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Abstract — Since the appearance of public-key cryptogra-
phy in Diffie-Hellman seminal paper, many schemes have been
proposed, but many have been broken. Indeed, for many peo-
ple, the simple fact that a cryptographic algorithm withstands
cryptanalytic attacks for several years is considered as a kind
of validation. But some schemes took a long time before being
widely studied, and maybe thereafter being broken. A much
more convincing line of research has tried to provide “prov-
able” security for cryptographic protocols, in a complexity the-
ory sense: if one can break the cryptographic protocol, one
can efficiently solve the underlying problem. Unfortunately,
very few practical schemes can be proven in this so-called
“standard model” because such a security level rarely meets
with efficiency. A convenient but recent way to achieve some
kind of validation of efficient schemes has been to identify
some concrete cryptographic objects with ideal random ones:
hash functions are considered as behaving like random func-
tions, in the so-called “random oracle model”, block ciphers
are assumed to provide perfectly independent and random
permutations for each key in the “ideal cipher model”, and
groups are used as black-box groups in the “generic model”.
In this paper, we focus on practical asymmetric protocols to-
gether with their “reductionist” security proofs. We cover
the two main goals that public-key cryptography is devoted to
solve: authentication with digital signatures, and confidential-
ity with public-key encryption schemes.

Keywords — cryptography, digital signatures, public-key en-
cryption, provable security, random oracle model.

1. Introduction

1.1. Motivation

Since the beginning of public-key cryptography, with the
seminal Diffie-Hellman paper [24], many suitable algorith-
mic problems for cryptography have been proposed (e.g.
one-way – possibly trapdoor – functions) and many cryp-
tographic schemes have been designed, together with more
or less heuristic proofs of their security relative to the in-
tractability of these problems (namely from the number
theory, such as the integer factorization, RSA [69], the dis-
crete logarithm [26] and the Diffie-Hellman [24] problems,
or from the complexity theory with some N P-complete
problems, such as the knapsack [20] problem or the decod-
ing problem of random linear codes [49]). However, most
of those schemes have thereafter been broken.
The simple fact that a cryptographic algorithm withstands
cryptanalytic attacks for several years is often considered
as a kind of validation procedure, but some schemes take
a long time before being broken. The best example is cer-

tainly the Chor-Rivest cryptosystem [20, 47], based on the
knapsack problem, which took more than 10 years to be
totally broken [80], whereas before this last attack it was
believed to be very hard, since all the classical techniques
against the knapsack problems, such as LLL [46], had failed
because of the high density of the involved instances. With
this example, but also many others, the lack of attacks at
some time should never be considered as a security valida-
tion of the proposal.

1.2. Provable security and practical security

A completely different paradigm is provided by the concept
of “provable” security. A significant line of research has
tried to provide proofs in the framework of complexity the-
ory (a.k.a. “reductionist” security proofs [4]): the proofs
provide reductions from a well-studied problem (RSA or
the discrete logarithm) to an attack against a cryptographic
protocol. At the beginning, people just tried to define the
security notions required by actual cryptographic schemes,
and then to design protocols which achieve these notions.
The techniques were directly derived from the complex-
ity theory, providing polynomial reductions. However, their
aim was essentially theoretical, and thus they were try-
ing to minimize the required assumptions on the prim-
itives (one-way functions or permutations, possibly trap-
door, etc.) [33, 35, 52, 67]. Therefore, they just needed to
exhibit polynomial reductions from the basic assumption
on the primitive into an attack of the security notion, in an
asymptotic way.
However, such a result has no practical impact on actual
security. Indeed, even with a polynomial reduction, one
may be able to break the cryptographic protocol within
few hours, whereas the reduction just leads to an algo-
rithm against the underlying problem which requires many
years. Therefore, those reductions only prove the security
when very huge (and thus maybe unpractical) parameters
are used, under the assumption that no polynomial time
algorithm exists to solve the underlying problem.
For a few years, more efficient reductions were expected,
under the denominations of either “exact security” [10] or
“concrete security” [57], which provide more practical se-
curity results. The perfect situation is reached when one
manages to prove that, from an attack, one can describe an
algorithm against the underlying problem, with almost the
same success probability within almost the same amount
of time. We have then achieved “practical security”.
Unfortunately, in many cases, provable security is at the
cost of an important loss in terms of efficiency for the
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cryptographic protocol. Thus some models have been pro-
posed, trying to deal with the security of efficient schemes:
some concrete objects are identified with ideal (or black-
box) ones.
For example, it is by now usual to identify hash functions
with ideal random functions, in the so-called “random ora-
cle model”, informally introduced by Fiat and Shamir [27],
and formalized by Bellare and Rogaway [8]. Similarly,
block ciphers are identified with families of truly random
permutations in the “ideal cipher model” [7]. A few years
ago, another kind of idealization was introduced in cryp-
tography, the black-box group [53, 77], where the group
operation is defined by a black-box: a new element neces-
sarily comes from the addition (or the subtraction) of two
already known elements. It is by now called the “generic
model”. Recent works [17, 73] even use many models to-
gether to provide some new validations.

