∩ Int,
ext(σ) = ∪p∈dom(σ)ext(p), and int(σ) = ∪p∈dom(σ)int(p). An instance I over σ is a mapping
associating to each relation schema R@p a finite relation over D of the same arity. For a tuple
ā in I(R@p), the expression R@p(ā) is called a (p-)fact in R@p. An extensional instance
is one that is empty on int(σ). Observe that R@p and R@q, for distinct p, q, are distinct
relations with no a priori semantic connection, and possibly different arities. Note also that
an expression R@p(a1, ..., ak) for R, p, a1, ..., ak in D is a fact for a schema σ if: p is a peer
in dom(σ), R is a relation schema in σ(p), and arity(R@p) = k. Note that relations may
contain pure data values, peers, as well as relation symbols. Finally, (U)CQ denotes (unions)
of conjunctive queries (see [6]).

I Definition 1 (distributed datalog). A d-datalog program P over schema σ is a finite set of
rules of the form

Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k) where
p ∈ dom(σ), k ≥ 0, and for every i ≥ 1, Ri is in σ(p) and x̄i is a vector of variables and
constants in D of the proper arity;
z ∈ dom(σ) ∪ V, Z0 ∈ Int ∪ V; and
each variable occurring in the head appears in x̄i for some i ≥ 1.

Note that the relation or peer names in the head may be variables. Note also that all
the relations in the body of a rule come from the same peer. Although we define a global
d-datalog program, one should think of each peer p as having its separate program consisting
of all the rules whose bodies use relations at p.

I Example 2. Consider the rules:
Album@Alice(x) :– Album@Bob(x)
Album@z(x) :– Album@Bob(x), F riend@Bob(z)
Z@z(x) :– Album@Bob(x), F riendPhotos@Bob(Z, z)

ICDT 2016



10:4 A Formal Study of Collaborative Access Control in Distributed Datalog

Bob uses the first rule to publish his photos in Alice’s album, and the second to publish his
photos in all of his friends’ albums (peer variable z). In the last rule, different names can be
used for the relations where the friends keep their photos (variable Z for a relation name).

A d-datalog program defines the meaning of intensional relations from given extensional
relations. The semantics is in the spirit of the datalog semantics. More precisely:

I Definition 3 (Semantics). Let P be a d-datalog program over some schema σ. The
immediate consequence operator ΓP on instances over σ is defined as follows. Let I be an
instance over σ.

Consider a rule Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k) of P . An instantiation of the rule
in I is a mapping ν from its variables to the active domain (the set of values occurring in P ,
I, or dom(σ)), extended with the identity on constants, such that:

for each i ≥ 1, Ri@p(ν(x̄i)) ∈ I; and
ν(Z0)@ν(z)(ν(x̄0)) is a fact for schema σ.

ΓP (I) is obtained by adding to I all facts ν(Z0)@ν(z)(ν(x̄0)) where ν is an instantiation
in I of some rule Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k) of P . Note that ΓP is monotonic.
The semantics of P for an extensional instance I, denoted P (I), is the mapping associating
to each extensional instance I the projection on the intensional relations of P of the least
fixpoint of ΓP containing I.

Observe that a rule may “attempt” to derive an improper fact, for which ν(z) is not in
dom(σ), or ν(Z0) is not a relation in σ(ν(z)), or the arity is incorrect. In such cases, the fact
is simply not derived.
I Remark. Consider a rule with variable peer or relation name. Suppose for instance that
both are variables. A head-instantiation ν of that rule for a schema σ is a mapping over
Z0, z such that ν(z) is a peer of σ, ν(Z0) an intensional relation of σ(ν(z)), and arity(ν(Z0))
= |x̄0|. One can define similarly the notion of head-instantiation for a rule with only a
variable peer or only a variable relation name. It is easy to see that the program obtained by
replacing each rule by all its head-instantiations has the same semantics as the original. So
if the set of peers is fixed (known in advance), one can assume that, for each rule, the name
of the relation and the peer in the head are constants.

3 The access control model

In this section, we formalize the core aspects of the access control mechanism of [19]. The
focus here is on the read privilege; we will ignore the grant privilege (allowing a peer to
define permissions on another peer’s relations) and the write privilege (allowing a peer
to push data to another peer’s relations), see [19]. We also provide in this section basic
expressiveness and complexity results on access control.

The extensional relations at a given peer are owned by the peer. The peer can give read
privilege on these extensional relations to other peers. This is specified at each peer p using
an intensional relation acl@p (for access control list) of arity 2. A fact acl@p(R, q) states
that peer q is allowed to read the extensional relation R@p.

In the following, we assume that for each peer p, acl ∈ int(p) and arity(acl@p) = 2. For
instance, a rule “acl@p(R, z) :– Likes@p(z)” can be used in a program to grant access to
relation R@p to all the peers z that are in relation Likes@p.

A d-datalog program P with access control (denoted d-datalogac) over some schema σ is
a finite set of d-datalog rules Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k), where R1, ..., Rk are not
acl and the rules are of one of the following two kinds:
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Application rule: Z0 is not acl; and
Access control rule: The rule head is acl@p(Z, z) for some terms Z, z.

