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Peer-to-peer (p2p) approaches are an increasingly effective way to deploy services.

Popular examples include BitTorrent, Skype, and KaZaA. These approaches are

attractive because they can be highly fault-tolerant, scalable, adaptive, and less

expensive than a more centralized solution. Cooperation lies at the heart of these

strengths. Yet, in settings where working together is crucial, a natural question

is: “What if users stop cooperating?” After all, cooperative services are typically

deployed over multiple administrative domains, and thus vulnerable to Byzantine

failures and users who may act selfishly.

This dissertation explores how to construct p2p systems to tolerate Byzan-

tine participants while also incentivizing selfish participants to contribute resources.

We describe how to balance obedience against choice in building a robust p2p live
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streaming system. Imposing obedience is desirable as it leaves little room for peers

to attack or cheat the system. However, providing choice is also attractive as it

allows us to engineer flexible and efficient solutions.

We first focus on obedience by using Nash equilibria to drive the design

of BAR Gossip, the first gossip protocol that is resilient to Byzantine and selfish

nodes. BAR Gossip relies on verifiable pseudo-random partner selection to elimi-

nate non-determinism, which can be used to game the system, while maintaining

the robustness and rapid convergence of traditional gossip. A novel fair enough ex-

change primitive entices cooperation among selfish peers on short timescales, thereby

avoiding the need for distributed reputation schemes. We next focus on tempering

obedience with choice by using approximate equilibria to guide the construction of

a novel p2p live streaming system. These equilibria allow us to design incentives to

limit selfish behavior rigorously, yet provide sufficient flexibility to build practical

systems. We show the advantages of using an ε-Nash equilibrium, instead of an

exact Nash, to design and implement FlightPath, our live streaming system that

uses bandwidth efficiently, absorbs flash crowds, adapts to sudden peer departures,

handles churn, and tolerates malicious activity.
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Chapter 1

Introduction

In 1999, the infamous file-sharing program Napster [55] demonstrated that peer-

to-peer (p2p) applications can be a very effective and disruptive technology. Since

then, greater accessibility of broadband connections, decreasing storage costs, and

more powerful microprocessors have made p2p an increasingly popular way to deploy

services. P2P approaches are attractive because they can be highly fault-tolerant,

scalable, and adaptive. Moreover, a p2p design can be less expensive than a tradi-

tional client-server approach, thereby lowering the barriers to entry in markets such

as content distribution, telecommunications, and audio/video streaming. BitTor-

rent [18], KaZaA [36], Limewire [44], Skype [72], and LiveStation [48] are a small

sample of today’s well-known p2p applications.

Of course, different p2p services can take vastly different technological ap-

proaches in their applications. Yet, no matter how traditional or innovative we are,

all p2p systems rely on a shared principle: cooperation. Peers pool their resources

to achieve a common goal. Cooperation gives p2p systems their vaunted strengths.

But those advantages are only as solid as the foundation on which they rest, leading

to a simple question: What if peers stop cooperating?

1



1.1 Motivation

An application may never see the typical p2p benefits—such as scalability and

adaptability—if it does not tolerate Byzantine users who may disrupt the service or

selfish ones who may try to use it without contributing their fair share. Designing

a practical p2p system that deals with both Byzantine and selfish users is challeng-

ing. First, the system needs to work well in a range of settings. For example, in

a file-sharing application, users should typically see high download speeds despite

the inherent unpredictability of the Internet. Second, the system should continue to

work well despite the presence of Byzantine users. Byzantine behavior is inevitable

in large-scale systems: computers crash, programs contain bugs, people misconfig-

ure their systems, and some users will attack the system. Third, the system should

ensure that selfish participants actually cooperate. Selfish peers are an unfortunate

reality of p2p systems. Adar and Huberman estimate that nearly 70% of Gnutella

users share no files [1]. When widespread, such behavior can severely hurt any

service whose foundation relies on cooperation.

Several deployed applications [18, 36] and research prototypes [19, 31, 33, 57,

64, 63, 70] have recognized the need to curb selfish actions. Despite these systems’

built-in incentives and punishments, selfish participants still frequently find ways

to cheat. For example, consider the KaZaA network [36] in which it is estimated

that nearly half the peers use KaZaA Lite [37], which falsifies users’ contributions.

The popular application BitTorrent uses a tit-for-tat based mechanism to encourage

cooperation. However, Schneidman et al. [68] identify several ways a client could

cheat, weaknesses that have since been exploited in recent BitTorrent clients [49,

64, 70].

Levin et al. [41] bring to light BitTorrent’s ad hoc design by debunking

the popular belief that BitTorrent uses a tit-for-tat mechanism. They show that

BitTorrent actually uses an auction-based scheme, a design decision that explains
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BitTyrant’s [64] success in uploading only enough to trigger reciprocation. These

vulnerabilities and misunderstandings in BitTorrent illustrate a broader point in

system design: almost no p2p system rigorously shows that its built-in incentives

and punishments are enough to induce cooperation.

We therefore take a formal approach to building a system to tolerate both

Byzantine and selfish participants. We base our approach on the BAR model [3] in

which Aiyer et al. combine game theory with traditional Byzantine fault-tolerance

in building a cooperative backup system. This dissertation begins by leveraging

techniques pioneered in the original BAR work and applying them in a new setting:

p2p live streaming.

1.2 Contributions

This dissertation focuses on constructing p2p live streaming systems that are sup-

ported by a rigorous theoretical foundation. Live streaming is an increasingly useful

application at several scales of deployment. For example, the first 2008 presidential

debate was watched by over 1 million people online. At smaller scales, such as aca-

demic conferences or local concerts, there may be interest in providing a live stream,

but little existing infrastructure to support it.

At all these scales, a p2p streaming solution is an intriguing alternative to

traditional methods. For example, such a solution could absorb the impact of an

unexpected flash crowd. Furthermore, large-scale content providers may adopt p2p-

based solutions to shift costs (like bandwidth) to clients, and small-scale providers

might find it simpler to use a self-organizing network instead of provisioning and

maintaining a large dedicated server.

We have built two systems, BAR Gossip and FlightPath, that tolerate Byzan-

tine and selfish peers. We base both systems on gossip protocols [10, 21]. As with all

gossip protocols, peers in our protocols periodically exchange recently received data
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with random neighbors. Birman et al. [10] show how such a simple communication

pattern yields a robust and highly reliable multicast. For this reason, some have

used gossip-based mechanisms as part of their streaming systems [32, 33, 60, 63].

Yet, to our knowledge, no one has considered how robust these mechanisms actually

are with Byzantine and selfish peers. The key challenge we face in building a p2p

live streaming system is in how to induce cooperation in a practical system.

BAR Gossip: A Purist Approach BAR Gossip consists of two novel gossip

protocols, Balanced Exchange and Optimistic Push. We construct Balanced Ex-

change to be a Nash equilibrium [56]—a condition in which no selfish peer has an

incentive to act alone in trying to cheat the system. In designing Balanced Exchange,

we immediately face two practical hurdles. First, gossip’s robustness stems from its

randomness, a trait that makes it difficult to enforce obedience since peers can mask

suspicious behavior as the product of improbable though not impossible events. We

overcome the randomness problem by creating a verifiable pseudo-random algo-

rithm. Second, the fair exchange of data between two peers is provably impossible

to achieve without a trusted arbiter [25], which can be a bottleneck at large scales.

We sidestep the impossibility result by designing an exchange primitive that is fair

enough, guaranteeing that selfish peers do not attempt to cheat others in trades.

Our desire to ensure that cheating is not beneficial results in a theoretically

appealing Balanced Exchange protocol that performs poorly. To fix this performance

issue, we introduce the second half of BAR Gossip, Optimistic Push. This protocol

is similar to Balanced Exchange, except that it allows peers to trade data with the

hope, rather than the certainty, that they will receive the same number of useful data

packets in return. Together with Balanced Exchange, the Optimistic Push protocol

achieves good performance but has a theoretical drawback: We cannot prove that the

Optimistic Push protocol is a Nash equilibrium, although our experiments suggest

it is not easy to cheat the protocol.
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FlightPath: A Practical and Rigorous Approach BAR Gossip’s resilience

to Byzantine and selfish peers is a good start towards designing p2p live streaming

systems under the BAR model. However, our experience suggests that strict equilib-

ria (e.g., Nash equilibria) may not provide the flexibility necessary to achieve great

performance in p2p systems (whether for live streaming or not). We therefore turn

to approximate equilibria, and in particular, ε-Nash equilibria [15] in which selfish

peers expect to gain at most a factor of ε from unilateral deviations. We use these

equilibria to trade resilience to cheating for practical concerns like performance and

low overhead.

FlightPath—our streaming system based on ε-Nash equilibria—significantly

improves stream quality over Balanced Exchange and Optimistic Push. The strength

of these equilibria is that they allow us to balance enforcing obedience against pro-

viding enough flexibility to adapt to challenging situations. An example of this

balancing act is in how we craft FlightPath’s partner selection algorithm to both

limit the number of partners that Byzantine peers can simultaneously contact while

offering enough choices for other peers to select good trading partners. In addition

to these practical benefits, ε-Nash equilibria also have theoretical ones. We can

prove that FlightPath is an ε-Nash equilibrium without relying on experiments that

only suggest this condition as we did when assessing whether Optimistic Push is a

strict Nash equilibrium.

1.3 Roadmap

This dissertation consists of seven chapters. In the first, we provide motivation and

an overview of the entire document.

Chapter 2 summarizes related work. Most readers may skip this chapter to more

quickly reach the technical contributions of this dissertation. This chapter explains
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where this work fits in the existing body of research on content distribution, gossip

protocols, game theory and mechanism design, and p2p streaming systems.

Chapter 3 provides background on relevant game-theoretic concepts used in this

dissertation. We use the framework already established by game theory to reason

about how a selfish user would behave. This chapter also explains our assumptions

regarding communication channels and node failures. In short, it defines our system

model.

Chapter 4 describes the first half of BAR Gossip, Balanced Exchange, detailing

the verifiable pseudorandom partner algorithm and the fair enough exchange mech-

anism. In addition, we prove in this chapter that the Balanced Exchange protocol

is a Nash equilibrium.

Chapter 5 addresses some of the practical concerns inherent to Balanced Ex-

change. We introduce BAR Gossip’s second half, Optimistic Push, and discuss its

similarities and differences with Balanced Exchange. This chapter also compares

BAR Gossip to a traditional gossip algorithm, assesses the robustness of Optimistic

Push to cheating strategies, and evaluates BAR Gossip under attack.

Chapter 6 proposes approximate equilibria as a new way to design p2p services.

We design and implement FlightPath, a novel p2p live streaming system based on

ε-Nash equilibria. This chapter describes the basic design of FlightPath and the

heuristics we use to improve overall performance. Additionally, we also discuss

implementation details of the FlightPath prototype and an evaluation of FlightPath

in several settings.

Chapter 7 highlights open questions related to designing robust p2p services and

concludes this document.
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Chapter 2

Related Work

This dissertation builds on a broad set of contributions in gossip protocols, bulk file

transfer, and p2p streaming protocols. In the rest of this section, we summarize

the works that have influenced BAR Gossip and FlightPath the most, drawing

comparisons when appropriate.

2.1 Gossip Protocols

In BAR Gossip and FlightPath, we incorporate many techniques from several works

in the gossip literature. In their seminal work, Demers et al. [21] show how to apply

concepts from epidemiology to maintain consistency across replicated databases. De-

mers et al. resolved the scalability and performance problems of maintaining consis-

tency across Xerox’s Clearinghouse servers [58] by using epidemic algorithms to pro-

vide a weak form of consistency. In time, epidemic protocols also came to be known

as gossip protocols. Years later, Petersen et al. [62] extend epidemic techniques from

databases to filesystems. The resulting weakly consistent system, Bayou, was impor-

tant in its conceptually simple approach—pair-wise update propagation—leading to

a filesystem that could support a diverge range of networking environments.
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Birman et al. [10] propose Bimodal Multicast, going beyond using gossip

techniques for just maintaining replica consistency. They design a highly reliable

multicast protocol that works in two phases. The first phase uses a light-weight

best-effort multicast, such as IP Multicast, to carry out the initial spread of data

in the system. The second phase leverages gossip as a repair mechanism, informing

those nodes still ignorant of the latest updates. Bimodal Multicast ensures that

nodes receive updates with high probability, establishing a middle ground between

100% reliable multicast protocols and best-effort approaches—the former scaling

poorly and the latter providing disappointing guarantees.

In Astrolabe [74], van Renesse et al. show how to use gossip in yet an-

other area: distributed monitoring and management. Astrolabe uses gossip-based

techniques in a broader infrastructure for information management. Gossip pro-

vides a scalable way for nodes to exchange state with another, enabling a number

of Astrolabe’s applications: publish-subscribe, resource location, attribute aggre-

gation, and large-scale state monitoring. Moreover, gossip provides a mechanism

by which Astrolabe can manage membership information, incorporating new nodes

when appropriate and removing very old entries that probably correspond to failed

computers.

Eugster et al. [23] improve gossip’s scalability in their work on light-weight

probabilistic broadcast protocols (lpbcast). They propose a better message buffering

algorithm that prioritizes gossiping more rare updates over those that are more well-

known. In addition, Eugster et al. show that nodes do not have to maintain full

membership lists to retain the robustness of gossip. A node can maintain a partial

view that is selected uniformly at random from the full list. Their algorithm to

maintain partial views appears to provide views that are close to random. Ganesh et

al. [24] extend this partial view technique in Scamp, where they develop an algorithm

to grow and shrink view sizes in a decentralized manner relative to system size.
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Although techniques to maintain partial membership views strive to retain

the robustness properties inherent to true randomness, both lpbcast and Scamp

have not been thoroughly analyzed to determine whether gossip’s robustness has

indeed been kept. In Cyclon [77], Voulgaris et al. propose a way for nodes to shuffle

their partial views so that the resulting communication graph imposed by those

views possesses many desirable properties of random graphs, namely low diameter,

low clustering, highly symmetric node degrees, and remarkable resilience to failures.

Araneola [52], by Melamed et al., also improve upon overlay construction. Their

approach allows nodes to dynamically build and maintain k-regular graphs in which

every node has either degree k or k + 1. By controlling the randomness in graph

construction, Araneola is able to improve load, reliability, and latency compared to

standard gossip-based multicast approaches.

Johansen et al. [35] depart from traditional gossip-based membership man-

agement by aiming for a protocol that tolerates Byzantine participants while main-

taining full membership lists. They argue that memory overheads are not the prob-

lem. Rather, overheads stemming from join and leave events can cause a high

amount of network traffic. Johansen et al. demonstrate that FlightPath can main-

tain full membership lists and tolerate Byzantine members, while incurring modest

network overheads. To our knowledge, Brahms [11], by Bortnikov et al., is the latest

in the series of gossip-based membership protocols. This system is unique in its abil-

ity to tolerate Byzantine members while maintaining small view sizes. Key to their

approach is a technique that enables nodes to independently and uniformly sample

from the space of existing members. This achievement is a fundamental advance as

previous techniques could only provide small views that empirically appeared to be

random, whereas Brahms does so in theory as well.

Although gossip is appealing because of its simplicity and increased robust-

ness, those benefits come with a cost. At large-scales, its uniformly random nature
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can generate a large number of packets that congest common links. A few have

proposed techniques to lift gossip’s ignorance of the underlying topology. In their

Leaf Box Hierarchy, Gupta et al. [30] organize peers into leaf boxes, which reside at

the leaves of a tree. A member gossips with a neighbor with decreasing probability

the farther away a member is in the tree. Provided that the mapping from members

to leaf boxes reflects the proximity of nodes in the network, this gossiping algorithm

reduces stress on common links that connect clusters of peers. Note that Gupta et

al. leave a good mapping unspecified. In Directional Gossip [45], Lin and Marzullo

adopt a different approach, advocating the use of two gossip protocols to cope with

wide area network settings. They propose using a standard gossip algorithm within

LANs and a separate algorithm across LANs. Nodes in different LANs gossip with

one another with probability decreasing the better connected those two nodes are to

one another, where connectivity is measured according to the size of the minimum

link-disjoint set between those two nodes. The intuition behind this approach is

that nodes which are not well-connected should seize the opportunity to gossip with

one another.

To our knowledge, only two gossip protocols have taken advantage of network

coding: Slingshot [7] and Ricochet [6] 1. Both systems use receiver-based network

coding as a repair mechanism in case an initial unreliable multicast fails to reach

every node. Receiver-based network coding allows rapid recovery from message

losses in time critical environments. Their authors intend Ricochet and Slingshot to

be used in data centers where message loss occurs at the nodes and the networking

infrastructure is assumed to be nearly infallible.
1As “Balakrishnan et al.” could refer to either Slingshot or Ricochet, we refer to each system

by name instead of by the authors.
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2.2 File-sharing and Incentives

Perhaps the most well-known file-sharing program today is BitTorrent [18]. Its

incentive structure, wide-availability, and numerous implementations have made

it one of the most effective ways to transfer large files for both lawful and less

lawful purposes. Those incentives suggest a robustness not seen in previous file-

sharing applications such as Limewire [44] or Napster [55]. In this section, we

summarize recent works that exploit weak points in BitTorrent’s design, weaknesses

that illustrate the dangers of informal incentive-based approaches. We begin with a

summary of BitTorrent’s incentive structure.