1.3. Outline of the paper

In the next section, we explain and motivate more about
exact security proofs, and we introduce the notion of the
weaker security analyses, the security arguments (in an
ideal model). Then, we review the formalism of the most
important asymmetric primitives: signatures and public-
key encryption schemes. For both, we provide some ex-
amples, with some security analyses in the “reductionist”
sense.

2. Security proofs and security
arguments

2.1. Basic tools

For asymmetric cryptography, and symmetric cryptography
as well, no security can be unconditionally guaranteed, ex-
cept with the one-time pad [75, 81], an unpractical symmet-
ric encryption method. Therefore, for any cryptographic
protocol, security relies on a computational assumption:
the existence of one-way functions, or permutations, pos-
sibly trapdoor. A one-way function is a function f which
anyone can easily compute, but given y= f (x) it is com-
putationally intractable to recover x (or any preimage of y).
A one-way permutation is a bijective one-way function.
For encryption, one would like the inversion to be possible
for the recipient only: a trapdoor one-way permutation is
a one-way permutation for which a secret information (the
trapdoor) helps to invert the function on any point.
Given such objects, and thus computational assumptions,
we would like that security only relies on them. The only
way to formally prove such a fact is by showing that an
attacker against the cryptographic protocol can be used as
a sub-part in an algorithm that can break the basic compu-
tational assumption.

2.2. “Reductionist” security proofs

In complexity theory, such an algorithm which uses the
attacker as a sub-part in a global algorithm is called a re-
duction. If this reduction is polynomial, we can say that the
attack of the cryptographic protocol is at least as hard as
inverting the function: if one has a polynomial algorithm,
a.k.a. efficient algorithm, to solve the latter problem, one
can polynomially solve the former one, and thus efficiently
as well.
Therefore, in order to prove the security of a cryptographic
protocol, one first need to make precise the security notion
one wants the protocol to achieve: which adversary’s goal
one wants to be intractable, under which kind of attack.
At the beginning of the 1980’s, such security notions have
been defined for encryption [33] and signature [35, 36], and
provably secure schemes have been suggested. However,
those proofs had only a theoretical impact, because both
the proposed schemes and the reductions were completely
unpractical. Indeed, the reductions were efficient (i.e. poly-
nomial), and thus a polynomial attack against a cryptosys-
tem would have led to a polynomial algorithm that broke
the computational assumption. But this latter algorithm,
even polynomial, may require hundreds of years to solve
a small instance. For example, let us consider a crypto-
graphic protocol based on integer factoring. Let us assume
that one provides a polynomial reduction from the factor-
ization into an attack. But such a reduction may just lead
to a factorization algorithm with a complexity in 2100k10,
where k is the bit-size of the integer to factor. This indeed
contradicts the assumption that no-polynomial algorithm
exists for factoring. However, on a 1024-bit number, it
provides an algorithm that requires 2130 basic operations,
which is much more than the complexity of the best current
algorithm, such as NFS [44], which needs less than 2100.
Therefore, such a reduction would just be meaningful for
numbers above 2048 bits. Concrete examples are given
later.
Moreover, most of the proposed schemes were unpractical
as well. Indeed, the protocols were polynomial in time and
memory, but not efficient enough for practical implemen-
tation.
For a few years, people have tried to provide both practi-
cal schemes, with practical reductions and exact complex-
ity, which prove the security for realistic parameters, under
a well-defined assumption: exact reduction in the standard
model (which means in the complexity-theoretic frame-
work). For example, under the assumption that a 1024-bit
integer cannot be factored with less than 270 basic oper-
ations, the cryptographic protocol cannot be broken with
less than 260 basic operations. We will see such an exam-
ple later.
Unfortunately, as already remarked, practical and even just
efficient reductions, in the standard model, can rarely be
conjugated with practical schemes. Therefore, one need
to make some hypotheses on the adversary: the attack is
generic, independent of the actual implementation of some
objects:
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– of the hash function, in the “random oracle
model”;