Given a program P , the set of application rules forms the application program of P ,
denoted Papp, and the set of access control rules forms the (access control) policy of P ,
denoted Ppol . Facts of the form acl@p(R, q) are called access control facts, and the others are
called application facts. It should be noted that no such distinction is made in Webdamlog.
We distinguish here between access control and application rules to be able to formally
compare access control policies.

The meaning of an access control policy Ppol for a given extensional instance I is clear in
the absence of intensional relations: use the access rules to compute at each peer the set of
peers allowed to read its extensional relations. This yields relation-at-a-time, coarse-grained
access control to the extensional relations. For intensional relations, we use tuple-level
fine-grained access control. Intuitively, an intensional fact can be read by a peer p if it can
be derived by some application of a rule from tuples that p is already allowed to access.
Then, for a d-datalogac program P , Papp and Ppol may interact recursively: the derivation
of an intensional fact may yield some new permission for an extensional relation, which, in
turn, may enable the derivation of a new intensional fact, and so on. The fine-grained access
control at the tuple level is illustrated in an example.

I Example 4. Consider the program P :

Ppol acl@Bob(Album, z) :– friends@Bob(z);
acl@Bob(Tagged, z) :– friends@Bob(z);

Papp Album@z(x) :– Album@Bob(x),Tagged@Bob(x, z);

The access control rules allow Bob’s friends access to his Album and Tagged relations. The
application rule transfers to a given person the photos in which he/she is tagged. Consider
a photo α with tagging Sue, assuming she is a friend of Bob. Then the picture α belongs
(intensionally) to Sue’s album. A friend of Bob who will ask to see Sue’s album will see the
photo α.

With standard access control, peers are only be able to control access to their local data.
With the proposed mechanism, they further control the dissemination of their data. In other
words, they can control what other peers should do with their data. This is achieved by
propagating, together with data, permissions via application rules, based on provenance
information about derived facts. A tuple derived by some instantiation of an application
rule is accessible by a peer if that peer has access to each tuple in the body of the rule.

The semantics. To define the semantics of programs, we associate with each peer p in
dom(σ) and each relation R@p, R 6= acl, a relation R̂@p of arity arity(R) + 1. Intuitively,
R̂@p(x̄, q) says that peer q is allowed access to the fact R@p(x̄). The semantics is defined
using a d-datalog program. We describe next the construction of that program.

I Definition 5 (P̂ construction). The semantics of a d-datalogac program P over some schema
σ for an extensional instance I over σ is defined using a d-datalog program P̂ (without
access control) defined as follows. Its schema consists of: (i) the extensional and intensional
relations of σ; and (ii) intensional relations {R̂@p | R@p ∈ σ(p), R 6= acl}.

The rules of P̂ are as follows: for a tuple x̄ of distinct variables,
1. R̂@p(x̄, p) :– R@p(x̄) for each peer p in σ and each R ∈ ext(p) (each peer can read its

own extensional relations);
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2. R̂@p(x̄, z) :– acl@p(R, z), R@p(x̄) for each peer p in σ and each R ∈ ext(p) (each peer z
entitled to read R@p can read all of its tuples);

3. for each rule acl@p(Z, z) :– R1@p(x̄1), · · ·Rk@p(x̄k) in Ppol ,
a rule acl@p(Z, z) :– R̂1@p(x̄1, p), · · · , R̂k@p(x̄k, p);

4. for each rule Z0@z(x̄0) :– R1@p(x̄1), · · · , Rk@p(x̄k) in Papp and for each intensional
relation R0 6= acl occurring in σ, a rule1
R̂0@z(x̄0, y) :– Z0 = R0, R̂1@p(x̄1, y), · · · , R̂k@p(x̄k, y), R̂1@p(x̄1, z), · · · , R̂k@p(x̄k, z)

5. A rule R@p(x̄) :– R̂@p(x̄, p) for each p ∈ dom(σ) and R ∈ int(p) (R̂@p defines the local
facts visible at p).

The fourth item requires that both z (the next reader) and y (potential future readers)
may access the facts in the body of the rule, in order be allowed to see the fact derived by
the rule. The third item is the analog for acl. Note that (3.) is simpler than (4.) because
the relation acl is only defined locally.

Clearly, the size of P̂ is linear in P and the image of σ. Moreover, it is independent of
the data, i.e. dom(σ) and I. Using P̂ , we define two semantics for P : state semantics, and
visibility semantics.

State semantics. State semantics provides for each peer the local intensional facts inferred
by taking into account the combined effect of the access control rules and the application
rules. More precisely, the state semantics of a d-datalogac program P over schema σ is a
mapping [P ] associating to each extensional instance I over σ the set of facts

[P ](I) = {R@p(ā) ∈ P̂ (I) | p ∈ dom(σ), R ∈ int(p)} .

One can easily verify by induction that [P ](I) ⊆ P (I). (Recall that P (I) is the access-
control-free semantics). The inclusion may be strict because the derivation of a fact at a
peer p may be blocked because p does not have access to some data.