A BitTorrent client has incentive to upload to other clients as such action

may trigger others to respond in kind. By default, a client chokes its uploads to all

other clients. Periodically, a client chooses 4 clients to be unchoked. The 3 clients

who have uploaded the most to a client comprise 3 out of those 4 unchoke slots.

A client chooses the last slot at random. A BitTorrent client divides its upload

bandwidth equally across the 4 partners that it has unchoked.

Shneidman et al. [68] identify several ways to game the BitTorrent protocol.

Using a technique they name manual backtracing, Shneidman et al. propose four

modifications to a BitTorrent client that can decrease download time or let a user

free-ride off others.

1. The BitTorrent protocol is susceptible to a Sybil attack [22]; a client wishing

to free-ride can create multiple identities to increase the chances of being

optimistically unchoked.

2. There is little incentive for a peer to use more upload bandwidth than is nec-

essary to be one of the top 3 uploaders for a neighbor. That extra bandwidth

can be conserved or diverted to be a top 3 uploader for a different neighbor.

3. Once an optimistically unchoked client is again choked, that client has an
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incentive to disconnect from its partner and reconnect. This exploit is an

artifact of the original BitTorrent implementation.

4. A client can be credited with uploading data even if the data it uploads is

garbage.

Although Shneidman et al. identify these weaknesses, they ignore the degree

to which each can be exploited. Some may be theoretically possible but of little

consequence practically. Uploading garbage data is clearly a practical weakness and

is addressed in later BitTorrent clients such as Azureus [5]. Recent works have shown

the remaining three are also weaknesses that can be gamed in practice [41, 49, 70].

In BitThief [49], Locher et al. instrument a client to reconnect to the tracker

several times to obtain a large list of possible partners. A BitThief client then

contacts all of these partners and is therefore known by many more peers than

normal. Although not a Sybil attack, the underlying motivation is the same—

increase the probability of being optimistically unchoked. Almost concurrently,

Sirivianos et al. [70] develop an identical attack and term it the large-view exploit.

Sirivianos et al. also include the third technique by Shneidman et al. to take

advantage of the BitTorrent specification. Both works demonstrate free-riding is

quite feasible in real BitTorrent swarms.

In BitTyrant [64], Piatek et al. explore how a strategic client can alter how it

portions out upload bandwidth to increase aggregate download rates. A BitTyrant

client estimates how much bandwidth is needed to be considered a top 3 uploader

with respect to its neighbors. Any extra upload bandwidth is used to attract other

neighbors. BitTyrant’s heuristics show that a clever client can significantly improve

its performance by being more strategic in who it uploads to and how much it

uploads.

Levin et al. [41] dispel a common belief that BitTorrent’s incentives stem

from a tit-for-tat strategy. Although this observation is not new [68, 70], Levin et
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al. show that BitTorrent’s structure is essentially an auction that awards the top 3

bidders. They improve on BitTorrent’s incentive structure by redesigning auctions

such that the rewards are proportional to the amount of upload bandwidth each

client bids. Framing BitTorrent’s incentive structure cleanly captures the success of

Piatek et al. with BitTyrant. Moreover, Levin et al. reveal a fifth way to game the

protocol. A clever client can selectively lie about not having a file block to prolong

beneficial relationships.

BitTorrent illustrates the power of using a p2p approach to deploy services.

However, its weaknesses, as highlighted by several researchers, point to the dangers

of an informal approach in dealing with selfish behavior. These shortcoming have

triggered a series of proposals for more robust incentives in file-sharing systems [42,

54, 71, 75]. We elide a thorough discussion of incentives in file-sharing systems,

focusing instead on incentives in streaming applications.

2.3 Streaming and Incentives

BAR Gossip and FlightPath are the latest in a series of p2p streaming proposals

that include incentives to encourage cooperation. Our work differs from previous

approaches in two important ways. First, we require our systems to tolerate Byzan-

tine behavior. Second, we focus on showing formally that our incentives are enough

to induce obedience. Existing p2p live streaming systems either crumble with the

existence of even one malicious peer or fail to justify that the incentives provided are

indeed enough. In this section, we begin with a brief summary of some streaming

systems that do not incorporate incentives. Afterwards, we discuss systems that

provide incentives.

Because IP multicast has failed in gaining widespread adoption across In-

ternet service providers, many have designed application-level multicast protocols

using overlay networks. Overcast [34] is one of the first systems to explore using
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overlay networks to disseminate data. In Overcast, Jannotti et al. design heuristics

to build trees optimized for high-bandwidth data dissemination.

SplitStream [13] builds a forest of trees to disseminate data. In this system,

Castro et al. leverage the mechanisms in Pastry [66] and Scribe [12] to construct

trees that spread the work of forwarding data evenly across participating nodes.

Their techniques ensure that no node serves as an internal node in more than one

tree. Ngan et al. [57] take advantage of the SplitStream design and propose a

punishment scheme to discourage free-riding behavior. Their approach penalizes

internal nodes who decide to not forward data by periodically restructuring the

tree, allowing the descendants a selfish user may have hurt to respond in kind. This

scheme quickly loses its appeal when we consider that a malicious peer can trigger

frequent restructurings.

Instead of focusing on punishments, some works incentivize cooperation by

offering peers who contribute increased resilience to benign failures. Habib and

Chuang [31] employ a scoring system that tracks a peer’s contributions. A peer

with a high score has more options in choosing where to obtain data, and therefore,

more resilience in case some peers crash or are unreachable. In Climber [61], Park

et al. initially organize peers into a tree and then insert redundant links to a form

a mesh where peers who contribute more are rewarded with more redundant links.

PULSE [63] rewards users who contribute by placing them closer to the source

with respect to how data is distributed. The assumption is that a user benefits

from less delay between when a live event occurs and when it appears on a user’s

screen. Liu et al. [47] adopt a BitTorrent-like strategy, specifying that each peer

should upload to those partners who have contributed the most. This scheme also

incorporates an optimistic unchoke technique, making their system vulnerable to the

free-riding strategies that plague BitTorrent. In short, although many of the above

works propose incentives to encourage cooperation, these approaches provide no
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justification that the inherent rewards are compelling enough to induce cooperation.

Chu et al. [17] sidestep the worry that users may cheat by simply positing that

users are incapable of modifying the software. They assume that a peer’s behaviors

are limited to changing how much to contribute, ignoring more sophisticated and

subtle strategies that may indeed be better. Chu et al. focus on designing a linear

taxation model that requires those with more available bandwidth to contribute

more than those with less available bandwidth. Their work focuses on what the

taxes should be for different upload capabilities, not how to enforce the collecting

of such taxes.

Equicast [38], by Keidar et al., is the first work to formally deal with selfish

users in a p2p streaming setting. They structure the system such that it is in a

peer’s best interest to follow the protocol, assuming that the peer can only change

how many connections to maintain and how many packets to send on each connec-

tion. Although theoretically valuable, Equicast relies on a number of impractical

assumptions, such as a peer being hurt infinitely much if it misses even one block of

the stream. Further, Equicast is a purely theoretical work, without simulations or

a prototype to assess practicality. Lin et al. [46] similarly take a formal approach,

providing a game-theoretic framework in which one could analyze a p2p live stream-

ing application. However, they leave open how to actually design a system to be a

Nash equilibrium.

To our knowledge, SecureStream [32] is the only other work designed to

tolerate malicious behavior in a p2p live streaming setting. Leveraging an intrusion-

tolerant membership protocol, Fireflies [35], SecureStream is resilient to denial of

service attacks, forgery, and several other attacks. Haridasan et al. [33] later extend

the SecureStream system by augmenting it with an infrastructure to audit peers’

contributions. Although effective in simulation, the resulting protocol lacks a formal

analysis bounding the gains from attempting to cheat.
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While there have been several works that use incentives in file-sharing and stream-

ing settings, few approaches also deal with Byzantine behavior. The work in this

dissertation draws from the contributions made by Aiyer et al. [3] in proposing the

BAR model to cope with Byzantine behaviors and selfish actions. Aiyer et al. iden-

tify that existing models are ill-equipped to deal with both kinds of deviations. In

the traditional Byzantine failure model, any deviation is considered a fault, mean-

ing that system designers may have to consider situations in which nearly every

participant is Byzantine—a characterization that perhaps overstates the problem.

Traditional economics models are well-armed against selfish participants, but pro-

vide little relief against participants who may break incentive structures by acting

irrationally. Aiyer et al. use the BAR model to design a cooperative backup system

based on a replicated state machine architecture that enforces obedience while tol-

erating a bounded number of Byzantine failures. BAR Gossip and FlightPath adopt

a very different approach by leveraging gossip’s scalability to disseminate data.
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Chapter 3

Background & Model

In this chapter, we provide background on relevant concepts from game theory and

their analogues in distributed system design. Afterwards, we describe the setting in

which we plan to stream data.

3.1 Game Theory Background

We can frame many interactions, both in real life and the online world, as games

in which players participate to receive payoffs. In these interactions, game theory

provides a framework to reason about strategic behavior and lets us predict the

outcomes when players seek to increase their payoffs perhaps at the expense of other

players. As even a basic game theory primer could consume an entire dissertation,

we include only those topics relevant to understanding our contributions. Where

appropriate, we relate game theoretic definitions to their analogues in distributed

systems.

A game consists of a set of players N , a set of strategies Si for each player i,

and a set of utility functions {u1, . . . , un}, where n = |N |. Each player participates

in the game by taking individual actions. A player’s strategy determines which
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actions a player takes in different situations. Since players typically interact with

one another, it is useful to refer to a strategy profile s = (s1, . . . , sn), identifying

which strategy each player pursues. Given a profile (s1, . . . , sn) and a player i, we

measure i′s payoff or its utility using ui(s1, . . . , sn). Greater utilities correspond to

more effective strategies. We occasionally use the notation (s−i, s
∗
i ) to refer to the

profile in which player i is pursuing a strategy s∗i different from its strategy in the

profile s.

We consider games in which the participants are strategic or rational and

seek to increase their own utility. Several contributions in game theory focus on

predicting what rational players will do when presented with a game. If every

player is rational and believes all other players to be rational, what strategy will

each player adopt? Often, the reasoning can be confusing with loops such as “If I

play strategy A, then her best response is strategy B in which case I would play C.

However, she knows that I would play C if she played B, so she would play D to

counter my C. Since I know that she would play D to counter my C, then my best

response to D is to play strategy E, and so on.” A desirable property is when such

reasoning results in a stable strategy profile, or an equilibrium.

Equilibria are important in game theory and the closely related subfield,

mechanism design. Whereas game theory focuses on predicting a game’s outcome,

mechanism design strives to design games to achieve a particular outcome. We

declare success when we can design mechanisms so that the outcome we want is the

same as the outcome that game theory predicts. However, aligning our desires with

game theory’s predictions is usually difficult. We may assign strategies to players

to achieve an outcome. Yet, a rational player may attempt to increase its own

utility by switching to a different strategy. In this case, we say a player disobeys

its assigned strategy or defects. Our goal is to design a strategy profile that would

achieve our desired outcome while also being an equilibrium, providing no incentive
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for any player to defect.

Distributed system design shares many concepts with game theory and mech-

anism design. Nodes assume the role of players and are assigned the strategy of

obeying the protocol. Therefore, a protocol specification implicitly defines a strat-

egy profile. When a node deviates from the protocol, that action is analogous to a

player defecting. We consider a protocol to be an equilibrium if the protocol defines

a strategy profile that is an equilibrium. Such protocols are important in p2p sys-

tems because they define stable situations in which rational participants obey the

protocol.

In this dissertation, we design p2p protocols to achieve a very specific out-

come: reliably streaming live data. We craft mechanisms so that it is in every

peer’s interest to obey the protocol and use game theory to justify that claim. In

Chapters 4 and 5, we design protocols to be a particular kind of equilibria, Nash

equilibria [56] (defined in Chapter 4). In Chapter 6, we create a protocol that is an

ε-Nash equilibria [15] (defined in Chapter 6).

3.2 System Model

We consider the problem of streaming a live event over the Internet to a set of

clients (or peers). A tracker maintains the set of peers that subscribe to the live

event. A source divides time into rounds that are r len seconds long. In each round,

the source generates stream packets that expire after deadline rounds. The source

multicasts each packet to a small fraction seed frac of random clients.

Clients work together to disseminate those packets throughout the system.

When a stream packet expires, all peers that possess that packet deliver it to their

media application. If a peer delivers fewer updates than it should in a round, we

consider that round jittered and our goal is to minimize such rounds. We define the

jitter of a live stream to be the ratio of rounds jittered to the total number of rounds.
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Similarly, we define the reliability as the ratio of packets delivered on time to the

total number of packets. This reliability metric is analogous to SecureStream’s [32]

continuity index.

We assume that the source and tracker run as specified and do not fail, al-

though we could relax this assumption using standard techniques for fault-tolerance [67,

14]. Peers, however, may deviate from the specification.

We use the BAR model [3] to classify peer behaviors as Byzantine, altruistic,

or rational. The premise of the BAR model is that when nodes can benefit by

deviating, it may be untenable to bound the number of deviations to a small fraction.

Thus, we desire to create systems that continue to function even if all participants

are rational and willing to deviate for gain.

While many nodes behave rationally, some may be Byzantine and behave ar-

bitrarily because of a bug, misconfiguration, or ill-will. We assume that the fraction

of nodes that are Byzantine is bound by Fbyz < 1. We also assume that rational

peers expect negative utility from communicating with peers known to be Byzantine.

Altruistic peers obey the given protocol.

Non-Byzantine peers maintain clocks synchronized with the tracker. Nodes

communicate over synchronous yet unreliable channels. We assume that each peer

has exactly one public key bound to a permanent id. In practice, we can discharge

this assumption by using a certificate authority or by implementing recent proposals

to defend against Sybil attacks [78].

We assume that cryptographic primitives—such as digital signatures, sym-

metric encryption, and one-way hashes—cannot be subverted. Our algorithms also

require that private keys generate unique signatures [9]. We denote a message m

signed by peer i as 〈m〉i. Non-Byzantine nodes ignore messages that cannot be

properly authenticated.

Finally, we hold peers accountable for the messages they send. We define a
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proof of misbehavior (PoM) as a signed message that proves a peer has deviated from

the protocol. A PoM against a peer is sufficient evidence for the source and tracker

to evict a peer from the system, never letting that peer join a streaming session with

that tracker or source in the future. We assume that eviction is a sufficient penalty

to deter any rational peer from sending a message that the receiver could present

as a PoM.
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Chapter 4

Balanced Exchange:

A Purist Approach

In this chapter, we present Balanced Exchange, the first gossip protocol designed for

a setting in which some peers may be Byzantine while the remaining can be rational.

Despite this adversarial environment, Balanced Exchange provides a mechanism to

disseminate information that ensures steady throughput.

The defining characteristic of gossip protocols is that each peer exchanges

data, or gossips, with randomly selected peers. It is precisely this randomness that

gives gossip protocols their enviable robustness, a trait that we want to maintain

in Balanced Exchange. However, from the perspective of designing protocols in a

Byzantine and rational setting, randomness can be a headache: in fact, any source

of non-determinism is hard to deal with because it gives opportunities for rational

users to hide deviations in the guise of legitimate non-deterministic behavior.

In Balanced Exchange, we overcome this difficulty by using verifiable ran-

domness [53]. In particular, we leverage the properties of pseudo-random number

generators and unique signature schemes to build a verifiable pseudo-random al-

gorithm. Although our algorithm does not provide the theoretical properties of
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verifiable random functions as seen in the number theory literature, it performs

well in practice. Furthermore, to our knowledge, there exists no implementation of

those more sophisticated schemes, while our algorithm is easily implemented given

existing cryptographic libraries. Our verifiable pseudo-random algorithm eliminates

the main source of non-determinism in traditional gossip—randomness in partner

selection—yet maintains the unpredictability and rapid convergence of traditional

gossip. In combination with a simple fair enough exchange primitive, our part-

ner selection algorithm is effective in encouraging peers to trade updates with one

another.

In the remainder of this chapter, we describe the design of Balanced Exchange

and prove that it is a Nash equilibrium. At the end of this chapter, we include

simulation results indicating that, despite its theoretical appeal, Balanced Exchange

falls short of our practical goals. In the next chapter, we introduce Optimistic Push

to address these shortcomings.

4.1 Assumptions

We model a live event as an infinite game. Rational peers are interested in acquring

stream updates that will ultimatley be delivered to their media applications. We

assume that a rational peer’s benefit increases proportionally to the number of

unique stream updates it acquires. A rational peer’s cost increases according to

how much upload and download bandwidth that peer uses. Each unit of upload and

download bandwidth consumed costs a peer cu and cd, respectively.

Because we only consider live events that have no end times, we can ignore

end game strategies that rational peers may employ. Such strategies seek to cheat

at the end of a game because doing so is less risky than cheating at the beginning

or middle.