– of the symmetric block cipher, in the “ideal cipher
model”;

– of the group, in the “generic model”.

The “random oracle model” was the first to be introduced
in the cryptographic community [8, 27], and has already
been widely accepted. Therefore, in the sequel, we focus
on security analyses in this model.

2.3. The random oracle model

As said above, efficiency rarely meets with provable secu-
rity. More precisely, none of the most efficient schemes
in their category have been proven secure in the standard
model. However, some of them admit security validations
under ideal assumptions: the random oracle model is the
most widely accepted one.
Many cryptographic schemes use a hash function H (such
as MD5 [68] or the American standards SHA-1 [55],
SHA-256, SHA-384 and SHA-512 [56]). This use of hash
functions was originally motivated by the wish to sign long
messages with a single short signature. In order to achieve
non-repudiation, a minimal requirement on the hash func-
tion is the impossibility for the signer to find two different
messages providing the same hash value. This property is
called collision-resistance.
It was later realized that hash functions were an essen-
tial ingredient for the security of, first, signature schemes,
and then of most cryptographic schemes. In order to ob-
tain security arguments, while keeping the efficiency of the
designs that use hash functions, a few authors suggested
using the hypothesis that H behaves like a random func-
tion. First, Fiat and Shamir [27] applied it heuristically
to provide a signature scheme “as secure as” factorization.
Then, Bellare and Rogaway [8, 9] formalized this concept
in many fields of cryptography: signature and public-key
encryption.
In this model, the so-called “random oracle model”, the
hash function can be formalized by an oracle which pro-
duces a truly random value for each new query. Of course,
if the same query is asked twice, identical answers are
obtained. This is precisely the context of relativized com-
plexity theory with “oracles,” hence the name.
About this model, no one has ever been able to provide
a convincing contradiction to its practical validity, but just
a theoretical counter-example [18] on a clearly wrong de-
sign for practical purpose! Therefore, this model has been
strongly accepted by the community, and is considered as
a good one, in which proofs of security give a good taste
of the actual security level. Even if it does not provide
a formal proof of security (as in the standard model, with-
out any ideal assumption), it is argued that proofs in this
model ensure security of the overall design of the scheme
provided that the hash function has no weakness, hence the
name “security arguments”.

More formally, this model can also be seen as a restriction
on the adversary’s capabilities. Indeed, it simply means
that the attack is generic without considering any particular
instantiation of the hash functions.
On the other hand, assuming the tamper-resistance of some
devices, such as smart cards, the random oracle model is
equivalent to the standard model, which simply requires the
existence of pseudo-random functions [32, 51].
As a consequence, almost all the standards bodies by now
require designs provably secure, at least in that model,
thanks to the security validation of very efficient protocols.

3. A first formalism

In this section we describe more formally what a signa-
ture scheme and an encryption scheme are. Moreover, we
make precise the security notions one wants the schemes to
achieve. This is the first imperative step towards provable
security.

3.1. Digital signature schemes

Digital signature schemes are the electronic version of
handwritten signatures for digital documents: a user’s sig-
nature on a message m is a string which depends on m, on
public and secret data specific to the user and – possibly –
on randomly chosen data, in such a way that anyone can
check the validity of the signature by using public data only.
The user’s public data are called the public key, whereas
his secret data are called the private key. The intuitive
security notion would be the impossibility to forge user’s
signatures without the knowledge of his private key. In
this section, we give a more precise definition of signature
schemes and of the possible attacks against them (most of
those definitions are based on [36]).