Visibility semantics. This semantics captures more broadly the facts at all peers that a
given peer is allowed to see. Indeed, in addition to their local state provided by [P ], peers
also have permission to see facts residing at other peers. The facts that they are allowed to
see are specified by the relations R̂@q(−, p) defined by the program P̂ . We say that such a
fact is visible by a peer p. For each p, we denote by [P ]Vp the mapping associating to each
instance I over ext(σ) the set of facts {R@q(ū) | R̂@q(ū, p) ∈ P̂ (I)}. We refer to [P ]Vp as the
visibility semantics for peer p. Clearly, for each p, [P ]Vp (I) and [P ](I) agree on int(p).

Intuitively, if a fact R@q(ā) is visible by p, then p can access it by querying the re-
lation R@q. More precisely, let P ′ be the program obtained by adding to P a rule
temp@p(ū) :– R@q(ū) for some new relation temp@p and vector ū of distinct variables.
Then temp@p(ā) ∈ [P ′](I) iff R@q(ā) ∈ [P ]Vp (I), i.e. R@q(ā) is visible by p. Thus, visibility
semantics can be reduced to state semantics by the addition of such rules.

In addition to state and visibility semantics, we consider in Section 4 the facts that a
peer may infer from the visible ones, possibly circumventing the access control policy. We
will refer to this as implicit visibility.

1 Strictly speaking, equalities Z = R0 are not allowed in d-datalog, but these can be easily simulated by
substituting the variable by the constant everywhere in the rule.
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Hiding access restrictions. The above access control mechanism may be too constraining
in some situations. We next consider means of relaxing it. To do so, we introduce a hide
annotation that can be attached to atoms in rule bodies, e.g., [hide R@q(x̄)]. Intuitively,
such an annotation lifts access restrictions on R@q(x̄) by “hiding its provenance”.

We illustrate this feature with an example.

I Example 6. Consider the two rules:
Album@z(x) :– Album@Bob(x), friend@Bob(z)
Album@z(x) :– Album@Bob(x), [ hide friend@Bob(z)]

The first rule is used by Bob to publish his photos in all of his friends albums. Suppose Sue
is a friend. Will the photos in Album@Bob be transferred to Album@Sue? Yes, but only
if Sue has read privileges on both Album@Bob and friends@Bob. However, it may be the
case that Bob wishes to keep his list of friends private, but still let his friends see his album
pictures. He can do this by “hiding” the access restrictions on friends@Bob as in the second
rule. Intuitively, Bob is in effect reducing the protection level of the friend relation, in some
sense “declassifying” it.

In the example, Bob declassifies his own extensional relation. As we will see, “hide” also
allows a peer to declassify information received from other peers, thus overriding their access
control restrictions. In the actual Webdamlog system [19], doing so requires the peer to have
grant privilege on that piece of information. As previously mentioned, for simplicity we do
not consider explicitly the grant mechanism here.

For further illustration, we show how the hide mechanism can be used to simulate
accessing a relation with binding patterns [24].

I Example 7. Suppose that peer p wishes to export an extensional binary relation R with
binding pattern bf . The intuition is that one cannot obtain the entire relation, but if one
provides bindings for the first column, peer p will provide the corresponding values in the
second column. This is done as follows:

Seed@p(x) :– S@q(x)
Q@q(x, y) :– Seed@p(x), [ hide R@p(x, y) ]

Suppose the access control policy is such that p has read privilege on S@q, but q has no read
privilege on R@p. Observe that Seed@p is a copy of S@q, and Q@q is the join of Seed@p
and R@p. Peer q cannot see R@p. But if q provides some values for the first column of R@p
(in relation S@q), then q will obtain in Q@q the corresponding values for the second column
of R@p.

Programs with hide are defined as follows.

I Definition 8. A d-datalogac program with hide (denoted h-d-datalogac) over some schema
σ consists of: (i) a d-datalogac program P = Papp∪Ppol ; and (ii) a function h (called the hide
function) whose domain h is the set Papp of rules2, such that for each rule r, h(r) is a strict
subset of the atoms in the body of r. The pair (Ppol , h) forms the policy of the program.

As in Example 6, the function h is represented using annotations. More precisely, in each
rule, the atoms in h(r) are annotated with the keyword hide. For instance, the rule r that is
A :– B1, . . . B5 with h(r) = {B2, B4} is denoted: A :– B1, [hide B2], B3, [hide B4], B5.

We next consider how hide annotations modify the semantics of access control. The
semantics for h-d-datalogac programs is obtained by replacing item (4) of Definition 5 with:

2 Because of the way we define access control rules, hide annotations would have no effect on them.

ICDT 2016
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4’. for each application rule Z0@z(x̄0) :– R1@p(x̄1), · · · , Rk@p(x̄k) of Papp, for each inten-
sional relation R0 6= acl occurring in σ, and some new variable y, the rule R̂0@z(x̄0, y) :–
Z0 = R0, R̂1@p(x̄1, y1), · · · R̂k@p(x̄k, yk), R̂1@p(x̄1, q1), · · · R̂k@p(x̄k, qk) where for each
i, if Ri@p(x̄i) is not hidden in the rule, yi = y and qi = z; and if it is hidden, yi = qi = p.