Additionally, rational peers never risk eviction; they never send a proof of
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misbehavior (PoM), which could result in their own eviction from the system. In

our model, an evicted rational peer is actually a contradiction. Recall that it is

rational to act in ways to increase utility (calculated as benefits minus costs). Yet,

an evicted peer stops receiving stream updates, and in the limit receives 0 benefit.

We curb rational deviations in our cooperative system, by designing Balanced

Exchange to be an ex ante Nash equilibrium [56].

Definition 1 A protocol is an ex ante Nash equilibrium if it defines a strategy

profile such that each rational player expects no gain from unilaterally deviating.

More formally, a strategy profile s = (s0, . . . , sn) is an ex ante Nash equilibrium if for

every player i there exists no strategy s∗i such that i expects utility ui(s−i, s
∗
i ) > ui(s)

from following s∗i .

In the rest of this dissertation, we elide ‘ex ante’ for brevity. In the frame-

work of Nash equilibria, we assume that rational peers only consider strategies that

maximize the number of useful updates received in each exchange independent of

concurrent or future exchanges. This greedy strategy is reasonable in a streaming

setting where there is a limited amount of time to obtain useful updates. However,

it is possible that more sophisticated strategies optimizing over multiple exchanges

can achieve greater utility. We also assume that it is always in a rational peer’s

interest to participate in exchanges provided it is missing at least one update.

4.2 Design

The Balanced Exchange protocol describes a method for a source to send a stream

of data to a set of clients. Streaming a live event requires Balanced Exchange to

ensure that clients who obey the protocol deliver only authentic stream packets and

that such clients receive nearly all stream packets in a timely manner. Although

we can provide the first property in all situations, the second property is elusive,
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and will require the addition of the Optimistic Push protocol described in the next

chapter.

Before the start of a live event, each peer generates a session key pair con-

sisting of a public and private key. Peers sign up for the event by divulging both

keys to the tracker. The tracker then verifies the keys, closes the sign up service,

and posts a list that contains each peer’s identity, address, and public key. Peers

sign protocol messages using their private keys to provide authentication, integrity,

and non-repudiation of message contents.

During a live event, the source divides the stream into discrete fixed-size

stream updates. In each round, the source multicasts each of ups per round updates

to a fraction seed frac of random clients. The source signs each of these updates

so that clients can verify the stream data’s authenticity.

Since each peer is unlikely to receive every update directly from the source,

peers rely on Balanced Exchange to garner the remaining. The Balanced Exchange

protocol allows clients to trade equal numbers of updates with one another. That is,

if client S has ten updates to offer client R and R has only five to offer in return, then

S and R trade five updates in each direction. We construct each balanced exchange

so that it is a Nash equilibrium, thereby motivating rational clients to conduct the

trade faithfully. For reference, Figure 4.1 illustrates a balanced exchange between

two peers.

4.2.1 Overview

Balanced Exchange provides a mechanism for peers to exchange updates without

worrying that rational peers will cheat their trading partners. In a balanced ex-

change, each party determines the largest number of new updates it can trade on a

one-for-one basis. While a client initiates an exchange with another client, it also

responds to Balanced Exchange requests. An exchange consists of four phases.
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Balanced Exchange Protocol

Sender (S) Receiver (R)

seed = <round, BAL>S

check: seed is valid
PRNG(seed) maps to R

k = min( | HS-HR |, | HR-HS | )

check: upd_list matches check: upd_list' matches

check: {u1, ...., uk}KSR
 check: {u'1, ...., u'k}KRS

 

buff = buff U  {u1, ...., uk}  

KSR = #(          , seed)Kpriv
S KRS = #(           , seed)Kpriv

R<BRIEFCASE, S, R, seed, upd_list, {u1, ...., uk}KSR,
#M

R
>

S

<BRIEFCASE, R, S, seed, upd_list', {u'1, ...., u'k}KRS,
#M

S
>

R

<KEY_REQUEST, S, R, seed>
S

<KEY_REQUEST, R, S, seed>
R

<KEY_RESPONSE, S, R, seed, KSR 
>

S
<KEY_RESPONSE, R, S, seed, KRS>

R

buff = buff U  {u'1, ...., u'k}  

TCP

UDP

<DIVULGE, S, R, seed, HS, #MR>S

<BAL_RESPONSE, R, S, seed, #(HR), #MS>R

<BAL_REQUEST, S, R, seed, #(HS), evict>S

Figure 4.1: Balanced Exchange Protocol for client S contacting client R.

Partner Selection: A peer selects another peer with whom to trade using a veri-

fiable pseudo-random algorithm.

History Exchange: The two parties learn about the unexpired updates the other

party holds and determines the largest number k of updates that can be ex-

changed equally.

Update Exchange Each party deterministically generates an encryption key based

upon its private key and a per-exchange seed value. Each party then encrypts

its k most recent exchangeable updates and copies the encrypted updates into

a briefcase that is sent to the other party.

Key Exchange The parties swap keys and decrypt the contents of received brief-

cases. If a peer does not receive a decryption key in a timely manner, that

peer sends a key request to its partner. After decrypting updates, peers update
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their histories to reflect the new updates they have just received.

A peer ends an exchange early in the history exchange phase if that peer

realizes the exchange will ultimately trade no updates. An exchange completes if

both clients execute all four phases or if one of them ends the exchange early as

allowed by the protocol. Peers use TCP to send packets reliably during the first

three phases and switch to UDP for the fourth. We discuss this design decision later

when we prove that each balanced exchange is a Nash equilibrium.

In each exchange, we discourage cheating by designing the protocol so that

peers who blatantly cheat are caught and evicted from the system. If the tracker

sees a proof of misbehavior (PoM) against a peer, the tracker removes that peer

from the system. A PoM is a sequence of inconsistent messages signed by a peer.

We intertwine the history and update exchange phases so that blatant cheating

efforts generate PoMs. Each message in our history and update exchanges includes

a cryptographic hash of the previous message sent in the trade: if a client sends a

briefcase whose contents differ from the agreed upon updates of the history exchange,

then the history exchange messages plus the briefcase constitutes a PoM. These

cryptographic hashes are missing from messages in the key exchange phase. We

later explain this omission.

We use the tracker to audit possible PoMs. In every round, the tracker

polices the system by ordering a fraction of random peers to supply suspected PoMs

against other peers. If a queried peer does not have a suspected PoM against another

peer, then it replies with a dummy message. We specify all audit responses to be

of equal size, thereby removing a rational peer’s incentive to cover up PoMs against

others. The tracker treats peers that ignore audit requests as it would peers that

have provably misbehaved. To reduce false positives because of transient network

failures, the tracker allows sufficient time for a peer to respond to audit requests.

The auditor evicts a misbehaving peer by sending a signed eviction notice to the
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broadcaster who embeds all eviction notices in every update and stops sending

updates to evicted peers. We discuss in Section 5.1.2 how to bound the overhead of

eviction notices.

In the next section, we prove that each balanced exchange is a Nash equilib-

rium. Our approach to provide this property follows two principles: delayed grati-

fication and restricted choice. We delay gratification to postponse a peer’s receipt

of useful updates until the last phase, thereby forcing rational peers to participate

until the end of a trade. We then restrict choice so that such participation follows

the protocol specification. In the next section, we discuss the Balanced Exchange

Protocol in greater detail.

4.2.2 Details

To review, in a protocol that is a Nash equilibrium, rational peers expect no gain

from unilateral deviations. As stated earlier, we assume rational peers only consider

strategies that maximize the number of useful updates received in each exchange

independent of concurrent or future exchanges. The Balanced Exchange Protocol

guarantees the following property:

Theorem 1 If two rational clients participating in a balanced exchange with each

other seek to maximize the utility of that exchange independent of concurrent or

future exchanges, then the Balanced Exchange Protocol is a Nash equilibrium.

In the following sections, we show that each phase of a balanced exchange

is a Nash equilibrium, implying that the whole balanced exchange is also a Nash

equilibrium. In each phase, we show that if a rational peer assumes its peers obey

the protocol, then following the Balanced Exchange protocol is in that peer’s best

interest. Note that the assumption that remaining peers obey the protocol is an

artifact of the Nash equilibria proof technique and is not a requirement of our

protocol.
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We simplify the presentation of the subsequent lemmas and proofs by treating

any client that has issued a POM against itself as evicted. We use the following

property regarding eviction in later proofs and include it here for reference.

Lemma 1 A rational peer S only pursues strategies that ignore evicted peers.

Proof :

1. Suppose for contradiction that there exists an evicted peer R that S does not

ignore.

2. S participates in an exchange with R only if S expects positive utility from

the interaction.

3. Because R has already been evicted, R is Byzantine, as it can be neither

altruistic nor rational

4. S therefore expects negative utility from communicating with R.

5. This reasoning brings the proof to its contradiction in that S expects both

positive and negative utility from communicating with R.

6. Therefore, S ignores all evicted peers.

Phase 1: Partner Selection

The first phase, partner selection, highlights a fundamental difference between tradi-

tional gossip and gossip in a BAR setting. In a traditional gossip protocol, each peer

periodically selects a partner using a pseudo-random number generator (PRNG) and

contacts that partner to request an exchange. Each peer also accepts every request

it receives. Random partner selection provides robustness against crashed peers and

link failures. Yet, in a BAR setting, the freedom to choose partners allows ratio-

nal peers to select partners not at random, possibly dissolving gossip’s robustness.
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This vulnerability stems from the non-determinism inherent to random partner se-

lection. Furthermore, malicious peers could attempt to monopolize all gossiping

opportunities.

We eliminate this weakness by replacing the non-deterministic seed, typically

system time, used in PRNGs with a per round deterministic yet unpredictable value.

A peer S uses its signature 〈r, BAL〉S as its seed for round r, where BAL is the string

“BAL”. With this seed, S then deterministically maps numbers generated by the

PRNG to entries in the membership list. S continues looking for entries until it

finds the first non-evicted partner R. This partner selection is deterministic, but

unpredictable because no peer other than S can generate S′s signature for a seed

value. As Figure 4.1 illustrates, to initiate a gossip request to R, S includes the seed

and all eviction notices for peers that S could have selected before deciding on R.

R then determines whether the exchange request is valid.

Definition 2 A balanced exchange request 〈BAL REQUEST, S,R, seed,#(HS), evict〉S
is valid if and only it it satisfies the following conditions:

• The seed is S’s signature of 〈r, BAL〉.

• All included eviction notices are properly signed by the tracker.

• The seeded PRNG selects R as the first non-evicted peer.

Note that invalid balanced exchange requests are also PoMs. R accepts a

balanced exchange request if the request is valid, the seed is for the current round,

and this is the first time that S has presented this seed value to R. Otherwise, R

ignores the request.

Lemma 2 Rational peers only send gossip requests to and accept gossip requests

from peers as determined by valid requests.

Proof :
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1. A rational peer S may communicate with the targets as sanctioned by the

protocol, an evicted peer, or some other peer.

2. By Lemma 1, S does not send balanced exchange requests to evicted peers.

3. S only sends balanced exchange requests to partners as sanctioned by the

protocol, as it expects other peers to reject inappropriate requests.

4. S rejects balanced exchange requests from peers not sanctioned by the proto-

col, as responding to the request would generate a PoM against S.

5. S therefore only communicates with targets as sanctioned by the protocol.

We note that the argument against peers participating in unsanctioned ex-

changes is buttressed by the specific tangible concern that such exchanges would

be done without the recourse of sending a PoM to the auditor if either peer in an

exchange were (quite rationally) to cheat its partner by sending a different briefcase

than the one agreed upon.

Phase 2: History Exchange

After a peer S selects a partner R, they exchange histories—a history defines a set of

update ids—using three messages. As Figure 4.1 illustrates, S provides in the first

message a hash of its history HS and the PRNG seed value (as discussed earlier)

to R; the hash commits S to send HS to R. After R accepts S’s request to trade

updates, R returns its current history HR. In the final message, S divulges its actual

history, HS , to R who checks that HS is consistent with the previously sent hash.

Note that each peer sends a history before learning its partner’s history: S does so

by sending a hash first and R by sending its actual history while possessing only an

irreversible hash. This design makes it difficult for a Byzantine peer to maximize

network traffic during the update exchange by tailoring a history to its partner’s,

e.g., by responding with a history that is the exact complement of its partner’s.
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Lemma 3 A rational peer S does not divulge a history that does not match the

original hash.

Proof :

1. Suppose S sent a signed message that divulged a history whose hash does not

match the one sent in an exchange request.

2. Together, the request and divulge messages constitute a PoM.

3. Rational peers do not sent PoMs.

Lemma 4 A rational peer S terminates any exchange with a peer R who divulges

a history whose hash does not match the original sent in a request message.

Proof :

1. Suppose S does not terminate the exchange.

2. Because R sends these internally inconsistent messages, R generates a PoM

against itself.

3. S considers R to be an evicted peer since R has generated a PoM against itself.

4. S does not continue communicating with evicted peers.

The restrictions we have imposed on history exchanges forces rational peers

to, in essence, obey the letter of the law. The spirit, however, is that rational peers

report their histories honestly. We now discuss the incentives for a rational peer to

be honest in claiming which updates it has and does not have. Our first technique

draws from the principle of balanced cost [3]. We define all histories to be of equal

size, thereby removing any incentive S may have to save a few bytes by sending

smaller histories. Therefore, when exchanging histories, the only remaining way for
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S to obtain greater utility is by increasing the number of useful updates received by

the end of the exchange.

We show that a rational peer S has no incentive to lie about its history. The

proof relies on two lemmas. The first lemma states that S should not lie about

missing any updates. The second states that any situation in which S benefits

from claiming to have more than it actually does also requires S to risk eviction.

Together, these two lemmas imply that S should be honest in reporting its history.

Lemma 5 Consider a rational peer S, its history HS, and an unexpired update

U ∈ HS. If S participates in an exchange, then S expects nothing to gain from

claiming to not possess U , i.e., reporting a history H ′
S such that U /∈ H ′

S.

Proof :

1. Recall that the number of updates to be exchanged k is the minimum of how

many updates each party reports that it has that the other reports it does

not.

2. Suppose that S reports H ′
S as its history.

3. We consider two cases: S’s partner either possesses U or does not.

4. If S’s partner does not have U , then S can only keep k the same or increase

k by claiming to have U .

5. If S’s partner does have U , then it is possible that S can increase k by 1

6. However, if k increases, it means that S would expect to receive U again

Lemma 6 Consider a rational peer S, its history HS, and an unexpired update

U /∈ HS. Any exchange in which S benefits from reporting a history H ′
S, such that

U ∈ H ′
S, requires S to upload U .
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Proof :

1. Again, k is the minimum number of how many updates each party reports

that it has that the other does not.

2. Suppose that S reports a H ′
S as its history

3. We consider two cases: S’s partner either possesses U or does not.

4. If S’s partner possesses U , then by being honest and not claiming to have U ,

S either increases k or leaves k unchanged.

5. If S’s partner does not possess U , then by being honest, S risks decreasing k

by 1.

6. Note that k is decreased only if S would be obligated to upload U as part of

the exchange.

7. However, S does not possess U and claiming to upload it in a briefcase would

generate a PoM, something that rational peers do not do.

Phase 3: Update Exchange

After the history exchange commits S and R to sending the k most recent updates

each possesses but the other lacks, S and R send the corresponding updates in signed

briefcase messages. Each briefcase contains i) the seed identifying this exchange,

ii) a plaintext description of k update ids, and iii) the corresponding k updates

encrypted with the hash of both the sender’s private key and the exchange’s seed

value. The sender signs the briefcase, promising that the encrypted contents match

the description. If either the received briefcase’s seed value does not match the

seed identifying this exchange or the briefcase’s update list does not match the k

expected updates, the receiver aborts the exchange without sending its decryption

key.

34



Lemma 7 Rational peers do not send briefcases that contain inappropriate seed

values or inappropriate plaintext descriptions.

Proof :

1. Suppose that a rational peer S includes either the wrong seed value or the

wrong plaintext description in a briefcase message.

2. S expects its partner to reject the briefcase and abandon the exchange.

3. S’s action is therefore not rational.

Lemma 8 Rational peers reject briefcases that contain inappropriate seed values or

inappropriate plaintext descriptions.

Proof :

1. Suppose that a rational peer S accepts a briefcase with either a wrong seed

value or wrong plaintext description.

2. Such a briefcase along with the previous history messages constitutes a PoM

against the sender of the briefcase.

3. S therefore considers its partner an evicted peer.

4. S does not communicate with evicted peers.

Lemma 9 If a rational peer S sends a briefcase message, then the encrypted con-

tents correspond to the briefcase’s plaintext description.

Proof :

1. Suppose that a rational peer S sends a briefcase whose contents differ from

the plaintext description.

2. Such a briefcase constitutes a PoM.

3. Yet, S is rational and does not send PoMs.
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Key Exchange

A peer who is satisfied with its partner’s briefcase enters the key exchange phase.

In this phase, the peer sends via UDP a key request that contains the seed value

used to initiate the exchange. A peer replies to a key request with a response that

contains that peer’s seed-specific decryption key.

