623 research outputs found

    Lattice-based Blind Signatures

    Get PDF
    Motivated by the need to have secure blind signatures even in the presence of quantum computers, we present two efficient blind signature schemes based on hard worst-case lattice problems. Both schemes are provably secure in the random oracle model and unconditionally blind. The first scheme is based on preimage samplable functions that were introduced at STOC 2008 by Gentry, Peikert, and Vaikuntanathan. The scheme is stateful and runs in 3 moves. The second scheme builds upon the PKC 2008 identification scheme of Lyubashevsky. It is stateless, has 4 moves, and its security is based on the hardness of worst-case problems in ideal lattices

    Year 2010 Issues on Cryptographic Algorithms

    Get PDF
    In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. This paper also shows several points to be discussed when dealing with Year 2010 issues.Cryptographic algorithm; Symmetric cipher; Asymmetric cipher; Security; Year 2010 issues; Hash function

    Design and analysis of provably secure pseudorandom generators

    Get PDF

    KeyForge: Mitigating Email Breaches with Forward-Forgeable Signatures

    Full text link
    Email breaches are commonplace, and they expose a wealth of personal, business, and political data that may have devastating consequences. The current email system allows any attacker who gains access to your email to prove the authenticity of the stolen messages to third parties -- a property arising from a necessary anti-spam / anti-spoofing protocol called DKIM. This exacerbates the problem of email breaches by greatly increasing the potential for attackers to damage the users' reputation, blackmail them, or sell the stolen information to third parties. In this paper, we introduce "non-attributable email", which guarantees that a wide class of adversaries are unable to convince any third party of the authenticity of stolen emails. We formally define non-attributability, and present two practical system proposals -- KeyForge and TimeForge -- that provably achieve non-attributability while maintaining the important protection against spam and spoofing that is currently provided by DKIM. Moreover, we implement KeyForge and demonstrate that that scheme is practical, achieving competitive verification and signing speed while also requiring 42% less bandwidth per email than RSA2048

    Practical forward secure group signature schemes

    Get PDF

    Sorting out signature schemes

    Full text link

    Asymmetric cryptography and practical security, Journal of Telecommunications and Information Technology, 2002, nr 4

    Get PDF
    Since the appearance of public-key cryptography in Diffie-Hellman seminal paper, many schemes have been proposed, but many have been broken. Indeed, for many people, the simple fact that a cryptographic algorithm withstands cryptanalytic attacks for several years is considered as a kind of validation. But some schemes took a long time before being widely studied, and maybe thereafter being broken. A much more convincing line of research has tried to provide “provable” security for cryptographic protocols, in a complexity theory sense: if one can break the cryptographic protocol, one can efficiently solve the underlying problem. Unfortunately, very few practical schemes can be proven in this so-called “standard model” because such a security level rarely meets with efficiency. A convenient but recent way to achieve some kind of validation of efficient schemes has been to identify some concrete cryptographic objects with ideal random ones: hash functions are considered as behaving like random functions, in the so-called “random oracle model”, block ciphers are assumed to provide perfectly independent and random permutations for each key in the “ideal cipher model”, and groups are used as black-box groups in the “generic model”.In this paper, we focus on practical asymmetric protocols together with their “reductionist” security proofs. We cover the two main goals that public-key cryptography is devoted to solve: authentication with digital signatures, and confidentiality with public-key encryption schemes
    • 

    corecore