Note that this imposes that both y (a potential future reader) and z (the site that will
host the fact) can read the facts in the body of the rule that are not annotated by hide, in
order for the reader to be allowed to see the fact derived by the rule. For a h-d-datalogac
program P , we denote by [P ] the state semantics of P as defined by the above program.

The next result, namely Proposition 10, shows that the use of hide extends the expressive
power of d-datalogac relative to state semantics. (One can obtain a similar result for visibility
semantics.) This is illustrated by the following example.

I Example 9. Consider a peer p that has a binary extensional relation R@p. Suppose we
wish to specify that peer q sees from R@p exactly the tuples of the form (x, 0), and no other
peer sees anything from R@p. As a first attempt, one might use an intensional relation
Rexport and the rule: Rexport@q(x, 0):- R@p(x, 0).

However, either acl@p(R, q) holds, so R@p is entirely visible to q; or not, and Rexport@q
is empty. Considering hide, assume the existence of some extensional fact okq@p() that only
q can read. Then there is a solution: Rexport@q(x, 0) :– okq@p(), [hide R@p(x, 0)].

I Proposition 10. There is a h-d-datalogac program P over schema σ for which there is no
d-datalogac program P̄ such that, for every extensional instance I over σ, [P ](I) = [P̄ ](I).

Thus, the hide construct strictly increases the expressivity of the language. In fact, we
will show in Section 5 that h-d-datalogac is in some sense expressively complete.

The complexity of access control. We consider throughout the paper the complexity of
various problems related to access control. Typically, three kinds of complexity are considered
in databases: data, query, and combined complexity. In d-datalogac, the distinction between
data and schema/program is less clear. For instance, the set of peers affects both the schema
and the data. If there are many peers, the global program may be large, even if each peer
has a small program. To capture this situation, we consider a measure assuming that the size
of the program at each peer is bounded. This gives rise to a novel notion of complexity that
we call locally-bounded combined complexity. More precisely, for a decision problem whose
input is an extensional instance I and a d-datalogac program P over some schema σ:

The combined complexity is computed as a function of |I|, |P |, and σ.
The data complexity is computed as a function of |I| only (σ and P are fixed).
The locally-bounded combined complexity is computed as a function of |I| and |dom(σ)|,
assuming some fixed bound on the size of the program at each peer (so |P | is linear in
the number of peers).

We begin by establishing the complexity of checking the visibility of a fact.

I Theorem 11. Let σ be a schema, I an extensional instance, and P a h-d-datalogac program
over σ. Determining whether a fact is in [P ]Vp (I) for some peer p has ptime-complete data
and locally-bounded combined complexity, and exptime-complete combined complexity,

While the data and the locally-bounded combined complexities are the same in this case,
we will see later that the two differ in other settings, allowing to draw finer distinctions than
the classical notions.
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Static analysis of policies. To conclude this section, we briefly discuss the issue of comparing
policies relative to a given application program, based on the visible facts they allow.
This leads to the notion of a policy being more relaxed than another. By reduction from
containment of datalog programs, one can show that this is undecidable for given policies
and application program. As for datalog containment, one can consider restrictions for which
the policy comparison can be performed, e.g., “frontier-guarded” rules [8]. As an alternative
to comparing policies, one can consider applying syntactic transformations to a given policy
in order to relax or tighten it. For example, augmenting the hide function of a program, or
adding rules to Ppol , always results in a more relaxed policy. Due to space limitations, we do
not further consider these issues here.

4 Implicit visibility

The purpose of access control is to analyse the ability of peers to see unauthorized information.
As discussed in Section 3, a peer can access information by examining its own state or by
querying relations of other peers. But can a peer infer more information beyond what is
allowed according to the policy? We capture this using the notion of implicit visibility
(i-visibility) that we formalize next. For this, we use the auxiliary notion of “visibility
instance”. For a program P over σ and a peer p, we say that an instance Ip over σ is a
visibility instance of p if there is some instance J over ext(σ) for which Ip = [P ]Vp (J). Now
we define:

I Definition 12. Let P be a d-datalogac program over some schema σ, p a peer and Ip a
visibility instance for p. A fact R@q(ū) (for some q,R) is i(mplicitly)-visible at p given Ip, if
for each instance J over ext(σ) such that [P ]Vp (J) = Ip, R@q(ū) ∈ J ∪ [P ](J).

It turns out that facts beyond [P ]Vp (J) may be i-visible at peer p. To see how such
information “leakage” can occur, suppose that we have a rule acl@q(R, p) :– Q@q(p), where
Q@q is an extensional relation. If peer p sees some fact in R@q, it can infer that it has access
to R@q, so that Q@q(p) holds, although the policy may not allow p to see Q@q. This may
in turn provide additional information on other relations. Before exploring this formally, we
introduce some restrictions of policies.