As redundant as it may seem to read, the goal of the key exchange phase is for

peers to actually exchange keys. There should be no expected benefit for a rational

peer to withold its key. However, as with the exchange of any items, guaranteeing

fairness requires a trusted third party [25, 59], where fairness means that either both

peers in a balanced exchange obtain what they are seeking or neither peer does.

Introducing a third party to mediate potentially every exchange can be a

bottleneck at large-scales. We therefore design a mechanism that allows altruistic

and rational peers to trade keys without concern that these peers will attempt to

cheat. The linchpin in providing the incentives for exchanging key is to use a credible

threat. A peer repeatedly sends key requests, up to some constant number of times,

until it obtains a key response from its partner. Note that it is possible to tune the

size of key requests to offset any asymmetry between download and upload capacity.

Lemma 10 If a rational peer S replies to a key request, then S′s response contains

the appropriate symmetric key.

Proof :

1. Suppose that S sends a key response with an inappropriate key.

2. S’s partner discards the response and acts as if S never sent the message.

3. Therefore, S wasted the effort in sending its response, an action that rational

peers do not indulge.
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Lemma 11 If a rational peer S does not receive a key response from its partner R,

S resends its key request.

Proof :

1. Suppose S does not send the key request.

2. S then does not expect to get a key to decrypt updates received from R, and

gets no benefit from this exchange.

3. Recall that S is rational.

4. If S were to resend the request, S would expect to get a response, decrypt

updates, and benefit from the exchange.

5. S therefore sends the request.

The final lemma states that S will indeed respond to key responses from R.

The proof relies on the unpredictability of exchanging messages over an unreliable

channel. By using UDP to exchange keys, we take advantage of S′s uncertainty

in guessing whether R will send further key requests. More concretely, if S is

certain with probability p that R is finished sending key requests, then R′s key

requests should be at least a factor of cu
cd(1−p) as large as key responses, where cu

and cd are the costs of uploading and downloading a single byte, respectively. In our

implementation, we assume that S always believes another key request will arrive,

p = 0.

Lemma 12 If S is certain with probability p that R has sent its last key request,

then S replies to R′s requests provided that those requests are more than a factor of
cu

cd(1−p) as large as key responses.

Proof :
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1. Suppose S ignores a key request from R and therefore saves the cost, cu ×
response-size, of sending a key response.

2. S expects to receive a key request from R with probability 1− p, which would

cost cd × request-size to download.

3. S therefore expects to incur (1 − p)(cd × request-size) cost from ignoring

R’s earlier request, which is greater than S′s savings of cu × response-size,

as requests are more than a factor of cu
cd(1−p) as large as response.

4. Recall that S is rational and deviates only if doing so increases expected utility.

5. Therefore, it is irrational for S to ignore R′s key request.

4.3 Discussion

The Balanced Exchange protocol is the result of our efforts to create a protocol for

which cooperation is in a rational peer’s best interest. To enforce that cooperation

and retain the robustness inherent to gossip protocols, we design a verifiable pseudo-

random partner selection algorithm and a novel fair enough exchange mechanism.

These contributions let us construct a gossip protocol founded on an appealing

solution concept, Nash equilibria.

However, Balanced Exchange’s theoretical attractiveness is diluted by its

practical shortcomings. We simulate 500 peers using Balanced Exchange to trade

updates. In our simulation, the broadcaster sends 50 updates to 25 random peers

in every round. Each update expires 10 rounds from the round in which it was sent.

In Figure 4.2, we plot the average percentage of updates a peer misses and show

that peers miss over 1% of updates sent by a broadcaster1. This small deficit is a
1Additionally, we see that reliability improves with time and levels off after approximately 30

rounds. This improvement is because there is more diversity in updates for later rounds, resulting
in more effective bilateral trades.
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Figure 4.2: Percentage of updates missed on a round by round basis. Note that on
this graph we use a log-scale y-axis and that a curve closer to the x-axis is desirable.

consequence of restricting data dissemination to exactly balanced trades. Although

small, this unreliability introduces several noticeable artifacts in a video stream. In

the next chapter, we explore how to augment the Balanced Exchange protocol to

address this performance concern.
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Chapter 5

BAR Gossip: Making it Work

In this chapter, we augment Balanced Exchange to yield BAR Gossip, the first

p2p live streaming system that tolerates both Byzantine and rational peers. BAR

Gossip consists of two protocols: Balanced Exchange and Optimistic Push. In the

previous chapter, we presented Balanced Exchange, which enables rational peers to

trade updates with one another in a provably fair manner. However, while fair-

ness is desirable, Balanced Exchange achieves it while sacrificing performance (see

Figure 4.2). BAR Gossip’s second half, Optimistic Push, addresses Balanced Ex-

change’s practical shortcomings.

This second protocol offers another avenue for peers to trade updates. The

main difference between the two protocols is that an optimistic push lets a peer

trade updates with the hope, rather than the certainty, that a peer will receive

an equal number of updates in return. Although we show that optimistic pushes

address practical shortcomings, they have a theoretical drawback: We cannot prove

that the Optimistic Push protocol is a Nash equilibrium, although our experiments

suggest it is not easy to cheat.

In our evaluation, we demonstrate that Balanced Exchange and Optimistic

Push can together achieve 99.9% reliability, surpassing Balanced Exchange’s 98.7%.
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We also assess how robust Optimistic Push is to attempts at cheating. Finally, we

examine how resilient BAR Gossip is to colluding and Byzantine behaviors.

5.1 Design

The Balanced Exchange protocol’s strength is also its weakness. We crafted each

balanced exchange so that a non-Byzantine peer could trade a set of updates for

an equal number of updates. This design works well if peers can consistently find

partners who have the right set of updates—an exact complement is ideal. If a peer

has little to offer in an exchange with its partner, then few updates would be traded.

Although uncommon, these occurrences make it more likely that a peer will

fail to deliver updates before they expire. Worse, when a peer begins to fall behind

in acquiring updates, it becomes harder for that peer to get caught up since every

exchange is balanced. This observation suggests that a second way to trade updates

may be useful, one that allows peers that have fallen behind to quickly obtain missing

updates than can be used in future trades.

5.1.1 Optimistic Push

The Optimistic Push Protocol provides a safety net for peers to acquire missing

updates without giving back a set of updates of equivalent value. Optimistic pushes

follow the same structure as balanced exchanges; we provide Figure 5.1 for reference.

Partner selection is nearly identical. In round r, peer S uses 〈r, OPT〉S to seed

the PRNG and selects a partner R in the same way as in the Balanced Exchange

protocol.

The main difference between Balanced Exchange and Optimistic Push lies

in what the parties disclose to each other during the history exchange phase and

in how they determine the content of their respective briefcases during the update

exchange phase. To exchange histories, S sends to R two lists: a young list and an old
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Optimistic Push Protocol

Sender (S) Receiver (R)

seed = <round, OPT>S

check: seed is valid
PRNG(seed) maps to R

k = min( | want |, pushsize )

check: upd_list matches check: upd_list' matches

check: {u1, ...., uk}KSR
 check: {u'1, ...., u'k}KRS

 

buff = buff U  {u1, ...., uk}  

KSR = #(          , seed)Kpriv
S KRS = #(           , seed)Kpriv

R<BRIEFCASE, S, R, seed, upd_list, {u1, ...., uk}KSR,
#M

R
>

S

<BRIEFCASE, R, S, seed, upd_list', {u'1, ...., u'k}KRS,
#M

S
>

R

<KEY_REQUEST, S, R, seed>
S

<KEY_REQUEST, R, S, seed>
R

<KEY_RESPONSE, S, R, seed, KSR 
>

S
<KEY_RESPONSE, R, S, seed, KRS>

R

buff = buff U  {u'1, ...., u'k}  

TCP

UDP

<OPT_RESPONSE, R, S, seed, want, #MS>R

<OPT_REQUEST, S, R, young, old, evict>S

want = young - HR

Figure 5.1: Optimistic Push Protocol for client S contacting client R.

list. The young list identifies the most recent updates that S possesses. The old list

identifies updates that S still needs and that are about to expire. When S initiates an

optimistic push, S hopes to obtain updates from its old list in exchange for uploading

updates from the young list. This hope is precisely what makes optimistic pushes

optimistic. S′s partner, R, has the option to upload fewer stream updates from the

old list than it requests from the young list. It is this flexibility to obtain stream

updates while uploading (possibly) fewer stream updates in return that allows a

peer who may have fallen behind to quickly catch up with the rest of the system.

More concretely, after R receives the young and old lists from S, R replies

with a want list that contains update identifiers from the young list that R is missing.

S and R then exchange briefcases. S′s briefcase contains the updates identified by

the want list along with an appropriate plaintext description of the update ids. In

contrast, R includes in its briefcase as many updates from the old list as possible
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without exceeding the number of updates R wants from the young list. If R has

not reached the limit of how many updates it can include in the briefcase, it makes

up the difference with junk updates. Furthermore, the plaintext description on R′s

briefcase does not identify the exact contained updates, only how many items are

inside, each of which can either be junk or from the old list.

We emphasize that junk updates are crafted to be larger than stream up-

dates. If junk updates were smaller, Optimistic Push would encourage rational peers

to deviate from Balanced Exchange because updates might be had for cheaper in

Optimistic Push.

We regulate Optimistic Push with two parameters, push age and push size:

the young list consists only of update ids that have been broadcast within the last

push age rounds and push size is an upper limit on the number of updates that

the receiver can place in its want list. Larger values of push size help lagging peers

catch up faster; however, they also increase the likelihood that such peers will waste

bandwidth by sending junk.

The Optimistic Push Protocol follows nearly the same steps as the Balanced

Exchange Protocol. Peers select partners in a verifiable and pseudo-random manner,

exchange histories, swap encrypted updates, and divulge decryption keys. Like

Balanced Exchange, this trading structure greatly limits the ways in which a rational

peer could cheat. Unlike Balanced Exchange, the extra flexbility afforded by junk

updates makes faithful participation less certain. For example, a rational peer may

disingenuously claim to be missing an update so as to reduce the expected number

of received junk updates. Worse, rational peers may choose to deviate from the

Optimistic Push protocol by simply not participating, never initiating pushes but

responding to them, or sending junk updates in lieu of useful updates.

We have been unable to prove whether a rational peer would obey or disobey

the Optimistic Push protocol. The obstacle is the difficulty in accurately model-
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ing what a rational peer expects in a setting involving hundreds of peers making

pseudo-random choices to trade hundreds of updates. Traditionally, researchers have

taken approaches to simplify the analysis by only considering how a single update

spreads [10, 23]. In BAR Gossip though, how one update spreads is dependent on

how other updates spread; updates are traded. At the end of the previous chapter,

Figure 4.2 illustrates how these interdependencies affect Balanced Exchange. In the

absence of a theoretical proof for obedience, we turn to more empirical methods.

Later in this chapter, we include experimental evidence which suggests that despite

the gains possible from cheating, realizing those gains is not easy.

5.1.2 Optimizations

We now describe four optimizations that increase the practicality of BAR Gossip.

Our optimizations focus on limiting the bandwidth used by the protocol as so far

explained.

1. We cap the number of balanced exchanges and optimistic pushes that a peer

accepts in any round. As with all gossip protocols, random selection distributes

load across participating peers. Occasionally, however, that randomness may

overwhelm some peers that by chance are selected by many peers at once.

We use the standard heuristic that each peer accepts requests up to some per

round maximum and ignores further requests that round [10, 21].

2. We reign in bandwidth spikes by allowing each peer to limit the number of

updates that are actually swapped in a balanced exchange. This heuristic is

similar to the Round Retransmission Limit technique proposed in Bimodal

Multicast [10]. A peer limits the number of updates traded in balanced ex-

changes by including a cap when reporting its history. The actual number of

updates exchanged is therefore the minimum of each peer’s reported cap and

the most number of updates that can be traded in a balanced manner.
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3. We limit the overhead of eviction notices by having the broadcaster embed

each notice into a constant number of updates. More concretely, when the

broadcaster learns of an eviction, it embeds a notice in one update every

round for r′ > 0 rounds. With high probability, every peer learns of an

eviction within deadline +r′ rounds.

4. We reduce overhead further by letting peers elide old eviction notices from gos-

sip requests. An eviction notice is old if the peer it refers to was evicted more

than deadline+r′ rounds ago. Since every peer possesses each old eviction

notice with high probability, peers can verify whether others select partners

appropriately.

5.2 Evaluation

BAR Gossip is a robust p2p streaming protocol capable of providing stable and

reliable throughput. We evaluate BAR Gossip through experiments and simulations,

denoting figures derived from simulation data with ‘[sim]’. Our evaluation consists

of four parts.

1. We examine how rational activity hurts traditional gossip protocols so as to

understand BAR Gossip’s impact of curbing rational deviations.

2. We explore ways that a rational peer may attempt to cheat in BAR Gossip

and show BAR Gossip discourages such attempts.

3. We demonstrate BAR Gossip is robust to rational peers who may collude.

4. We show BAR Gossip tolerates up to 20% of peers being Byzantine.
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Protocol Parameter Simulation Prototype
ups per round (updates) 100 98-101
deadline (rounds) 10 10
push size (updates) 20 20
push age (updates) 3 3
junk cost 1.39 1.39
seed frac 5% 5%
# Peers 500 45

Table 5.1: Parameter settings used in simulations and prototype experiments.

5.2.1 Methodology

Several parameters regulate the Balanced Exchange and Optimistic Push Proto-

cols. The broadcaster multicasts ups per round updates per round and sends each

update to a fraction seed frac of random peers. Each update expires deadline

rounds after it was multicast. In optimistic pushes, push age denotes the maximum

age of updates sent in the young list, while push size is the maximum length of the

want list. The ratio of junk update size to real update size is junk cost> 1. Ta-

ble 6.4.2 provides the values for these parameters for our simulation and prototype

experiments.

For our prototype evaluations, we implement BAR Gossip in Python to

stream an MPEG-4 video [65]. We recorded a 200 Kbps UDP video stream at

30 frames per second using Quicktime Broadcaster with one key frame every 60

frames. Quicktime Broadcaster generates UDP datagrams for the broadcast with

an average size of 179 bytes (σ = 62), resulting in 116–131 datagrams per second.

Our broadcaster, auditor, and peers are a mix of 45 600 MHz and 850 MHz

Emulab machines sharing a 100 Mbps Ethernet subnet, configured with a 100ms

end-to-end latency and 1% probability of any packet being dropped. The broad-

caster reads the recorded video from disk, encapsulates two to three Quicktime

UDP datagrams into an update, pads every update to the same size (640 bytes),
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and unicasts each update using UDP to three 3 random peers. Peers then exchange

updates as in Figures 4.1 and 5.1. A peer delivers an update by extracting the

contained datagrams and sending them to the local Quicktime player that displays

the video content. We use MD5 to compute cryptographic hashes, 128 bit RSA keys

with full domain hashing [8] to create unique signatures and the Mersenne Twister

algorithm [51] to generate pseudo-random numbers. Each peer accepts at most 6 re-

quests for balanced exchanges and optimistic pushes. Additionally, each peer limits

to 100 the number of updates it uploads in balanced exchanges for any given round,

parceling 50 to the first balanced exchange in which it participates, 25 to the next,

and so on.

In the following sections we measure the reliability (expressed as the per-

centage of updates received by the deadline), jitter (measured as the percentage of

rounds in which any update missed its deadline), and bandwidth characteristics of

BAR Gossip. Unless otherwise noted, measurements in simulations are averaged

over 100 rounds and using the prototype are averaged over 180 rounds across 15

trials.

5.2.2 Traditional Gossip

We now compare BAR Gossip against two traditional gossip protocols, push-pull

and pull-only. The push-pull protocol is very similar to Balanced Exchange: a

peer randomly selects a partner in every round, exchanges histories, and then swaps

updates. The key difference is that peers swaps all updates that either peer possesses

but for which the other peer does not. The peer who initiates the gossip exchange

pushes updates to its partners and pulls updates from its partner. As its name

implies, a pull-only gossip protocol sends updates in only one direction, towards the

peer who initiates the exchange.

While pushing and pulling may disseminate data faster than just pulling,
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the pull-only protocol is more efficient. A peer using the pull-only protocol receives

updates from exactly one source in every round, compared to multiple sources in

the push-pull gossip protocol. The pull-only version thereby wastes less bandwidth

by never having peers receive redundant updates. Several researchers have taken

advantage of the efficiency inherent to pull-only gossip techniques in building p2p

live streaming systems [33, 60].

We now demonstrate that these gossip protocols, although robust in the

settings for which they were designed, are ill-suited for a BAR environment. In

particular, we examine each protocol’s reliability and bandwidth usage in the pres-

ence of rational peers who choose to not upload any data to their partners. Note

that this evaluation is conservative, as there is nothing that prevents a rational peer

from initiating many more exchanges than normal to obtain even more updates for

free. Furthermore, a single malicious peer could severely impair either a push-pull or

pull-only protocol by monopolizing all trading opportunities. In the following simu-

lations, we do not incorporate optimizations into BAR Gossip to reduce bandwidth

that are present in the prototype.

Figures 5.2 and 5.3 plot the reliability seen and upload bandwidth used,

respectively, by an altruistic peer as the proportion of rational peers in the system

increases. While BAR Gossip’s lines remain relatively constant in both graphs,

push-pull’s and pull-only’s lines degrade noticeably.

