237 research outputs found

    SoK:Communication across distributed ledgers

    Get PDF
    Since the inception of Bitcoin, a plethora of distributed ledgers differing in design and purpose has been created. While by design, blockchains provide no means to securely communicate with external systems, numerous attempts towards trustless cross-chain communication have been proposed over the years. Today, cross-chain communication (CCC) plays a fundamental role in cryptocurrency exchanges, scalability efforts via sharding, extension of existing systems through sidechains, and bootstrapping of new blockchains. Unfortunately, existing proposals are designed ad-hoc for specific use-cases, making it hard to gain confidence in their correctness and composability. We provide the first systematic exposition of cross-chain communication protocols. We formalize the underlying research problem and show that CCC is impossible without a trusted third party, contrary to common beliefs in the blockchain community. With this result in mind, we develop a framework to design new and evaluate existing CCC protocols, focusing on the inherent trust assumptions thereof, and derive a classification covering the field of cross-chain communication to date. We conclude by discussing open challenges for CCC research and the implications of interoperability on the security and privacy of blockchains

    The Bedrock of Byzantine Fault Tolerance: A Unified Platform for BFT Protocol Design and Implementation

    Full text link
    Byzantine Fault-Tolerant (BFT) protocols have recently been extensively used by decentralized data management systems with non-trustworthy infrastructures, e.g., permissioned blockchains. BFT protocols cover a broad spectrum of design dimensions from infrastructure settings such as the communication topology, to more technical features such as commitment strategy and even fundamental social choice properties like order-fairness. The proliferation of different BFT protocols has rendered it difficult to navigate the BFT landscape, let alone determine the protocol that best meets application needs. This paper presents Bedrock, a unified platform for BFT protocols design, analysis, implementation, and experiments. Bedrock proposes a design space consisting of a set of design choices capturing the trade-offs between different design space dimensions and providing fundamentally new insights into the strengths and weaknesses of BFT protocols. Bedrock enables users to analyze and experiment with BFT protocols within the space of plausible choices, evolve current protocols to design new ones, and even uncover previously unknown protocols. Our experimental results demonstrate the capability of Bedrock to uniformly evaluate BFT protocols in new ways that were not possible before due to the diverse assumptions made by these protocols. The results validate Bedrock's ability to analyze and derive BFT protocols

    Fair private set intersection with a semi-trusted arbiter

    Get PDF
    A private set intersection (PSI) protocol allows two parties to compute the intersection of their input sets privately. Most of the previous PSI protocols only output the result to one party and the other party gets nothing from running the protocols. However, a mutual PSI protocol in which both parties can get the output is highly desirable in many applications. A major obstacle in designing a mutual PSI protocol is how to ensure fairness. In this paper we present the first fair mutual PSI protocol which is efficient and secure. Fairness of the protocol is obtained in an optimistic fashion, i.e. by using an offline third party arbiter. In contrast to many optimistic protocols which require a fully trusted arbiter, in our protocol the arbiter is only required to be semi-trusted, in the sense that we consider it to be a potential threat to both parties' privacy but believe it will follow the protocol. The arbiter can resolve disputes without knowing any private information belongs to the two parties. This feature is appealing for a PSI protocol in which privacy may be of ultimate importance

    Towards practicalization of blockchain-based decentralized applications

    Get PDF
    Blockchain can be defined as an immutable ledger for recording transactions, maintained in a distributed network of mutually untrusting peers. Blockchain technology has been widely applied to various fields beyond its initial usage of cryptocurrency. However, blockchain itself is insufficient to meet all the desired security or efficiency requirements for diversified application scenarios. This dissertation focuses on two core functionalities that blockchain provides, i.e., robust storage and reliable computation. Three concrete application scenarios including Internet of Things (IoT), cybersecurity management (CSM), and peer-to-peer (P2P) content delivery network (CDN) are utilized to elaborate the general design principles for these two main functionalities. Among them, the IoT and CSM applications involve the design of blockchain-based robust storage and management while the P2P CDN requires reliable computation. Such general design principles derived from disparate application scenarios have the potential to realize practicalization of many other blockchain-enabled decentralized applications. In the IoT application, blockchain-based decentralized data management is capable of handling faulty nodes, as designed in the cybersecurity application. But an important issue lies in the interaction between external network and blockchain network, i.e., external clients must rely on a relay node to communicate with the full nodes in the blockchain. Compromization of such relay nodes may result in a security breach and even a blockage of IoT sensors from the network. Therefore, a censorship-resistant blockchain-based decentralized IoT management system is proposed. Experimental results from proof-of-concept implementation and deployment in a real distributed environment show the feasibility and effectiveness in achieving censorship resistance. The CSM application incorporates blockchain to provide robust storage of historical cybersecurity data so that with a certain level of cyber intelligence, a defender can determine if a network has been compromised and to what extent. The CSM functions can be categorized into three classes: Network-centric (N-CSM), Tools-centric (T-CSM) and Application-centric (A-CSM). The cyber intelligence identifies new attackers, victims, or defense capabilities. Moreover, a decentralized storage network (DSN) is integrated to reduce on-chain storage costs without undermining its robustness. Experiments with the prototype implementation and real-world cyber datasets show that the blockchain-based CSM solution is effective and efficient. The P2P CDN application explores and utilizes the functionality of reliable computation that blockchain empowers. Particularly, P2P CDN is promising to provide benefits including cost-saving and scalable peak-demand handling compared with centralized CDNs. However, reliable P2P delivery requires proper enforcement of delivery fairness. Unfortunately, most existing studies on delivery fairness are based on non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc P2P setting. To address this issue, an expressive security requirement for desired fair P2P content delivery is defined and two efficient approaches based on blockchain for P2P downloading and P2P streaming are proposed. The proposed system guarantees the fairness for each party even when all others collude to arbitrarily misbehave and achieves asymptotically optimal on-chain costs and optimal delivery communication