I Definition 13. Let σ be a schema and P = Ppol ∪ Papp a d-datalog program.
The policy of P is static iff for each rule of Ppol , its body is empty;
The policy of P is simple iff for each rule of Ppol , the atoms in its body are extensional;
The policy of P is local for Papp iff for each peer p and rule of Ppol at p, the atoms in its
body are either extensional, or intensional but not depending on non-local relations.

We can show that with static policy, no leakage can occur.

I Proposition 14. Let P be a d-datalogac program over σ with static policy. For each peer p
and instance I over ext(σ), the set of i-visible facts at p is precisely [P ]Vp (I).

In contrast to the above, when Ppol contains arbitrary rules, i-visibility provides additional
information, and is in fact undecidable.

I Theorem 15. It is undecidable, given a d-datalogac program P over σ, a visibility instance Ip
for p, and a fact R@q(ū), whether R@q(ū) is i-visible at p given Ip. Moreover, undecidability
holds even for programs with local access policies.
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The above undecidability result uses the fact that the acl relations are defined by datalog
programs. We next show that i-visibility becomes decidable if recursion is disallowed in the
definition of acl relations. The problem can be reduced to computing certain answers to
datalog queries using exact UCQ views, which is known to be in co-NP [4]. However, using
the fact that the views we use are particular UCQs, we can show that the complexity goes
down to ptime.

I Theorem 16. The i-visibility problem for d-datalogac programs with simple policies is
decidable in ptime (data complexity).

The i-visibility problem with hide. We now turn to the problem of i-visibility for d-datalogac
programs with hide. The notions of visibility and i-visibility are adapted to this setting in
the natural way. We first illustrate the fact that hide can lead to non-trivial i-visibility of
facts, even when the acl policy is static.

I Example 17. Consider the following h-d-datalogac program P where Ppol consists of the
rule acl@q(Q, p):- and Papp of the rules:

R1@p(X) :– Q@q(), [ hide R@q(X,Y )];
R2@p(Y ) :– Q@q(), [ hide R@q(X,Y )].

Consider the p-visibility instance {R1@q(a), R2@q(b)}. Note that p does not have access to
R@q. However, it is clear that R@q(a, b) is i-visible at p.

The following result shows that i-visibility is undecidable for h-d-datalogac programs even
for static policies (when, by Proposition 14, no leakage occurs in the absence of hide). The
proof is by reduction from finding certain answers to identity queries using exact datalog
views, known to be undecidable [4].

I Theorem 18. It is undecidable, given a h-d-datalogac program P over σ with static policy,
in which hide is applied only to extensional relations, a peer p, a p-visibility instance Ip, and
an extensional fact R@q(ā), whether R@q(ā) is i-visible at p given Ip.

Testing information leakage. The previous result concerned i-visibility for a given instance.
We finally consider the problem of testing whether a d-datalogac program has information
leakage beyond that provided by the access control policy for some instance (the static
analysis analog).

I Definition 19. A d-datalogac program P leaks information at p if for some p-visibility
instance Ip there exists some fact R@q(ā) 6∈ Ip that is i-visible at p given Ip.

We show that one cannot generally decide whether a program leaks information. However,
one can do so for programs with simple policies. The undecidability is proved using a
reduction from datalog program containment. The 2exptime algorithm for simple policies is
by reduction to an exponential set of inclusions of datalog programs into UCQs.

I Theorem 20.
1. It is undecidable, given a d-datalogac program P and a peer p, whether P leaks information

at p.
2. The problem is 2exptime-complete if P has a simple acl policy.



S. Abiteboul, P. Bourhis, and V. Vianu 10:11

5 Achieving dissemination goals

We next consider the problem of achieving a specific data dissemination goal among peers,
when a particular access control policy is imposed. The goal is specified by a d-datalog
program. Clearly, a given goal may violate the policy, so it may be impossible to achieve it.
We study the problem of determining whether achieving a goal is possible, and if not, how
one might maximize what can be achieved. We then consider the issue of relaxing the access
control policy in order to achieve the goal, using the hide mechanism. Not surprisingly, it is
always possible to achieve a goal using hide. More interestingly, we will show how to do so
while minimizing its use. But first, we consider what can be done without hide.

Strict adherence to the policy. Consider a policy Ppol and a goal d-datalog program P .
We wish to know whether there is a d-datalog program Papp such that (i) Papp uses the
relations of P and possibly additional intensional relations, and (ii) for each extensional
instance I, [(Ppol ∪ Papp)](I) and P (I) agree on the intensional relations of P . In this case,
we say that Papp simulates P under policy Ppol . We will see that it is generally impossible to
find such a Papp without hide, and present restrictions on the policies that make it possible.
When such a simulation does not exist, we will attempt to find a program that is as close as
possible to the goal.

The next example illustrates how a policy may prevent achieving a goal even in the
simplest setting. The example is more complicated than needed because we will also use it
to illustrate finding a “maximum” simulation.