Figure 5.2 shows that the push-pull protocol achieves comparable reliability

to BAR Gossip when up to approximately 50% of the peers in the system are ratio-

nal. Afterwards, push-pull’s reliability drops dramatically. The pull-only protocol

behaves similarly, maintaining near perfect reliability until approximately 30% of

the peers are rational. However, the robustness seen in push-pull and push-only

does not come for free.

Both push-pull and pull-only tolerate rational activity by shifting the burden
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Figure 5.2: [sim] Reliability experienced by an altruistic peer using a traditional
push-pull gossip protocol, a pull-only gossip protocol, and BAR Gossip.

to altruistic peers. Figure 5.3 shows the average upload bandwidth of altruistic peers

rising as the fraction of rational peers also increases. The decline in bandwidth

occurs when altruistic peers obtain fewer and fewer updates to spread since rational

peers are neglecting to spread any updates.

Note that the rise in bandwidth experienced by altruistic peers in traditional

gossip represents dangerous negative reinforcement: as more rational peers choose to

cheat, the remaining altruistic peers are punished with increased bandwidth load,

encouraging them also to defect until reliability collapses. BAR Gossip exhibits

robustness to rational behavior with steady reliability and bandwidth measurements.

Although BAR Gossip clearly outperforms both push-pull and push-only

when rational behavior is widespread, it may be worthwhile to consider when tra-

ditional gossip techniques may be preferred over BAR Gossip. Figures 5.2 and 5.3
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Figure 5.3: [sim] Send bandwidth used by an altruistic peer using traditional gossip
versus BAR Gossip.

show that when rational peers comprise approximately 30% or more of the system,

BAR Gossip is as reliable as push-pull and more reliable than pull-only. BAR Gossip

consumes less bandwidth than push-pull at this point, as well. When rational peers

make up less than 30% of the total peer population, a pull-only protocol is a bet-

ter option than both BAR Gossip and push-only, as pull-only provides comparable

reliability while wasting less bandwidth.

5.2.3 Unilateral Rational Deviation

We now examine deviant strategies that a rational peer might pursue. In our ex-

periments, a rational peer pursues these strategies while the remaining peers obey

the protocol. This approach is the experimental analog to the standard Nash equi-

librium proof technique.
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Strategy Accepts Optimistic Push Initiates Optimistic Push Returns
Proactive/Data Yes Yes Data
Proactive/Junk Yes Yes Junk

Proactive/Decline No Yes None
Passive/Data Yes No Data
Passive/Junk Yes No Junk

Passive/Decline No No None

Table 5.2: Six strategies a rational peer may follow with regards to the Optimistic
Push Protocol.

In this analysis, we make the following simplifying assumption. A rational

peer’s primary concern is to improve the delivered stream’s quality by maximizing

reliability and minimizing jitter; minimizing consumed bandwidth is a subordinate

goal. We now consider the choices available to a rational peer with respect to

Optimistic Push.

Table 5.2 lists the five strategies we consider that a rational peer may pursue

to deviate from the Optimistic Push Protocol. Proactive strategies dictate that a ra-

tional peer initiates optimistic pushes as specified by the Optimistic Push Protocol.

In contrast, passive strategies specify to never initiate optimistic pushes. Data, junk,

and decline strategies prescribe that rational peers responding to an optimistic push

send useful updates (when possible), send as much junk as allowed, or decline the ex-

change, respectively. Note that following the Optimistic Push Protocol corresponds

to the Proactive/Data strategy.

Figure 5.4 plots the average probability the rational peer is missing each

update as a function of time since that update was multicast by the broadcaster. We

show how effective each strategy is in acquiring updates before they expire—lower

lines corresponding to more effective strategies. Table 5.3 provides the corresponding

jitter for each strategy.

Taken together, Figure 5.4 and Table 5.3 imply that rational peers should
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Figure 5.4: Average probability of the rational peer missing each update for different
strategies.

Strategy Average Jitter Standard Deviation
Proactive/Data 0.48% 1.16%
Proactive/Junk 0.32% 0.78%

Proactive/Decline 11.59% 6.22%
Passive/Data 18.10% 6.08%
Passive/Junk 14.76% 9.44%

Passive/Decline 47.94% 7.52%

Table 5.3: Jitter that the rational peer experiences while pursuing different strate-
gies.

follow either proactive/data or proactive/junk strategies. This is perhaps unsurpris-

ing, given that proactive strategies perform additional exchanges likely to result in

more deliverable updates than passive strategies.

Figure 5.5 breaks the tie between the proactive/data and proactive/junk
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Figure 5.5: Rational peer’s consumed bandwidth for different strategies.

strategies. The proactive/data strategy uses approximately 300 Kbps of upload

bandwidth compared to proactive/junk’s 317 Kbps. This difference is not an acci-

dent: we have designed BAR Gossip with junk cost> 1 so that rational peers prefer

filling their briefcases with valuable updates, rather than junk, whenever possible.

From these experiments, we conclude that a rational peer, when surrounded

by other peers that follow BAR Gossip, has no obvious incentive for deviation—in

fact, quite the contrary. While our experiments clearly fall short of proving that

BAR Gossip as a whole (Balanced Exchange plus Optimistic Push) constitutes a

Nash equilibrium, it does suggest that a Nash equilibrium is likely to be found at

or near the strategy that corresponds to BAR Gossip. For instance, while we are

unable to prove that there are no beneficial hybrid strategies that, depending on the

environment, switch between two or more of the six strategies we have considered, it

appears that the benefit of a proactive strategy derives from consistently participat-
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ing in more exchanges, making it unlikely that switching occasionally to a passive

strategy would provide a net gain. As for switching among proactive strategies,

it yields no change in benefit while changing bandwidth costs, also providing little

room for improvement.

5.2.4 Rational Collusion

Although a rational peer may find it difficult to benefit from cheating on its own,

multiple rational peers can coordinate their actions to increase collective utility. We

explore the effect of such collusion through simulations assessing the impact such a

group may have on peers obeying the protocol.

We assume that colluding and non-colluding rational peers share a utility

function. We also assume that colluding peers run a private protocol to disseminate

updates among themselves. This protocol may be an alternative BAR protocol or it

may be a non-BAR protocol bolstered by a high level of trust among colluding peers.

We simulate a perfect collusion scenario in which every colluding peer immediately

broadcasts new updates within the group at no cost. This source of updates reduces

the incentive to fully participate in the BAR Gossip protocol. In particular, colluding

peers only participate in balanced exchanges.

Figure 5.6 shows how the size of a perfect collusion group affects the quality

of the stream seen by a peer following BAR Gossip. The intuition for the degraded

performance is i) a non-colluding peer trades little when participating in a balanced

exchange with a colluding peer and ii) colluding peers do not participate in opti-

mistic pushes. In perfect collusion groups, colluding peers get most of their updates

for free from other colluding peers, reducing their contributions to the rest of the

system.

We find that when the collusion group size reaches 50% of the participants,

other peers see an average convergence of 93% for an update, resulting in an unusable
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Figure 5.6: [sim] Effect of collusion on an altruistic peer’s reliability when colluding
peers are following the passive/decline strategy.

stream. Although near-perfect collusion among small groups seems plausible, it

is unclear that collusion on a large scale is a significant threat. As the colluding

group grows, so do the challenges of coordinating and trusting peers. Ironically, as a

colluding group grows, it might require BAR Gossip to distribute updates internally

as trust begins to break down among members.

5.2.5 Byzantine Impact

While we entice rational peers to behave correctly, we should also limit the impact

of Byzantine actions on good users of the system. In these experiments, we focus

our attention on Byzantine peers who exploit the messages and behaviors allowed

by our protocol so as to harm the other peers in the system.

In BAR Gossip, Byzantine peers cannot subvert the system’s safety prop-
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erties. Because the broadcaster signs each update, Byzantine peers cannot unde-

tectably tamper with the contents of any delivered update. Such peers can, however,

impair progress by sending two kinds of messages: non-protocol messages and proto-

col messages. We regard generic DoS attacks based on non-protocol messages (e.g.

bandwidth or connection flooding) as outside the scope of this work.

We design BAR Gossip to be robust against protocol-based attacks on live-

ness even if initiated by a significant number of Byzantine peers. First, BAR Gos-

sip’s partner selection protocol limits how many partners a peer can contact in a

round—unlike traditional gossip, where a Byzantine node could potentially con-

tact an unlimited number of nodes and involve them in useless exchanges. Second,

Byzantine peers can inflict limited damage in the exchanges in which they partic-

ipate. A Byzantine peer can remain silent during an exchange to slow the spread

of updates, but fortunately, gossip protocols are naturally resilient to benign fail-

ures. One remaining concern is that a Byzantine peer could impact liveness by

luring its partners into expensive message exchanges that ultimately fail in helping

to disseminate updates.

We examine this kind of attack in the next set of experiemnts. During

balanced exchanges and optimistic pushes, Byzantine peers report histories to max-

imize the number of updates that would be exchanged. For a balanced exchange,

a Byzantine peer reports a history that is an exact complement of its partner’s.

For an optimistic push, a Byzantine peer announces a full young list and an empty

old list if initiating, and requests the entire young list if receiving. Byzantine peers

never enter the update or key exchange phases, so as not to generate a PoM, but

still inducing its partner to devote significant bandwidth to the exchange without

receiving any benefit. The presence of Byzantine peers can be viewed as an increase

in the overhead associated with the environment as the costs associated with Byzan-

tine peers depends upon the probability of entering an exchange with a Byzantine
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Figure 5.7: Rational peer’s reliability for different strategies.

peer.

To mitigate the effects of this attack, non-Byzantine peers could refuse to

participate in exchanges with peers who have historically been unreliable partners.

We ignore such cat-and-mouse tactics and assess the impact of the above attack

when non-Byzantine peers forget about previous unproductive exchanges.

Figures 5.7 and 5.8 show the reliability seen and bandwidth used, respec-

tively, by a rational peer pursuing each strategy in the presence of different pro-

portions of Byzantine peers. The remaining non-Byzantine peers are altruistic.

The choice of strategies is similar to Section 5.2.3 where we considered unilateral

deviation with no Byzantine peers. We elide proactive/decline and passive/decline

strategies in which rational peers decline to participate in optimistic pushes, as these

strategies performed significantly worse than the other strategies in the absence of

Byzantine behavior. Passive and proactive strategies deliver unwatchable video
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Figure 5.8: Rational peer’s consumed bandwidth for different strategies.

streams when the proportion of Byzantine peers reaches 10% and 30%, respectively.

We conclude that among the strategies available, a rational peer should obey

the protocol, i.e. pursue the proactive/data strategy, regardless of the presence of

Byzantine peers. If all non-Byzantine peers are following the protocol, with a system

comprised of 20% Byzantine peers, the bandwidth costs remain relatively constant

while the convergence suffers by less than 7%.

5.3 Discussion

BAR Gossip is the first p2p live streaming system robust to Byzantine peers and

rational peers. Its successes in a BAR setting, however, are reduced by its practical

and theoretical limitations.
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High overheads To stream a 200 Kbps video, peers upload approximately 300

Kbps on average to their neighbors. A significant fraction of this overhead stems

from signatures on every message and receiving redundant stream updates. Fur-

thermore, the Optimistic Push Protocol requires peers to waste network bandwidth

in the form of junk data, a technique used in both BAR-B [3] and Equicast [38].

Static membership It is unclear how to design mechanisms to allow peers to

join and leave the system without disrupting the properties of Nash equilibria. In

a dynamic system, peers may deviate shortly before leaving if there are benefits to

such actions.

Indefinite end time We assume that a streaming event ends at an indefinite time

to eliminate end-game strategies in which peers may attempt to cheat at the end

of a game because doing so is less risky than cheating at the beginning or middle.

These end-game strategies pose a classic shortcoming of game theory—a limitation

that is troubling given that many live events have well-known and published end

times.

Short-sighted strategies Our proof that Balanced Exchange is a Nash equilib-

rium requires that rational peers only pursue strategies to maximize the number of

useful updates traded in each exchange. We ignore more sophisticated strategies

that may take into account the consequences of concurrent or future exchanges.

Partial Guarantees Our evaluation of Optimistic Push suggests that rational

peers have little to gain from attempting to deviate unilaterally. However, those

experiments fall short of proving that Optimistic Push is a Nash equilibrium. In

essence, we sacrifice the purist approach of Balanced Exchange so as to achieve

adequate performance in the form of BAR Gossip.
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In addition to highlighting weaknesses of BAR Gossip, the above limitations re-

flect a broader frustration with formal approaches toward p2p system design. The

resulting systems, BAR Gossip included, have been inefficient and have relied on

strong assumptions. In the next chapter of this dissertation, we remove these limi-

tations and show that rigor can also be practical.
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Chapter 6

FlightPath

This chapter resolves the tension in p2p systems between designing practical in-

centives for cooperation and rigorously justifying that those incentives are enough.

We propose approximate equilibria [15] as a new way to design p2p systems. Using

these equilibria, we can design robust mechanisms to tolerate Byzantine peers. More

importantly, approximate equilibria guide how we design systems to incentivize obe-

dience while providing enough flexibility to implement practical solutions. We use

this new approach to design FlightPath, a p2p live streaming system inspired by

BAR Gossip, but fundamentally different because of how we take advantage of the

flexibility afforded by not requiring a strict solution.

In FlightPath specifically, approximate equilibria let us use run-time adap-

tations to tame the randomness of our gossip-based protocol, making it suitable

for low jitter media streaming while retaining the robustness and load balancing of

traditional gossip. The key techniques enabled by this flexibility include allowing

a bounded imbalance between peers, redirecting load away from busy peers, avoid-

ing trades with unhelpful peers, and arithmetic coding of data to increase trading

opportunities.

As a result of these dynamic adaptations, FlightPath is a highly efficient and
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robust media streaming service that has several attractive properties:

High quality streaming: FlightPath provides good service to every peer, not just

good average service. In experiments with over 500 peers, 98% of peers deliver

every packet of an hour long video. No peer misses more than 6 seconds.

Broad deployability: FlightPath uses a novel block selection algorithm to cap the

peak upload bandwidth so that the protocol is accessible to users behind cable

or ADSL connections.

Rational-tolerant: FlightPath is a 1
10 -Nash equilibrium under a reasonable cost

model, meaning that rational peers have provably little incentive to deviate

from the protocol. We define an ε-Nash equilibrium in the next section.

Byzantine-tolerant: FlightPath provides good streaming quality despite 10% of

peers acting maliciously to disrupt it.

Churn-resilient: FlightPath maintains good streaming quality while over 30% of

the peer population may churn every minute. Further, it easily absorbs flash

crowds and sudden peer departures.

Compared to BAR Gossip, the above properties represent both a qualitative

and quantitative improvement. We reduce jitter by several orders of magnitude and

decrease overhead by 50%. Additionally, we allow peers to join and leave the system

without disrupting service.

Although approximate equilibria provide weaker guarantees than strict ones,

they can be achieved without relying on the strong assumptions needed by the ex-

isting systems that implement strict Nash equilibria. BAR Gossip assumes that

rational participants only pursue short-sighted strategies, ignoring more sophisti-

cated ones that might pay off in the long term. Equicast [38] assumes that a user is

hurt by an infinite amount if it loses any packet of a stream. FlightPath does away
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with such assumptions, relying instead on the existence of a threshold below which

few rational peers find it worthwhile to deviate.

We organize the rest of this chapter as follows. Section 6.1 defines ε-Nash

equilibria and additonal assumptions we make. Section 6.2 describes FlightPath’s

basic trading protocol, discusses how to add flexibility to improve performance signif-

icantly, and explains how to handle churn. We evaluate our prototype in Section 6.3,

which looks at FlightPath in a static setting, with churn, and under attack. In Sec-

tion 6.4, we analyze the incentives a rational peer may have to cheat and show under

what conditions FlightPath is a 1
10 -Nash equilibrium.

6.1 Assumptions

We analyze and evaluate FlightPath using ε-Nash equilibria.

Definition 3 A protocol is an ex ante ε-Nash equilibrium if it defines a strategy

profile such that each rational player expects to gain at most a factor of ε from

deviating unilaterally. More formally, a strategy profile s = (s0, . . . , sn) is an ex

ante ε-Nash equilibrium if for every player i there exists no strategy s∗i such that i

expects utility ui(s−i, s
∗
i ) > (1 + ε)ui(s) from following s∗i 1.

Again, we elide “ex ante” for brevity. Within the framework of ε-Nash equi-

libria, we assume that rational peers deviate if and only if they expect to benefit

by more than a factor of ε from deviating unilaterally. This assumption is reason-

able as switching protocols incurs a non-trivial cost such as effort to develop a new

algorithm, work to install new software, or risk that new software will be buggy or

malicious. Under such circumstances, it may not be worth the trouble to develop
1As Chien et al. [15] note, an alternative notion of ε-Nash equilibria is based on ε being an

additive component instead of a factor. They observe that both are equally natural, although
treating ε as a factor is more in line with traditional approximation guarantees in computer science.
Additionally, several works that treat ε as an additive component also normalize all utilities into
the range [0,1], giving ε more of a relative role rather than a strict additive one.
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or use an alternate protocol. In FlightPath, we assume that protocols that bound

the gain from cheating to ε ≤ 1
10 are sufficient to discourage rational deviations.