3.1.1. Definitions

A signature scheme is defined by the three following algo-
rithms:

� The key generation algorithm K. On input 1k, which
is a formal notation for a machine with running time
polynomial in k (1k is indeed k in basis 1), the al-
gorithm K produces a pair (kp;ks) of matching pub-
lic and private keys. Algorithm K is probabilistic.
The input k is called the security parameter. The
sizes of the keys, or of any problem involved in the
cryptographic scheme, will depend on it, in order to
achieve a security level in 2k (the expected minimal
time complexity of any attack).

� The signing algorithm Σ. Given a message m and
a pair of matching public and private keys (kp;ks),
Σ produces a signature σ . The signing algorithm
might be probabilistic.
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� The verification algorithm V. Given a signature σ ,
a message mand a public key kp, V tests whether σ is
a valid signature of m with respect to kp. In general,
the verification algorithm need not be probabilistic.

3.1.2. Forgeries and attacks

In this subsection, we formalize some security notions
which capture the main practical situations. On the one
hand, the goals of the adversary may be various:

� Disclosing the private key of the signer. It is the most
serious attack. This attack is termed total break.

� Constructing an efficient algorithm which is able to
sign messages with good probability of success. This
is called universal forgery.

� Providing a new message-signature pair. This is
called existential forgery.

In many cases this latter forgery, the existential forgery,
is not dangerous, because the output message is likely to
be meaningless. Nevertheless, a signature scheme which is
existentially forgeable does not guarantee by itself the iden-
tity of the signer. For example, it cannot be used to certify
randomly looking elements, such as keys. Furthermore,
it cannot formally guarantee the non-repudiation property,
since anyone may be able to produce a message with a valid
signature.
On the other hand, various means can be made available
to the adversary, helping her into her forgery. We focus
on two specific kinds of attacks against signature schemes:
the no-message attacks and the known-message attacks. In
the first scenario, the attacker only knows the public key
of the signer. In the second one, the attacker has access
to a list of valid message-signature pairs. According to
the way this list was created, we usually distinguish many
subclasses, but the strongest is the adaptive chosen-message
attack, where the attacker can ask the signer to sign any
message of her choice. She can therefore adapt her queries
according to previous answers.
When one designs a signature scheme, one wants to compu-
tationally rule out existential forgeries even under adaptive
chosen-message attacks. More formally, one wants that the
success probability of any adversary A with a reasonable
time is small, where

SuccA = Pr

�
(kp;ks) K(1k);(m;σ) AΣ

ks (kp) :
V(kp;m;σ) = 1

�
:

We remark that since the adversary is allowed to play an
adaptive chosen-message attack, the signing algorithm is
made available, without any restriction, hence the oracle
notation AΣ

ks . Of course, in its answer, there is the natural
restriction that the returned signature has not been obtained
from the signing oracle Σks

itself.
This above security level is the strongest one that one can
formalize in the communication model we consider. We
insist on the fact that in the current communication model,

we give the adversary complete access to the cryptographic
primitive, but as a black-box. She can ask any query of her
choice, and the box always answers correctly, in constant
time. Such a model does not consider timing attacks [42],
where the adversary tries to extract the secrets from the
computational time. Some other attacks analyze the electri-
cal energy required by a computation to get the secrets [43],
or to make the primitive fail on some computation [11, 15].
They are not captured either by this model.

3.2. Public-key encryption

The aim of a public-key encryption scheme is to allow
anybody who knows the public key of Alice to send her
a message that she will be the only one able to recover,
granted her private key.

3.2.1. Definitions

A public-key encryption scheme is defined by the three
following algorithms:

� The key generation algorithm K. On input 1k where
k is the security parameter, the algorithm K produces
a pair (kp;ks) of matching public and private keys.
Algorithm K is probabilistic.

� The encryption algorithm E. Given a message m and
a public key kp, E produces a ciphertext c of m. This
algorithm may be probabilistic. We write E(kp;m; r)
where r , in the probabilistic case, is the random input
to E.