I Example 21. Consider the following policy and goal program:

Ppol acl@p(R1, r) :– ; P R@q(x) :– R1@p(x);
acl@p(R2, r) :– ; R@q(x) :– R2@p(x);
acl@p(R1, q) :– ; R@r(x) :-R@q(x)

The d-datalog P does not simulate P under Ppol because q is not allowed to see the relation
R2@p and therefore the relation R@q does not hold tuples from R2@p under the policy Ppol .
In such cases, we can try to find a program that is, in some sense, maximally achieves the
goal. This is a nontrivial issue. In this example, a maximum application program is:

Papp : R@q(x) :– R1@p(x); R@r(x) :– R@q(x); R@r(x) :– R2@p(x).

Note that [(Ppol ∪ Papp)] ⊆ P but [(Ppol ∪ P )] ⊂ [(Ppol ∪ Papp)] (as mappings).

The first result states that one cannot decide whether a program can be simulated under
a particular policy.

I Theorem 22. It is undecidable, given a policy Ppol and a goal d-datalog program P , whether
there exists a d-datalog program Papp without hide such that Papp simulates P under Ppol.
This holds even if Ppol is static.

If such a simulation is not possible, can we find a “maximum simulation”? Let P be
a d-datalog program over some schema σ and Ppol a policy program over σ. A d-datalog
program Papp without hide is a maximum simulation of P under Ppol iff
1. [(Ppol ∪ Papp)] ⊆ P , and
2. for each P ′

app such that [(Ppol ∪ P ′
app)] ⊆ P , [(Ppol ∪ P ′

app)] ⊆ [(Ppol ∪ Papp)].
The question of whether a maximum simulation always exists remains open. Moreover, there
does not exist an algorithm building a maximum simulation, if such exists.
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I Theorem 23. There is no algorithm that computes, given a d-datalog program P and a
policy Ppol, a maximum simulation without hide Papp of P under Ppol, whenever such a
maximum simulation exists. This holds even for local policies.

While it is not known whether a maximum simulation always exists, we present informally
a plausible candidate for a maximum simulation of P under Ppol and explore its potential.
The program, denoted by mac(Ppol , P ), is based on a simple idea: each peer collects all the
extensional tuples that peer is allowed to see under Ppol , and then simulates P locally.

I Definition 24. Let P be a d-datalog program over some schema σ and Ppol a policy over
the relations in σ. The program Papp = mac(Ppol , P ) is constructed as follows:
1. For all peers p, q, p 6= q and each (extensional or intensional) relation R@q, Papp has an

intensional relation R_q@p of the same arity as R@q. These relations allow p to perform
a simulation of P with the data that p has access to.

2. For all peers p, q, p 6= q, and each extensional relation R@q, Papp has rules copying R@q
into R_q@p, if acl@q(R, p) holds.

3. Finally, for each peer p, Papp has rules that simulate P locally with the data that p has
access to.

Observe how mac(Ppol , P ) interacts with Ppol . During the computation, some peer p
may use rules in Ppol to derive a new fact acl@p(R, q). This results in copying R@p into
R_p@q which may lead to the derivations of more facts at p.

Note the connection between mac(Ppol , P ) and P itself. By definition, [(Ppol ∪ P )] ⊆
[(Ppol ∪ mac(P, Ppol))]. However, the inclusion may be strict. For instance, P may try to
transfer a fact from p to q via a peer r that is not allowed to see this fact whereas it is
possible to send this fact directly (with a different rule) without violating access rights.

It turns out, surprisingly, that mac(Ppol , P ) is not always a maximum simulation of P
under Ppol , and it is in fact undecidable whether mac(Ppol , P ) is a maximum simulation
for some given (Ppol and P , even for local policies. However, mac(Ppol , P ) is a maximum
simulation if Ppol is static.

I Theorem 25. Let Ppol be a local policy and P a d-datalog goal program over σ. (i) It is
undecidable whether the program mac(P, Ppol) is a maximum simulation of P under Ppol.
(ii) If Ppol is static, then mac(P, Ppol) is a maximum simulation of P under Ppol.

Besides ensuring the existence of a maximal simulation, a simple policy is of interest for
another reason: it guarantees that, if there exists some application program simulating P
under Ppol , then P itself simulates P under that policy (details omitted).

Declassifying information. Let us now consider the issue of achieving a goal at the cost of
declassifying information, in other words using the hide construct. There is an immediate
solution that would consist in modifying every rule of the goal program P by hiding the
entire body. The goal would be satisfied, but in a brutal way: each derived fact would be
visible to all peers.

It is possible to realize the goal in a much more controlled way as illustrated by Example 9.
In that exemple, special relations of the form okq@p are used to limit as much as possible
the visibility of data. The example suggests the following mild technical assumptions: (†)
for all distinct peers p, q ∈ dom(σ), (1) σ contains a 0-ary extensional relation okq@p, and
(2) extensional instances of σ are assumed to contain the fact okq@p().

We next show that (†) is sufficient to guarantee that the hide construct allows achieving
any goal program by declassifying no more information than necessary.
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I Theorem 26. Let σ satisfy (†.1). For each policy Ppol and a d-datalog goal program P over
σ, there exists an application Papp with hide over the same σ such that, for each extensional
instance I satisfying (†.2), Papp simulates P under Ppol; and on input I, a fact R@p(u) is
visible at q 6= p for (Ppol ∪ Papp) iff it is visible at q for (Ppol ∪ P ).