FlightPath is the first p2p system that is based on an approximate equilib-

rium. To our knowledge, FlightPath is the first work to explore how these equilibria

can be used to trade off resilience to rational manipulation against practical con-

cerns such as performance and overhead. Other works [15, 20], which have been

mainly theoretical, have used approximate equilibria only when the strict versions

have been difficult to find.

A peer’s utility As in BAR Gossip, rational peers are interested in acquiring

updates to reconstruct a data stream. A rational peer benefits from delivering a

jitter-free stream and benefits less as jitter gets worse. Rational peers incur cost

by uploading bytes. In contrast to BAR Gossip, we assume downloading costs are

negligble. We again assume that eviction is a sufficient penalty to deter any peer

from sending a message that the receiver could present as a PoM.

Although FlightPath is not tied to any specific utility function that combines

these benefits and costs, we provide one here for concreteness. Note that crafting a

utility function that accurately captures a peer’s utility is a dark art at best. We

therefore design a conservative function defining a peer i′s utility when strategy

profile s is played as

ui(s) = (1 − ji)β − wiκ

where ji is the average number of jitter events per minute that i experiences, wi

is the average upload bandwidth used by i in kilobits per second, β is the benefit

received from a jitter free data stream, and κ is the cost for each kilobit per second

of upload bandwidth consumed. We consider this function conservative because a

peer’s benefit decreases rapidly according to the number of jitter events experienced:

a peer that is jittered once every minute obtains no benefit, while a peer that is
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jittered once every ten minutes receives 90% of the benefit. At the end of this

chapter, we show how the benefit to cost ratio ( (1−ji)β
wiκ

) affects the ε we can bound

in an ε-Nash equilibrium.

6.2 Design

We discuss FlightPath’s design in three iterations. In the first, we give an overview of

a basic structure, similar to Balanced Exchange, that allows peers to trade updates

with one another. We design trades to force rational peers to act faithfully in each

trade until the last possible action, where deviating can save only negligible cost.

This basic protocol allows few opportunities for a peer to game the system, but

by the same token, it provides few options for dynamically adapting to phenomena

like bad links, malicious peers, or overload. Therefore, in the second iteration, we

describe how we add controlled amounts of choice to the basic trading protocol to

improve its performance dramatically. In the third iteration, we show how to modify

the protocol to deal with changing membership.

In contrast to our previous discussion of Balanced Exchange, readers may be

surprised to see that in the last two iterations we do not argue step-by-step about

possible ways to cheat and why a rational peer would not. This difference is due to

the flexibility of approximate equilibria, which allows optimizations that improve a

user’s start-to-finish benefits and costs, while still limiting any possible gains from

cheating. At the end of this chapter, we show that a rational peer expects little to

gain from attempting to cheat.

6.2.1 Basic Protocol

Prior to a live event, peers contact the tracker to join a streaming session. After

authenticating each peer, the tracker assigns unique random member ids to peers

and posts a static membership list for the session.
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In each round, the source sends two kinds of updates: stream updates and

linear digests. A stream update contains the actual contents of the stream. The

source tags each stream update with the round in which it is multicast and the order

in which it should be delivered in a round. Each stream update can be uniquely

identified by its round number and order in which it should be delivered, a pair

of numbers we refer to as an update id. A linear digest [32] contains information

that allows peers to authenticate received stream updates. The source associates

one or more linear digests to each round and includes update ids and corresponding

secure hashes of stream updates in those digests. The source signs linear digests

so that their contents can be immediately authenticated. We use linear digests in

place of digitally signing every stream update to reduce the computational load and

bandwidth necessary to run FlightPath. The source sends each of the ups per round

unique stream updates for a round to a small fraction seed frac of random peers

in the system. When the source multicasts stream updates to selected peers at the

beginning of every round, it also sends them the appropriate linear digests.

In each round, peers initiate and accept trades from their neighbors. We

provide Figure 6.1 for reference and base our design on Balanced Exchange. A

trade consists of four phases:

Partner Selection: A peers selects a partner using a verifiable pseudo-random

algorithm.

History Exchange: Partners exchange histories describing which updates they

possess and which they still need. Partners use the histories to compute de-

terministically the exact updates they expect to receive and are obligated to

send, under the constraint that partners exchange equal numbers of updates.

Update Exchange: Partners swap updates by encrypting them and sending the

encrypted data in a briefcase message. Immediately afterwards, a peer sends
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Basic Trading Protocol

Sender (S) Receiver (R)

seed = <round>S

check: seed is valid
PRNG(seed) maps to R

k = min( | HS-HR |, | HR-HS | )

check: update ids are expected

decrypt updates {u1, ..., uk}

<BRIEFCASE, S, R, seed, {(u1.id, u1#(u1)), ..., (uk.id, uk#(uk))}>

<PROMISE, S, R, seed, {(u1.id, #u1#(u1)), ..., (uk.id, #uk#(uk)) }>

<KEY_RESPONSE, S, R, seed,
 
{(u1.id, #u1), ..., (uk.id, #uk)}>

<DIVULGE, S, R, seed, HS>S

<HISTORY_RESPONSE, R, S, seed, HR>

<HISTORY_REQUEST, S, R, seed, #(HS)>

<BRIEFCASE, R, S, seed, {(u'1.id, u'1#(u'1)), ..., (u'k.id, u'k#(u'k))}>

<PROMISE, R, S, seed, {(u'1.id, #u'1#(u'1)), ..., (u'k.id, #u'k#(u'k)) }>

promise matches briefcase
check: update ids are expected

promise matches briefcase

<KEY_RESPONSE, S, R, seed,
 
{(u'1.id, #u'1), ..., (u'k.id, #u'k)}>

decrypt updates {u'1, ..., u'k}

Figure 6.1: Illustration of a trade in the basic protocol.

a promise pledging that the contents of its briefcase are legitimate and not

garbage data.

Key Exchange: Once a peer receives a briefcase and matching promise message

from its trading partner, that peers sends the decryption keys necessary to

unlock the briefcase it sent.

In contrast to BAR Gossip and BAR-B [3], FlightPath peers do not sign every

protocol message. Promises are the only digitally signed message in a trade; peers

authenticate other messages using message authentication codes [73]. As in balanced

exchange, these phases guarantee that a rational peer has to upload the bulk of data

in a trade to obtain any benefit from the trade. By deferring gratification and holding
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peers accountable via promise messages, we limit how much a cheating strategy can

gain over obeying the protocol. The main difference between trades in this protocol

compared to balanced exchanges in BAR Gossip is the addition of the promise.

We structure promises so that for each briefcase there is exactly one matching

promise. Further, if a briefcase contains garbage data, then the matching promise is

a PoM. Briefcases and promises provide this property because of how we intertwine

these two kinds of messages. For each update u that a peer is obligated to send, that

peer includes the pair 〈u.id, u〈#u〉〉 in the briefcase it sends, where u〈#u〉 denotes

update u encrypted with a hash of itself. For each entry in the briefcase, the

matching promise message contains a pair 〈u.id, #(u〈#u〉)〉. Therefore, if a briefcase

holds garbage data, then the matching promise message would serve as a PoM since

that promise would contain at least one pair in which the hash for a self-encrypted

update is wrong. Of course, a peer could upload garbage data in its briefcase but

send a legitimate promise message to avoid sending a POM, but then the briefcase

and promise would not match and that peer’s partner would refuse to send the

decryption keys.

6.2.2 Taming Gossip

Gossip protocols are well-known for their robustness [10, 21, 23, 29, 30, 74, 76] and

are especially attractive in a BAR environment because their robustness helps tol-

erate Byzantine peers. However, while gossip’s pair-wise interactions make crafting

incentives easier than in a tree-based streaming system, it is reasonable to question

whether that very randomness may make gossip inappropriate for streaming live

data in which updates need to be propagated to all nodes by a hard deadline.

In this section, we explain how the flexibility of approximate equilibria allows

us to tame gossip’s randomness by dynamically adapting run-time decisions. For

concreteness, we show in Figures 6.2 and 6.3 how poorly the basic protocol performs
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Figure 6.2: Reverse cumulative distribution of jitter.

when disseminating a 200 Kbps stream to 517 clients. In this experiment, the source

generates ups per round = 50 unique stream updates per round and sends each one

to a random seed frac = 5% of the peers. Updates expire deadline = 10 rounds

from the round in which they are sent. Figure 6.2 shows a reverse cumulative

distribution of jitter experienced by peers. To read this graph, it may be useful

to focus where the arrow is pointing. At that point, approximately 80% of peers

are jittered at least 2% of the time. Figure 6.3 depicts cumulative distributions

of peers’ average and peak upload bandwidths. We observe that a peer uses 300

kbps on average, a modest overhead that many home broadband connections can

handle. Peak bandwidths, however, far exceed the constraints that most cable or

DSL connections can bear.
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Figure 6.3: Cumulative distribution of average and peak bandwidths.

In the rest of this subsection, we explore how to modify the basic trading

protocol both to reduce jitter and to lower consumed bandwidth. The first set

of modifications aim at capping the peak bandwidth used by the protocol. As

expected, by reining in gossip’s largesse with bandwidth, these improvements make

jitter worse. With these techniques in place though, we are free to explore ways to

reduce jitter while constraining bandwidth to reasonable limits.

Reservations: One of the problems of using gossip to stream live data is the

widely variable number of trading partners a peer may have in any given round. In

particular, although the expected number of trades in which a peer participates in

each round is two, the actual number varies widely, occasionally going past eight.
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Such high numbers of concurrent trades are undesirable for two reasons. First, a

peer can be overwhelmed and be unable to finish all of its concurrent trades within

a round. Figure 6.3 illustrates this problem as a high peak bandwidth in the basic

protocol, making it impractical in bandwidth-constrained environments. Second, a

peer is likely to waste bandwidth by trading for duplicate updates when participating

in many concurrent trades.

Rather than accept all incoming connections, FlightPath distributes the num-

ber of concurrent trades more evenly by providing a limited amount of flexibility

in partner selection. The idea is simple. A peer S reserves a trade with a part-

ner R before the round rnd in which that trade should happen. If R has already
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accepted a reservation for S, then S looks for a different partner. Figure 6.4 illus-

trates that this straight-forward approach can significantly reduce the probability

of a peer committing to more than two concurrent trades in a round. At the same

time, reservations also reduce the probability that a peer is only involved in the one

trade it initiates each round. The challenge in implementing reservations is how to

give peers verifiable flexibility in their trading partners.

FlightPath provides each peer a small set of potential partners in each round.

We craft this set carefully to address several requirements:

1. Peers need to select partners in a sufficiently random way to retain gossip’s

robustness.

2. Each peer needs enough choices to avoid overloaded or Byzantine peers.

3. A peer’s partners should be relatively unchanged if the population does not

change much.2

4. The selection algorithm ought to be resilient to attacks in which malicious

peers attempt to position themselves so as to eclipse good peers [69].

Figure 6.5 illustrates how we provide flexibility in choosing a partner while

meeting the above constraints. We force each peer to communicate with at least

�log n� distinct neighbors by partitioning the membership list of n peers into �log n�
bins and requiring a peer to choose a partner from a verifiable pseudorandomly

chosen bin each round. Leitao et al. demonstrate that a set of gossip partners that

grows logarithmically with system size can tolerate severe disruptions [40]. In round

rnd, peer S seeds a pseudo-random generator with 〈rnd〉S , and uses the generator

to select a bin; note that any peer can verify any other peer’s bin selection.
2Although we discuss dynamic membership in the next section, its demands constrain the partner

selection algorithm we describe here.
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Figure 6.5: Illustration of partner selection algorithm using bins.

Within a bin, we further restrict the nodes with whom a peer can communi-

cate by giving each peer a customized view of each bin’s membership based upon a

peer’s id. We define S’s view to be all peers R such that the hash of S’s member id

with R’s member id is less than a parameter p. The tracker adjusts p so that almost

every peer is expected to have at least one non-Byzantine partner in every bin. To

achieve this condition, the tracker first shuffles the membership list so that every

entry has equal likelihood to correspond to a Byzantine peer. The tracker then sets

p to satisfy the following inequality:

[1 − [1 − p(1 − Fbyz)]
n

�log n� ]�log n� ≥ 1 − 1
n

(6.1)

Though perhaps initially initimidating, the above inequality can be intu-

itively understood. The expression on the left represents the probability that a peer

has at least one non-Byzantine partner in every bin. We wish that probability to
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be sufficiently high so that nearly all peers save one—represented by the expression

on the right—has at least one non-Byzantine partner in every bin.

Consider two random peers S and R. The probability that R is not Byzantine

and in S’s view is p(1 − Fbyz). Therefore, the probability that for a given bin,

S has no partners or all the partners it does have are Byzantine is [1 − p(1 −
Fbyz)]

n
�log n� , capturing the probability that a given bin is bad for S. The probability

that a given bin is okay for S is therefore 1 − [1 − p(1 − Fbyz)]
n

�log n� . Putting it

together, the probability that all of S’s bins are okay is given as the left expression

in Inequality 6.1. Figure 6.6 gives an intuition for how this inequality affects a peer’s

choices as the system scales up and as the bound of Byzantine peers changes. This

two level selection gives us a way to provide log n distinct random partners with high

probability while limiting the variance a single level selection scheme may possess.

A peer S can use the choice provided by the combination of bins and views to

reserve trades. A peer R that receives such a reservation verifies that S’s view con-

tains R and that 〈rnd〉S maps to the bin that contains R’s entry in the membership

list. If these checks pass, then R can either accept or reject the reservation.

As a general rule, peer R accepts a reservation only if it has not already ac-

cepted another reservation for the same round. Otherwise, S rejects the reservation,

and S attempts a reservation with a different peer. Peer S can be exempt from this

rule by setting a plead flag in its reservation, indicating that S has few options left.

In this case, R accepts the reservation unless it has already committed to c trades

in round r. We find that setting c to 4 is good in practice, as c should be small but

greater than 2 and setting it to 3 did not perform as well as 4.

Splitting need: Reservations are effective in ensuring that peers are never in-

volved in more than 4 concurrent trades. However, a peer that is involved in con-

current trades may still be overwhelmed with more data than it can handle during

a round and may still receive too much duplicate data.
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Figure 6.6: Distribution of view sizes in each bin for different membership list sizes.
Graphs are calculated with Fbyz = 5% (top) and 20% (bottom).
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For example, consider a peer S involved in concurrent trades with peers

R0, R1, R2, and R3. Peer S is missing eight updates for a given round. The basic

protocol may overwhelm S and waste bandwidth by having peers R0–R3 each send

those 8 updates to S. Something more intelligent is for c’s need to be split evenly

across its trading partners, limiting each partner to send at most two updates. Note

that while this scheme may be less wasteful than before, c now risks not receiving

the eight updates it needs since it is unlikely that its partners each independently

select disjoint sets of two updates to exchange.

There seems to be a fine line between being conservative to avoid jitter but

receiving redundant data or taking a risk to save resources. We sidestep this trade-off

by using erasure coding [4, 50].

Erasure codes: Erasure coding has been used in prior works to improve content

distribution [2, 16, 26, 39], but never to support live streaming in a setting with

Byzantine participants. The source codes all of the stream data in a given round

into m > ups per round stream updates such that any ups per round blocks are

necessary and sufficient to reconstruct the original data. A peer stops requesting

blocks for a given round once it has a sufficient number. Erasure coding has three

important benefits. First, it increases the diversity of updates among peers, making

the barter system we have constructed more effective. Second, it improves the fault-

tolerance of the overall system as it is more resilient to the loss of a few updates.

Third, erasure coding reduces the probability that concurrent trades involve the

same block.

To provide an example of this third benefit, consider a peer S involved in

concurrent trades with R0 and R1. Suppose there are 50 updates per round erasure

coded into 100 blocks. S possesses 44 of those blocks, R0 has 40, and R1 holds

49. Although S only needs 6 blocks to reconstruct the original updates, R0 and R1

probably have more than 6 blocks not in common with S. Combinig the splitting
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Figure 6.7: Reverse cumulative distribution of jitter in the basic trading protocol and
with the reservations, splitting need, and erasure coding techniques incorporated.

need and erasure coding techniques, R0 randomly selects 3 blocks which S does

not possess and trades them to S. R1 takes a similar action. So that peers can

determine exactly which blocks will be traded, peers select blocks pseudo-randomly

based upon the seed value used to initiate the trade.

In our experiments, we erasure code ups per round stream updates into

m = c×ups per round blocks and modify the source to send each one to seed frac
c

of the peers. Although coding stream data into more and more blocks can reduce

jitter, we choose not to increase the coding beyond m = 2ups per round because

a greater diversity of blocks also has a side-effect. More coded blocks means that

trades are more effective and peers can gather the updates they need in a shorter
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Figure 6.8: Cumulative distribution of average and peak upload bandwidths in the
basic trading protocol and with the reservations splitting need, and erasure coding
techniques incorporated.

amount of time. However, such efficiency hurts peers who may have fallen behind

as they then have fewer opportunities to catch up with their neighbors before those

neighbors acquire all the updates they need.