    SoK: Communication Across Distributed Ledgers

    Get PDF
    Since the inception of Bitcoin, a plethora of distributed ledgers differing in design and purpose has been created. While by design, blockchains provide no means to securely communicate with external systems, numerous attempts towards trustless cross-chain communication have been proposed over the years. Today, cross-chain communication (CCC) plays a fundamental role in cryptocurrency exchanges, scalability efforts via sharding, extension of existing systems through sidechains, and bootstrapping of new blockchains. Unfortunately, existing proposals are designed ad-hoc for specific use-cases, making it hard to gain confidence in their correctness and composability. We provide the first systematic exposition of cross-chain communication protocols. We formalize the underlying research problem and show that CCC is impossible without a trusted third party, contrary to common beliefs in the blockchain community. With this result in mind, we develop a framework to design new and evaluate existing CCC protocols, focusing on the inherent trust assumptions thereof, and derive a classification covering the field of cross-chain communication to date. We conclude by discussing open challenges for CCC research and the implications of interoperability on the security and privacy of blockchains

    Decentralizing Trust with Resilient Group Signatures in Blockchains

    Get PDF
    Blockchains have the goal of promoting the decentralization of transactions in a P2Pbased internetworking model that does not depend on centralized trust parties. Along with research on better scalability, performance, consistency control, and security guarantees in their service planes, other challenges aimed at better trust decentralization and fairness models on the research community’s agenda today. Asymmetric cryptography and digital signatures are key components of blockchain systems. As a common flaw in different blockchains, public keys and verification of single-signed transactions are handled under the principle of trust centralization. In this dissertation, we propose a better fairness and trust decentralization model by proposing a service plane for blockchains that provides support for collective digital signatures and allowing transactions to be collaboratively authenticated and verified with groupbased witnessed guarantees. The proposed solution is achieved by using resilient group signatures from randomly and dynamically assigned groups. In our approach we use Threshold-Byzantine Fault Tolerant Digital Signatures to improve the resilience and robustness of blockchain systems while preserving their decentralization nature. We have designed and implemented a modular and portable cryptographic provider that supports operations expressed by smart contracts. Our system is designed to be a service plane agnostic and adaptable to the base service planes of different blockchains. Therefore, we envision our solution as a portable, adaptable and reusable plugin service plane for blockchains, as a way to provide authenticated group-signed transactions with decentralized auditing, fairness, and long-term security guarantees and to leverage a better decentralized trust model. We conducted our experimental evaluations in a cloudbased testbench with at least sixteen blockchain nodes distributed across four different data centers, using two different blockchains and observing the proposed benefits.As blockchains tem principal objetivo de promover a descentralização das transações numa rede P2P, baseada num modelo não dependente de uma autoridade centralizada. Em conjunto com maior escalabilidade, performance, controlos de consistência e garantias de segurança nos planos de serviço, outros desafios como a melhoria do modelo de descentralização e na equidade estão na agenda da comunidade científica. Criptografia assimétrica e as assinaturas digitais são a componente chave dos sistemas de blockchains. Porém, as blockchains, chaves públicas e verificações de transações assinadas estão sobre o princípio de confiança centralizada. Nesta dissertação, vamos propor uma solução que inclui melhores condições de equidade e descentralização de confiança, modelado por um plano de serviços para a blockchain que fornece suporte para assinaturas coletivas e permite que as transações sejam autenticadas colaborativamente e verificadas com garantias das testemunhadas. Isto será conseguido usando assinaturas resilientes para grupos formados de forma aleatória e dinamicamente. A nossa solução para melhorar a resiliência das blockchains e preservar a sua natureza descentralizada, irá ser baseada em assinaturas threshold à prova de falhas Bizantinas. Com esta finalidade, iremos desenhar e implementar um provedor criptográfico modelar e portável para suportar operações criptográficas que podem ser expressas por smart-contracts. O nosso sistema será desenhado de uma forma agnóstica e adaptável a diferentes planos de serviços. Assim, imaginamos a nossa solução como um plugin portável e adaptável para as blockchains, que oferece suporte para auditoria descentralizada, justiça, e garantias de longo termo para criar modelo melhor da descentralização da base de confiança. Iremos efetuar as avaliações experimentais na cloud, correndo o nosso plano de serviço com duas implementações de blockchain e pelo menos dezasseis nós distribuídos em quatro data centres, observando os benefícios da solução proposta
    corecore