6 Accessing provenance

We considered so far the inference of individual facts using d-datalogac rules, subject to an
access control policy. In many applications, it is essential for inferred facts to be accompanied
by provenance information. In this section, we extend our approach to access control to
cover provenance. We adopt a simple model of provenance of a fact, consisting of derivation
trees tracing the application of the rules at different peers that participated in the inference
of the fact. To simplify the presentation, we ignore hide. The definition of provenance can
be easily adapted to the presence of hide (a hide annotation in a rule results in truncating
the corresponding portion of the proof tree) and the complexity results continue to hold.

Consider a d-datalogac program P over schema σ. Let I be an extensional instance over
σ, and R@p(ā) a fact in Papp(I). A provenance tree for R@p(ā) is a derivation tree for
R@p(ā) using Papp and I. Intuitively, we are interested in passing provenance information
from peer to peer, so that a peer p not only knows that some fact R@p(u) holds, but can
also know how R@p(u) has been derived.

I Example 27. Consider a schema σ with peers {p0, p1, p2, p3, p4}, 0-ary extensional
relations (propositions), R@p0, R@p1, and 0-ary intensional relations S@p2, S@p3, S@p4.
Let I = {R@p0, R@p1}. Consider the following application program:

Papp S@p2 :– R@p0; S@p2 :– R@p1; S@p3 :– S@p2; S@p4 :– S@p3.

Note that S@p4 ∈ Papp(I) and has two provenance trees (linear in this case):
S@p4 ← S@p3 ← S@p2 ← R@p1 S@p4 ← S@p3 ← S@p2 ← R@p0

Suppose we have the following access control rules in addition to Papp:
Ppol : acl@p0(R, p2) :– ; acl@p0(R, p4) :– ; acl@p1(R, p3) :– ; acl@p1(R, p4) :– .

Consider again the two provenance trees of S@p4 ∈ Papp(I). Neither satisfies the access
control policy defined by Ppol . Indeed, the first tree violates the policy because p2 does not
have access to R@p1. The second also violates the policy, because p3 does not have access to
R@p0. If we add the access control rule: acl@p0(R, p3) :– then the second provenance tree
satisfies the access control policy.

Note the difference between visibility of a fact A by a peer p and visibility of its provenance.
In order for A to be visible by p, it suffices for each fact involved in its derivation to be visible
by the corresponding intermediate peer, based on its own access permissions, independently
derived. In other words, peers may justify their permissions by derivations independent of
each other and of the actual derivation of A. Visibility of provenance imposes a stronger
condition, as it requires each intermediate peer to have access to the entire history of the
partial derivation of p. As seen in the example, a fact A may itself be visible by p but not
have any provenance tree visible by p. More formally we have:

I Definition 28 (Provenance access control). Let P be a d-datalogac program over some
schema σ and I an extensional instance over σ. A fact F has visible provenance if there exists
a provenance tree T of F such that: For each internal node R@p(ā) in T and extensional
fact E@q(c̄) occurring in the subtree rooted at R@p(ā), we have that acl@q(E, p) ∈ [P ](I).
For given P and I, [P ]prov(I) denotes the set of facts that have visible provenance.
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It is clear that visible provenance implies visibility. More precisely, one can show that for
each P , σ, and each extensional instance I, [P ]prov(I) ⊆ [P ](I), but Example 27 shows the
converse does not hold. We next show that, although the definition of provenance visibility is
proof-theoretic, one can simulate it using a d-datalog program. However, unlike the program
P̂ constructed earlier, the program simulating provenance visibility is exponential in the
number of peers.

I Proposition 29. Let P be a d-datalogac program over some schema σ. There exists a d-
datalog program (without access control) P prov of size exponential in dom(σ) (and polynomial
in σ and P if dom(σ) is fixed) with the same extensional relations as σ, such that for each
extensional instance I, [P ]prov(I) and P prov(I) agree on the intensional relations of σ.

The program P prov (in the proof of the previous result) uses constants to denote sets
of peers. An alternative would consist in using an extension of d-datalog with nesting, in
the style of extensions of datalog with nesting [6]. (Such a nested datalog is used in the
implementation in [19].)

The d-datalog program P prov is exponential in the set dom(σ) of peers. Is it possible to
avoid the exponential blowup? The following complexity result implies a negative answer
(subject to usual assumptions). Consider the problem of deciding, given an extensional
instance I and a program P , whether a fact is in [P ]prov(I). Recall from Theorem 11 that
the complexity of checking visibility of a fact has exptime-complete combined complexity,
and ptime-complete data and locally-bounded combined complexity. Now we have:

I Theorem 30. Let σ be a schema, I an extensional instance, and P a d-datalogac pro-
gram over σ. Determining whether a fact is in [P ]prov(I) has exptime-complete combined
complexity, ptime-complete data complexity and pspace-complete locally-bounded combined
complexity.

Theorems 11 and 30 show that provenance visibility has the same combined and data
complexity as the standard semantics, but different locally-bounded combined complexity.
As a corollary, the exponential blowup in Proposition 29 cannot be avoided (unless ptime
= pspace). This highlights the usefulness of this complexity measure in making finer
distinctions than the classical ones.