In Figures 6.7 and 6.8, the source generates 2ups per round = 100 blocks

and sends each one to a random 2.5% of the peers. The reservations, splitting need,

and erasure coding techniques reduce the protocol’s peak bandwidth significantly,

but at the cost of making jitter worse. We now describe three techniques that

together nearly eliminate jitter without compromising the steps we have taken to

keep the protocol from overwhelming any peer.
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Figure 6.9: Average jitter as a function of the number k of older rounds from which
a peer prefers to receive updates.

Tail inversion: As in many gossip protocols, the basic trading protocol biases

recent updates over older ones to disseminate new data quickly. However, in a

streaming setting, peers may sometimes value older updates over younger ones, for

example when a set of older updates is about to expire and a peer seeks to avoid

jitter. Indeed, we find that after using the techniques described so far, a peer

is typically missing fewer than five updates for the round in which it experiences

jitter.

The drawback in preferring to trade for updates of an old round is that the

received updates may not be useful in future exchanges because many peers may

already possess enough updates to reconstruct the data streamed in that round.

Indeed, an oldest-first bias does not perform well in our experiments. Therefore,
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FlightPath provides a peer with the flexibility to balance recent updates that it

can leverage in future exchanges against older updates that it may be missing.

Instead of requesting updates in most-recent-first order, a peer has the option to

receive updates from the k oldest rounds first and then updates in most-recent-first

order. Figure 6.9 depicts the jitter experienced by peers for values of k ranging from

zero to the deadline (10). When k is zero, peers value updates in a most-recent-

first order. When k is equal to the deadline, peers prefer receiving older update.

Our experiments indicate that inverting the tail with k = 2 is very effective at

reducing jitter. However, we acknowledge that this technique is not the result of

deep insight—it simply works well and is the product of a low-level understanding

of the FlightPath system. Better ways to prioritize updates may well exist.

Imbalance ratio: The basic protocol balances trades so that a peer receives no

more than it contributes in any round. Such equity can make it difficult for a peer

that has fallen behind to recover.

FlightPath uses an imbalance ratio imb ratio to introduce flexibility into

how much can be traded. Each peer tracks the number of updates sent to and

received from its neighbors, ensuring that its credits and debits for each partner are

within imb ratio of each other. We find that the imbalance ratio’s most dramatic

effect is that it allows individual trades to be very imbalanced if peers have long-

standing relationships.

When imb ratio is set to 1, the trading protocol behaves like a traditional

unbalanced gossip protocol, vulnerable to free-riding behavior [43]. When imb ratio

is set to 0, every trade is balanced, offering little for rational peers to exploit, but also

allowing unlucky peers to suffer significant jitter. We would like to set imb ratio

to be as low as possible while maintaining low jitter. In Figure 6.10, we show the

impact different imbalance ratios have on peers’ jitter and find setting imb ratio

to 10% is an acceptable tradeoff between the competing concerns of reducing jitter
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Figure 6.10: Average jitter as a function of the imbalance ratio. For readability, the
scale of the y-axis is from 0 to 10%.

while limiting the incentives for rational peers to cheat. Figure 6.11 shows how the

tail inversion and imbalance ratio techniques reduce jitter, while illustrating that

both techniques have a small impact on the bandwidth consumed.

Trouble Detector: Our final improvement takes advantage of the partner flexibil-

ity afforded by the reservation mechanism. Each peer monitors its own performance

by tracking how many updates it still needs for each round. If its performance falls

below a threshold, then that peer proactively initiates more than one trade in a

round to avoid jitter. Peers treat this option as a safety net, as increasing the av-

erage number of concurrent trades also increases the average cost to trade for each

unique update.

We implement a simple detection module that informs a peer whether re-
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Figure 6.11: Reverse cumulative distribution showing impact of tail inversion and
imbalance ratio techniques on reducing jitter. CDFs of average and peak band-
widths demonstrating tail inversion and imbalance ratio techniques impose modest
overhead.
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Figure 6.12: Reverse CDFs showing how peers can use the trouble detector to reduce
jitter by proactively initiating more trades.

serving more trades may be advisable. We assume that after each round a peer

expects to double the number of updates that have not yet expired up to the point

of possessing ups per round updates for each round. In practice, we find that peers

typically gather updates more quickly than just doubling them. If a peer c notices

that it possesses fewer updates than the detection module advises, c schedules ad-

ditional trades. Note that this is a local choice, based only on how many packets

the peer has received for that round. Figure 6.13 demonstrates the effectiveness of

adding the trouble detector module.

6.2.3 Dynamic Membership

We now explain how to augment the protocol to handle peers joining and leaving

the system. In FlightPath, the main challenge is in allowing peers to join an existing

streaming session. Gossip’s robustness to benign failures lends FlightPath a natural
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Figure 6.13: CDFs of average and peak bandwidths demonstrating modest overheads
due to the trouble detection technique.

resilience to departures. However, the tracker still monitors peers to discover if

any have left the system abruptly. Currently, we employ a simple pinging protocol,

although we could use more sophisticated mechanisms as in Fireflies [35].

When a peer attempts to join a session, it expects to begin reliably receiving

a stream without a long delay. As system designers, we have to balance that expec-

tation against the resources available to get that peer up to speed. In particular,

dealing with a flash crowd where the ratio of new peers to old ones is high presents

a challenge. Moreover, in a BAR environment, we have to be careful in providing

benefit to any peer who has not earned it. For example, if a single peer joins a

system consisting of 50 peers, it may be desirable for all 50 to aid the new partic-

ipant using balanced trades so that the new peer cannot free-ride off the system.

However, consider the case when instead of a single peer joining, 200 or 400 join. It

is unreasonable to expect the original 50 to support a population of 400 peers who
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initially have nothing of value to contribute.

Below, we describe two mechanisms for allowing peers to join the system.

The first allows the tracker to modify the membership list and to disseminate that

list to all relevant peers. The second lets a new peer immediately begin trading

so that it does not have to wait in silence until all peers have been notified of its

presence.

Epochs: A FlightPath tracker periodically updates the membership list to reflect

joins and leaves. The tracker defines a new membership list at the beginning of

each epoch, where the first epoch contains the first epoch len rounds, the second

epoch contains the next epoch len rounds and so on. If a peer joins in epoch e, the

tracker places that peer into the membership list that will be used in epoch e + 2.

At the boundary between epochs e and e + 1, the tracker shuffles the mem-

bership list for epoch e + 2 and notifies the source of the shuffled list. Shuffling

prevents Byzantine peers from attempting to position themselves at specific indices

of the membership list, so as to take over a bin. Recall that we construct each peer’s

membership view to be independent of these indices so as not to end long-standing

relationships prematurely.

After the tracker notifies the source of the next epoch’s membership list, the

source divides that list into pieces and places each piece into a third kind of update:

a partial membership list. The source signs these lists and distributes them to peers

as it would a stream update. Peers can trade partial membership lists just like

they trade linear digests and stream updates. The only difference is that partial

membership lists are given priority over all other updates in a trade and only expire

when the epoch corresponding to that list ends. Once a peer obtains every partial

membership list for an epoch, that peer can reconstruct the original membership

list and use it to select trading partners.
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Figure 6.14: Illustration of the tub protocol from peer S’s perspective. Shaded
entries represent peers that S can contact for a trade when appropriate. Note that
S only uses bins for its own tub and the immediately preceding one.

Tub Algorithm: As described, a new peer would have to wait at least one epoch

before it appears in the membership list and can begin to trade. FlightPath aug-

ments the static partner selection algorithm that uses bins with an online algorithm

that allows new peers to begin trading immediately without overwhelming the ex-

isting peers in the system. This algorithm also allows every peer to verify partner

selections without global knowledge of how many peers joined nor of when they

did so. Intuitively, our algorithm organizes all peers into tubs such that the first

tub contains the peers in the current epoch’s membership list and subsequent tubs

contain peers who have recently joined. A peer selects partners from its own tub

and also from any tub preceding its own. However, the probability that a peer from

tub t selects from a tub t′ < t decreases geometrically with t− t′. This arrangement

ensures that the load on a peer from all subsequent tubs is bound by a constant

regardless of how many peers join. Figure 6.14 illustrates our algorithm.

For clarity, we describe our online algorithm assuming all peers have a global

list that enumerates every peer in the system. Later, we show that this knowledge

is unnecessary. The first n indices in this global list correspond to the n indices of

the current epoch’s membership list. The rest of the global list is sorted according

to the order in which peers joined. We divide the global list into tubs where the first

tub corresponds to the first n indices of the global list, the second tub to the next
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n indices, and so forth.

A peer S’s membership view depends on its position in the global list. If S

is in the first tub, its view and how it selects partners is unchanged from the static

case (Section 6.2.2). If S is in a tub t > 1, S’s view obeys three constraints:

1. Only peers that precede S in the list can be in S′s view..

2. If R is in tub t or t− 1, then R is in S′s view iff the hash of concatenating S’s

member id with R’s member id is less than p (see inequality 6.1).

3. If R is in a tub t′ < t − 1, then R is in S’s view iff the hash of S’s member id

concantenated with R’s member id is less than a parameter p′.

We use a parameter p′ different from our previous bins-based parameter p to

address two competing concerns. We want new peers to not overwhelm older ones

and so peers select from a tub with decreasing probability the farther away that

tub is. However, because new peers select less frequently from tubs that are not

adjacent, it may be harder for a new peer to build a relationship with older ones and

take advantage of the imbalance ratio. We can resolve the tension between wanting

less frequent contact between some peers yet still allowing them to quickly build a

relationship by giving a new peer the same small set of possible partners every time

it chooses a tub. The tracker adjusts p′ according to inequality (6.2) so that almost

every peer is expected to have at least one non-Byzantine partner in every tub.

[1 − p′(1 − Fbyz)]n ≤ 1
n

(6.2)

A new peer S in tub tS > 1 selects a trading partner for round r using two

verifiable pseudo-random numbers, rand1 and rand2. First, S uses rand1 to select

a tub, exponentially weighting the selection towards its own tub. If S selects a tub

t < tS − 1, then S can trade with any peer in tub t that is also in S’s view. If
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S selects either its own tub or the one immediately preceding its tub, then S uses

rand2 to make the bin selection. S maps rand2 to a bin starting from the first bin

in tub t − 1 and ending with S’s own bin. From the selected bin, S can trade with

any peer in its view.

If every peer knew the global list, then it would be straight-forward to select

and verify trading partners. Fortunately, this global knowledge is unnecessary: to

select trading partners, a newly joined peer only needs to know the peers in its own

view, the epoch in which those peers joined the system, and the indices of those

peers in the global list. When a peer S joins the system, S obtains such information

directly from the tracker.

To verify that a peer S selects a partner R appropriately, R needs to know

S’s index in the global membership list. The tracker encodes such information in a

join token that it gives to S when S joins the system. The join token specifies S’s

index in the global list for the two epochs until S is part of an epoch’s membership

list. S includes its join token in its reservation message to R.

6.3 Evaluation

We now show that FlightPath is a robust p2p live streaming protocol. Through

experiments on over 500 peers, we demonstrate that FlightPath:

• Reduces jitter by several orders of magnitude compared to BAR Gossip

• Caps peak bandwidth usage to within the constraints of a cable or ADSL

connection

• Maintains low jitter and efficiently uses bandwidth despite flash crowds

• Recovers quickly from sudden peer departures

• Continues to deliver a steady stream despite churn
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• Tolerates up to 10% of peers acting maliciously

6.3.1 Methodology

We use FlightPath to disseminate a 200 Kbps data stream to several hundred peers

distributed across Utah’s Emulab and UT Austin’s public Linux machines. In most

experiments, we use 517 peers, but drop to 443 peers in the churn and Byzantine

experiments as the availability of Emulab machines declined. We run each experi-

ment 3 times. When we present cumulative distributions, we combine points from

all three experiments. We include standard deviation when doing so keeps figures

readable.

In our experiments, rounds last 2 seconds and epochs last 40 rounds. In

each round, the source sends 100 Reed-Solomon coded stream updates and 2 linear

digests. 50 stream updates are necessary and sufficient to reconstruct the original

data. Stream updates expire 10 rounds after they are sent. The source sends each

stream update to a random 2.5% of peers. Stream updates are 1072 bytes, linear

digests are 1153 bytes, and partial membership lists are 1650 bytes.

We implement FlightPath in Python using MD5 for secure hashes and RSA-

full domain hashing with 512 bit keys for digital signatures. Peers exchange public

certificates and agree on secret keys for MACs a few seconds before communicating

with one another for the first time. Peers also set the budget for how many updates

they are willing to upload in a round to μ = 100, which is split evenly across

concurrent trades.

6.3.2 Experiments

Steady State Operation: In the first experiment, we run FlightPath on 517

peers to assess its performance under a relatively well-behaved and static environ-

ment. Figure 6.15 shows that the average jitter of FlightPath is orders of magnitude
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Figure 6.15: Average jitter in FlightPath and BAR Gossip peers. (n = 517)

lower than BAR Gossip. Of the three experiments we ran for one hour, the worst

jitter was in an experiment in which 1 peer missed 6 seconds of video, 5 peers missed

4 seconds, and 3 peers missed 2 seconds. All jitter events occurred during the first

minute. This effect can be explained by the scarcity of items to be traded initially.

As the stream continues, peers possess more updates to barter amongst one an-

other. Figure 6.16 confirms that peers use approximately 250 Kbps on average and

also depicts cumulative distributions tracing the peak bandwidth of each peer along

with curves for the 99 and 95 percentile bandwidth curves. As in Section 6.2.2, the

combination of reservations, splitting a peer’s need and erasure coding is effective

in capping peak bandwidth.

Joins: We now examine how well FlightPath handles joins into the system. In

particular, we evaluate how well the tub algorithm (described in Section 6.2.3),

handles large populations of peers who seek to join a streaming session all at once.
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Figure 6.16: Distributions of peers’ average, 95 percentile, 99 percentile, and peak
bandwidths. (n = 517)

In this experiment, we start a session with 50 peers. When the second epoch begins

at round 41, varying numbers of peers simultaneously attempt to join the system. As

Figure 6.17 illustrates, the average bandwidth of the original peers rises noticeably

immediately after the first epoch and settles to a higher level than before. When

the fourth epoch begins and new peers are integrated into the membership list,

average bandwidth of the original 50 drops back to its previous levels. As shown,

FlightPath peers are relatively unaffected by joining events. None of the original 50

peers experienced a jitter event during any of these experiments. Also note that the

peak bandwidth across all three runs of each experiment was 482.5 Kbps.

Figure 6.17 shows that the tub algorithm is effective in ensuring that newer

peers do not overwhelm older ones. Note that this resilience is easy to achieve at

the expense of the newer peers. For example, one could imagine FlightPath without

the tub algorithm, requiring new peers to wait over an epoch before participating in
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Figure 6.17: Bandwidth of peers already in the system with different sized flash
crowds. (n = 50)

the system. Such an approach would be very resilient to flash crowds since it would

require those crowds to sit idly until the system could accommodate them.

The tub algorithm’s contribution is its resilience to flash crowds while letting

new peers deliver the stream quickly and reliably. Figure 6.18 depicts the number

of rounds a peer may have to wait before it begins to deliver a stream reliably. We

define the round in which a peer reliably begins to deliver a stream as the first round

in which a peer experiences no jitter for three rounds. Interestingly, we see that if

more peers join, the average delay decreases. This effect can be explained by our

tub algorithm. The peers in the last tub are contacted the least. In the experiment

in which only 50 peers join, all of the newly joined peers are in the last tub. The

last tub in the experiment with 400 peers joining has a similar problem, but the last

tub is masked by the success of the preceding 7 tubs.
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Figure 6.18: CDF of join delays for different size joining crowds. (n = 50)

Departures: Figure 6.19 shows FlightPath’s resilience to large fractions of a pop-

ulation suddenly departing. Departing peers exit abruptly without notifying the

tracker or completing reserved trades. The figure shows the percentage of peers

jittered after a massive departure event of 70% and 75% of random peers. We chose

these fractions because smaller fractions had little observable effect with respect to

jitter. The figure shows that there exists a threshold between 70% and 75% in which

FlightPath cannot tolerate any more departures.

FlightPath’s resilience to such massive departures is a consequence of a few

traits. First, peers discover very quickly whether potential partners have left or not

via the reservation system. Second, peers have choice in their partner selection, so

they can avoid recently departed peers. Finally, each peer’s trouble detector helps in

reacting quickly to avoid jitter. Figure 6.20 shows the effect of the trouble predictor.

Average bandwidth of remaining peers drops dramatically after the leave event, but

then spikes sharply to make up for missed trading opportunities.
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Figure 6.19: Jitter during massive departure. (n = 517)
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Figure 6.21: Average jitter as churn increases.(n = 443)

Churn: We now evaluate how FlightPath performs under varying amounts of

churn. In our experiments, peers join and then leave after an exponentially ran-

dom amount of time. We intend this behavior to model users who join a stream and

shortly thereafter switch to a different stream. Those who have been in the system

longer are more likely to stay. Because short-lived participants are proportionally

more affected by their start-up transients, our presentation segregates peers by the

amount of time they remain in the system.