7 Related work

Database security and access control have been studied in depth (e.g., see [10]) since the
earliest works on System R [26] and Ingres [27].

Controlling access to intensional facts in deductive languages is related to managing
virtual views in SQL, which is handled differently among various database systems. When
an authorized user accesses a view, it is usually evaluated with the privileges of the defining
user (“definer’s rights”). Some systems (e.g. mySQL) allow the creator of a view to specify
that later access to the view will be with respect to the privileges of the invoker of the view
(“invoker’s rights”). This is similar in spirit to our approach.

The access control model we have described is fine-grained, unlike the SQL standard.
Lefevre et al [18] propose a fine-grained access control model for implementing personal
privacy policies in a relational database. They use query modification to enforce their policies,
as we do, but their policy model and implementation are oriented towards a centralized
database system. A commercial example of fine-grained access control is Oracle’s Virtual
Private Database (VPD), which supports access control at the level of tuples or cells. VPD
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allows an administrator to associate an external function with a relation and automatically
modifies queries to restrict access by tuple or cell. Alternative semantics for fine-grained
access control have been investigated thoroughly [18, 25, 29]. Rizvi et al. [25] distinguish
between Truman and Non-Truman models (the expression is motivated by the movie The
Truman Show where the hero is unaware that he lives in an artificial environment). Query
answers in our system follow the Truman paradigm: queries are not rejected because of lack
of privilege but the user’s privileges limit the answers that are returned.

Fine-grained access control is also studied in [13], where predicate-based specification of
authorization is supported. The inference of sensitive data from exposed data (that we study
here under the name of i-visibility) is related to a notion studied in [30].

Our model of access control shares some features with the model of reflective database
access control (RDBAC) in which access policies can be specified in terms of data contained
in any part of the database. Olson et al. [21] formalize RDBAC using a version of datalog
with updates [11] but their model does not include distribution, delegation, or the use of
provenance. In Cassandra [17], access rights are specified using a language based on datalog
with constraints. The language supports complex specifications based on “user roles”. On
the other hand, fine-grained access control is not considered.

The use of provenance as a basis for access control was first noted in the context of
provenance semirings [15, 7]. A security semiring can contain tuple-level security annotations
and define the rules by which they are propagated to query results. Another example of
provenance-based access control is the work of Park et al. [23] in which access decisions are
based on a transactional form of provenance.

The emergence of social networks and other Web 2.0 applications has led to new forms of
access control. In online social networks, the distinguishing feature is that access control
policy is expressed in terms of network relationships amongst members [12, 14], and this is
one of the motivations of the model we presented. However, the model is intended to support
the diverse requirements of access control in a variety of distributed applications.

The Webdamlog language was first described in [3] as a version of distributed datalog in
which peers exchange not only facts, but also rules. Expressiveness and semantic issues were
formally investigated, but access control was not considered. As already mentioned, we build
here on the Webdamlog access control mechanism of [19]. Its main novelty is the specification
of the access rights on an inferred tuple based on the access rights on the tuples used to derive
it. The full access control mechanism of [19] is richer than the one described here, notably
using also grant and write privileges. They present an open-source implementation (with
Bud [9] inside), and an experimental evaluation showing that the computational cost of
access control is modest. In the Webdam project context, cryptographic techniques for
enforcing access control in a distributed manner (and detecting security violations) have been
considered in [5]. The techniques proposed there can be combined with those presented here.

Security in distributed systems has primarily focused on issues of remote authentication,
authorization, and protection of data and distributed trust; such issues are outside the scope
of our present work [1, 22].

8 Conclusion

We presented a first formal study of provenance-based access control in distributed datalog
inspired by the collaborative access control mechanism of [19]. The results highlight the
subtle interplay between declarative distributed computation, coarse-grained and fine-grained
access control. Starting from coarse-grained access control on local extensional relations,
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distributed datalog computation yields fine-grained access control on derived facts based
on their provenance. We also considered access control on tuples equipped with explicit
provenance. We briefly studied the problem of information leakage, occurring when peers
can infer unauthorized information from authorized data. We established the complexity of
access control, as well as of various analysis tasks, such as detecting information leakage,
comparing access policies, or the ability to achieve specified goals under a given policy. A
challenging aspect of the framework is the fluid boundary of schema, data, and program,
that has an impact on both semantics and complexity. For example, this led us to define a
new complexity measure, locally-bounded combined complexity, that can make more subtle
distinctions than classical data and query complexity.

In this first investigation, we have ignored some important aspects of the Webdamlog
system presented in [19]. In Webdamlog, “nonlocal rules” allow dynamic deployment of rules
from one peer to another. Most of the results presented here extend to non-local rules. We
also ignored here the grant and write privileges of Webdamlog. These raise new subtle
issues, notably when access control updates are considered. Finally, delegation in Webdamlog
allows peers to assign tasks to other peers. The access control of delegation is supported in
Webdamlog by a mechanism called “sandboxing” that also raises interesting issues. These
are left for future research.
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