Figure 6.21 shows average jitter as we increase churn. The average jitter

of peers who join the system for at least 10 seconds steadily increases with churn.

Peers who stay in the system for at least 640 seconds experience very little jitter

even when 37% of peers churn every minute. In these experiments, all jitter events

occur in the first two minutes after joining a streaming session. Afterwards, the

chance of being jittered falls to nearly 0.

Figure 6.22 shows that churn does manifest as increasing join delays for new
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Figure 6.22: Join delay under churn.(n = 443)

peers. We see that the time needed to join a session is unacceptable under high

amounts of churn. This quality points to a weakness of FlightPath and suggests

a need for a bootstrapping mechanism for new peers. However, care needs to be

exercised in not allowing peers to game the system by abusing the bootstrapping

mechanism to obtain updates without uploading.

Malicious attack: In this experiment, we evaluate FlightPath’s ability to deliver

a stream reliably in the presence of Byzantine peers. While any peer whose utility

function is unknown is strictly speaking Byzantine in our model, we are especially

interested in understanding how FlightPath behaves under attack, when Byzantine

peers behave maliciously.

Although malicious peers cannot make a non-Byzantine peer deliver an in-

authentic update, they can harm the system by hurting performance. A malicious

peer could hamper the dissemination of updates or increase the overhead for other
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Figure 6.23: Jitter with malicious peers. (n = 443)

peers. For example, malicious peers could simultaneously halt all communication

to disrupt others. However, we have already seen that FlightPath is very robust to

such benign failures. More deviously, malicious peers could launch a coordinated

effort to monopolize as many trading opportunities as allowed without making those

trades useful to partners. We explore this concerted attack next.

In the following experiment, malicious peers act normally for the first 100

rounds of the protocol. Starting in round 100, they initiate as many trades as they

can and respond positively to all trade reservations, seeking to monopolize as many

trades in the system as possible. The malicious peers participate in the history

exchange phase of a trade but in no subsequent phase. In a history exchange, a

malicious peer reports that it has all the updates that are less than 3 rounds old

and is missing all the other updates. This strategy commits a large amount of its

partner’s bandwidth to the exchange, while committing little of the malicious peer’s.

Ultimately, non-Byzantine peers find trades with Byzantine ones useless.
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Figure 6.24: Bandwidth with malicious peers. (n = 443)

Figure 6.23 shows the percentage of peers jittered when 12%, 14%, and 16% of

peers behave in this malicious way. We elide the experiment in which 10% of peers

are Byzantine because no peer suffered jitter in those experiments. Figure 6.24,

which depicts the average bandwidth of non-Byzantine peers, is similar to the one

in which peers abruptly leave the system. The subtle difference is that the average

bandwidth used remains higher with more Byzantine peers.

Wide Area Network: Finally, we evaluate how FlightPath performs under wide

area network conditions. In this experiment, we use 300 clients on a local area net-

work but delay all packets between clients according to measured Internet latencies.

We assign each client a random identity from the 1700+ hosts listed in the King data

set of Internet latencies [28]. We use the data set to delay every packet according

to its source and destination.

As in the case without added delays, all jitter events occurred in the first
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Figure 6.25: Bandwidth under WAN conditions. (n = 300)

minute of the experiments. Figure 6.25 depicts the average percentage of peers jit-

tered in the first minute, the average upload bandwidth, and the peak upload band-

width for our experiments with the added delays and without. Aside from a slight

increase (almost 10 Kbps) in average upload bandwidth, peak upload bandwidth

rose by approximately 40 Kbps. These increases are the result of some exchanges

not completing by the end of a round, requiring peers involved to make up for the

loss in subsequent rounds.

6.4 Equilibria Analysis

In contrast to previous rigorous approaches to dissuade rational deviation, Flight-

Path does not ensure that every step of the protocol is in every peer’s best interest.

Indeed, it is easy to imagine circumstances in which a peer might benefit from de-

viating, for example, by setting the plead flag early to increase the likelihood that
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a selected peer will accept its invitation. Instead, FlightPath ensures an ε-Nash

equilibrium in which no peer can significantly improve its overall utility regardless

of how it makes these individual choices.

The high level argument is simple. A peer can only increase its utility by ob-

taining more benefit (receiving less jitter) or reducing cost (uploading fewer bytes).

Since we engineered FlightPath to provide very low jitter in a wide range of en-

vironments, a peer has very little ability to obtain more benefit. With respect to

decreasing costs, we structure trades so that they are relatively balanced.

We now develop this argument more formally to bound the added utility

that can be gained by a peer who deviates. We analyze FlightPath in the steady

state case and ignore transient start-up effects or end game scenarios, which would

matter little in the overall utility of watching something as long as a movie.

6.4.1 Defining ε

We begin by revisiting the utility function ui(s) = (1− ji)β −wiκ. Recall that ji is

the average number of jitter events per minute that i experiences, β is the benefit

from watching a jitter-free stream, wi is i′s average upload bandwidth in kilobits

per second, and κ is the cost per Kbps. Let s be the strategy profile corresponding

to when all peers obey the FlightPath protocol and let us consider a peer i. We

desire that no matter how clever i may be, i expects to benefit little from following

any strategy s∗i �= si. More formally,

∀s∗i ∈ Si : ui(s−i, s
∗
i ) ≤ (1 + ε)ui(s)

We can therefore bound ε as follows:

ε ≥ u∗
i (s−i, s

∗
i ) − ui(s)

ui(s)
=

((1 − j∗i )β − w∗
i κ) − ((1 − ji)β − wiκ)

(1 − ji)β − wiκ
(6.3)
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We simplify equation 6.3 by assuming that a cheating peer experiences no

jitter, i.e., j∗i = 0.

ε ≤ jiβ − (w∗
i − wi)κ

(1 − ji)β − wiκ
(6.4)

We then divide the numerator and denominator by the expected cost to

understand how epsilon changes as a function of the benefit to cost ratio c = (1−ji)β
wiκ

,

which we assume to be greater than 1.

ε ≤
cji

1−ji
+ wi−w∗

i
wi

c − 1
(6.5)

Inequality 6.5 captures ε as a function of the benefit-to-cost ratio c, the

expected number of jitter events per minute ji, and the proportional savings in cost
w∗

i −wi

wi
. We can gain an intuitive understanding of this bound on ε by considering

three cases. First, if obeying the FlightPath protocol provides no jitter and no

cost can be saved by cheating, then FlightPath would be a Nash equilibrium for

all benefit-to-cost ratios greater than 1. Second, if cost matters little compared to

benefit, c � 1, then ε is essentially bound by ji
1−ji

, indicating that as expected

jitter increases so does the gap in utilities between obeying and cheating. Third, if

obedience provides no jitter, the important term is the proportional savings in cost

achieved by cheating, which matters less and less as c increases.

We present our analysis in two stages. In the first, we provide a lower bound

on the bandwidth w∗
i required by i when following s∗i . In the second stage, we

develop a conservative estimate for the jitter a peer expects to see and the upload

bandwidth a peer expects to use.
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6.4.2 A lower bound for w∗
i

In FlightPath, a peer who cheats still expects to pay costs. We purposefully structure

trades so that a cheating peer has to pay most of the cost in an exchange before

obtaining anything useful from the interaction. We take advantage of this fact when

we derive the minimum amount of upload bandwidth a peer needs to use so to obtain

all the updates it needs.

Recall that each peer needs ups per round stream updates for every round

to avoid jitter events and that the source distributes linear digests so that peers

can authenticate stream updates. To simplify the analysis, we assume that peers

obtain all the linear digests they need directly from the source. However, peers may

have to trade for partial membership lists to continue participating in the system.

In a system of size n, a peer needs � n
entries per partial� partial membership

lists every epoch len rounds, where entries per partial is the number of peer

entries in each partial membership list; in our prototype, we include at most 30

entries in each partial membership list. In a given epoch, a peer expects to have to

gather missing per epoch updates via trades, where missing per epoch = (1 −
seed frac)(ups per round× epoch len + � n

entries per partial�.
Assuming that i is lucky or clever enough to upload no more updates than

it has to in all trades, i still uploads at least min upload = �missing per epoch
1+imb ratio �

updates in every epoch. Since i expects no peer to upload more than budget updates

in a single trade, i therefore expects to participate in at least �min upload
budget � trades

in each epoch.

We combine the above expressions with empirical numbers for the minimum

cost of each trade and how that cost grows as the number of updates sent increases.

Taking into account reservation messages, history exchange messages, briefcases,

promises, and keys, each trade costs at least 698 bytes of upload bandwidth with

each update uploaded costing an additional 1136 bytes. Using the parameter values
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Parameter Description Value
ups per round num stream updates per round needed 50

num coded blocks num stream updates per round 100
entries per partial peer entries per partial membership list 30

seed frac fraction of updates received from source 5%
budget max num of updates sent in a round 100

imb ratio imbalance ratio 10%
epoch len epoch length in rounds 40
r len round length in seconds 2

n system size 500

Table 6.1: Summary of the analysis parameters.

listed in Table 6.4.2, a peer who cheats on average participates in at least 18 trades

every epoch and uploads 1741 updates, meaning that w∗
i ≥ 199 Kbps.

6.4.3 An estimate for ji and wi

We develop a bound for ε by conservatively estimating expected jitter ji and the

expected upload bandwidth wi. It is difficult to establish a tight bound on both

these values analytically because system dynamics, system size, and randomness

quickly make a pure mathematical characterization intractable. We therefore take

a conservative approach.

We assume the expected jitter number of jitter events per minute, ji, is 0.01,

indicating that on average a peer expects a jitter event once every ten minutes. The

observed jitter in our prototype is orders of magnitude less than what we assume

here.

We further assume that peers acquire the updates they need by participating

in trades every round. On average, a peer needs to gather �missing per epoch
epoch len �

updates in each round. Ideally, a peer would obtain these updates in one trade,

avoiding the fixed cost for additional trades and not risking having to receive redun-

dant updates. In this analysis, we assume instead that a peer acquires the updates it
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needs in each round through 4 concurrent trades (the maximum number of allowed

concurrent trades). Furthermore, the updates it needs are for the same round and

evenly divided across these concurrent trades to increase the likelihood that updates

acquired at the same time overlap.

Given the parameters listed in Table 6.4.2, �missing per epoch
epoch len � = 48 and

a peer expects that it needs to receive 60 updates spread evenly across 4 concurrent

trades in order to acquire 48 unique updates for each round. Assuming that trades

are relatively balanced for peers who obey the protocol, a peer expects to upload at

approximately wi = 291 Kbps.

Figure 6.26 uses the derived bounds to show epsilon as a function of the

benefit-to-cost ratio. For ε = 1
10 , solving for c in Inequality 6.5 indicates that

FlightPath is a 1
10 -Nash equilibrium as long as the user values the stream at least

4.63 times as much as the bits uploaded to participate in the system. We also provide

a curve for ε using empirical values for expected jitter and average bandwidth instead

of analytical ones. In practice, it appears as though FlightPath remains a 1
10 -Nash

equilibrium for c ≥ 3.07.

6.5 Discussion

Recall that our shift from exact equilibria to their approximate counterparts is the

result of a broad frustration with the former approach. In BAR Gossip, our mech-

anisms to meet an exact solution concept incur high overheads while providing no

way to deal with dynamic membership. Moreover, our inability to show Optimistic

Push is a Nash equilibrium even under a constrained strategy space is disappointing.

We address many of the shortcomings of exact approaches by designing sys-

tems to be approximate equilibria. The practical advantages are clear; we can

engineer practical solutions that are flexible enough to handle many adverse situa-

tions, such as churn and Byzantine peers. In addition to those practical benefits,
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Figure 6.26: ε as a function of the benefit to cost ratio.

approximate equilibria also have more subtle theoretical ones. The analysis we pro-

vide in the previous section allows for rational peers who may pursue strategies that

consider concurrent and future trades. Note that it remains difficult and perhaps

intractable to determine the best way for a peer to cheat. However, demonstrating

that a system, such as FlightPath, is an approximate equilibrium does not require

finding the best strategy to cheat, but rather bounding the gains possible from any

cheating to a small factor.

Approximate equilibria free us from having to micro-manage our protocols

so we no longer have to ensure that obeying each step is in every rational peer’s best

interest. That freedom affects how we design systems and how we describe them, a

change that is apparent when comparing the chapters on Balanced Exchange and

FlightPath. In the former, we interpose lemmas and proofs with prose that describes

how a balanced exchange works and why rational peers would obey. In this chapter,

we describe FlightPath’s basic trading protocol and propose several modifications,
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focusing on systems issues such as performance and bandwidth and leaving a game

theoretic analysis until the last pages of this chapter. Our contributions in Flight-

Path are a good start to designing practical approaches to curb rational deviations

in p2p systems. In the next and final chapter, we discuss some problems that remain

in combining mechanism design with system design.
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Chapter 7

Conclusion

This dissertation explores how to design p2p systems to tolerate both Byzantine

peers and rational peers. As we design mechanisms to cope with these peers in a

large-scale system, two themes emerge: obedience and choice. In BAR Gossip, we

focus on obedience, creating the first p2p live streaming system that tolerates Byzan-

tine and rational peers. However, our dictatorial approach leads to several practical

and theoretical limitations. Those shortcomings reflect a broader frustration with

existing works that focus on designing systems to be exact equilibria.

We next temper obedience with controlled amounts of choice, and use ap-

proximate equilibria to drive the design of FlightPath. This approach lets us reduce

jitter by several orders of magnitude, use bandwidth more efficiently, handle churn,

and adapt to attacks. By switching to approximate equilibria, we can retain the

rigor of a formal approach while providing enough flexibility to engineer practical

solutions. BAR Gossip and FlightPath represent good starts in building robust p2p

systems. Yet, many problems remain. We present some open questions below and

put forth initial answers that may lead to interesting avenues for future work.
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Why do none of the presented mechanisms allow peers to be altruistic?

Many p2p systems rely on the existence and participation of users who contribute

more than is required. Taking advantage of user altruism can increase the robustness

and performance of a system and is a desirable goal. Yet, we need to be careful how

we hand out such generosity so that it is not (grossly) abused by rational peers

seeking to contribute less.

How can we add allow altruistic actions without compromising the built-

in incentives? A potential way to introduce altruism while avoiding previous

pitfalls is to have altruistic actions benefit every participant evenly. In a multicast

system such as FlightPath, altruistic peers could relay younger updates to small

subsets of random peers, thereby helping the initial spread of data in the system.

Such a mechanism leaves no room for abuse, as peers cannot control when they

receive these updates. However, it also leaves no avenue for peers to ask for help

when they need it most.

How can we allow peers with few resources to be a part of a system?

Dealing with resource-poor nodes requires us to answer a basic question: do we

want to support nodes who cannot support themselves? If the answer is no, then

the resulting system population would be a self-selecting group capable of meeting

their own needs. If, however, the answer is yes, we need to decide where to obtain

extra resources necessary to support resource-poor users. It is desirable that the

additional resources comes from the other peers in the system.

How can we incentivize users who have a surplus of resources to con-

tribute those resources for the good of others? A possible approach is to

impose a progressive tax as Chu et al. [17] propose. They, however, leave how to

enforce such a tax scheme open. It may be possible to separate a p2p service into
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multiple layers as proposed by Gorinsky et al. [27]. In this scheme, peers have an

incentive to participate in as many layers as possible. However, a peer can only gain

access to a layer by participating sufficiently at all lower layers. We can tax peers

who can gain access to higher layers more heavily than other peers, thereby forcing

those with more to help those with less.

Can the techniques used in BAR Gossip and FlightPath be extended to

more general content distribution networks? BAR Gossip and FlightPath

create ways for users to barter pieces of information with one another. Because

both systems focus exclusively on streaming live data in which peers are interested

in the same data at the same time, bartering is a simple and effective mechanism to

create incentives for peers to disseminate information. However, in settings such as

content distribution networks or video-on-demand applications, peers may not be

interested in the same data at the same time; direct swaps may not be possible and

a currency or credit-based system may be better suited to encourage cooperation.

What are potential problems in using credits to build a robust p2p sys-

tem? Two common critiques of credit-based systems are that they can offer loop-

holes which participants can abuse or are overly complicated. Many systems offer

a small amount of credit to new users to bootstrap them into the system. With-

out appropriate safeguards against Sybil attacks though, these systems can make it

easy to free-ride. Additionally, a constant influx of credit due to churn can lead to

complex, ad hoc techniques to manage inflation and deflation.

This dissertation set out with a simple goal: build a p2p live streaming system that

tolerates Byzantine peers and rational peers. Disappointed with systems that justify

their mechanisms informally, we adopt a principled approach based on game theory

and traditional fault-tolerance. In contrast to what the state-of-the-art suggests,
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this work demonstrates that we do not have to sacrifice rigor to engineer Byzantine

and rational-tolerant systems that perform well and operate efficiently. Key to

our success is a careful balance between enforcing obedience and providing choice

enabled by using approximate equilibria.
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