� The decryption algorithm D. Given a ciphertext c
and the private key ks, D gives back the plaintext m.
This algorithm is necessarily deterministic.

3.2.2. Security notions

As for signature schemes, the goals of the adversary may be
various. The first common security notion that one would
like for an encryption scheme is one-wayness (OW): with
just public data, an attacker cannot get back the whole plain-
text of a given ciphertext. More formally, this means that
for any adversary A, her success in inverting E without the
private key should be negligible over the probability space
M �Ω, where M is the message space and Ω is the space
of the random coins r used for the encryption scheme, and
the internal random coins of the adversary:

SuccA = Pr
m;r

[(kp;ks) K(1k) : A(kp;E(kp;m; r)) = m]:

However, many applications require more from an encryp-
tion scheme, namely the semantic security (IND) [33],
a.k.a. polynomial security/indistinguishability of encryp-
tions: if the attacker has some information about the plain-
text, for example that it is either “yes” or “no” to a crucial
query, any adversary should not learn more with the view
of the ciphertext. This security notion requires computa-
tional impossibility to distinguish between two messages,
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chosen by the adversary, one of which has been encrypted,
with a probability significantly better than one half: her
advantage AdvA , formally defined as

2�Pr
b;r

�
(kp;ks) K(1k);(m0;m1;s) A1(kp);
c= E(kp;mb; r) : A2(m0;m1;s;c) = b

�
�1;

where the adversary A is seen as a 2-stage attacker (A1;A2),
should be negligible.
A later notion is non-malleability (NM) [25]. To break it,
the adversary, given a ciphertext, tries to produce a new
ciphertext such that the plaintexts are meaningfully related.
This notion is stronger than the above semantic security,
but it is equivalent to the latter in the most interesting sce-
nario [6] (the CCA attacks, see below). Therefore, we will
just focus on one-wayness and semantic security.
On the other hand, an attacker can play many kinds of at-
tacks, according to the available information: since we
are considering asymmetric encryption, the adversary can
encrypt any plaintext of her choice, granted the public key,
hence the chosen-plaintext attack (CPA). She may further-
more have access to more information, modeled by partial
or full access to some oracles: a plaintext-checking ora-
cle which, on input a pair (m;c), answers whether c en-
crypts the message m. This attack has been named the
plaintext-checking attack (PCA) [58]; a validity-checking
oracle which, on input a ciphertext c, just answers whether
it is a valid ciphertext or not. This weak oracle had been
enough to break some famous encryption schemes [13, 40],
running the so-called reaction attacks [37]; or the de-
cryption oracle itself, which on any ciphertext, except
the challenge ciphertext, answers the corresponding plain-
text (non-adaptive [52]/adaptive [67] chosen-ciphertext at-
tacks). This latter scenario which allows adaptively cho-
sen ciphertexts as queries to the decryption oracle is the
strongest attack, and is named the chosen-ciphertext at-
tack (CCA).
Furthermore, multi-user scenarios can be considered where
related messages are encrypted under different keys to be
sent to many people (e.g. broadcast of encrypted data).
This may provide many useful data for an adversary. For
example, RSA is well-known to be weak in such a sce-
nario [38, 76], namely with a small encryption exponent,
using the Chinese Remainders Theorem. But recent re-
sults prove that semantically secure schemes, in the classi-
cal sense as described above, remain secure in multi-user
scenarios [3, 5], whatever the kind of attacks.
A general study of these security notions and attacks was
conducted in [6], we therefore refer the reader to this pa-
per for more details. See also the summary diagram in
Fig. 1. However, we can just review the scenarios we will
be interested in in the following:

� One-wayness under chosen-plaintext attacks
(OW-CPA) – where the adversary wants to recover
the whole plaintext from just the ciphertext and the
public key. This is the weakest scenario.

� Semantic security under adaptive chosen-ciphertext
attacks (IND-CCA) – where the adversary just wants
to distinguish which plaintext, between two messages
of her choice, has been encrypted, while she can ask
any query she wants to a decryption oracle (except the
challenge ciphertext). This is the strongest scenario
one can define for encryption (still in our commu-
nication model), and thus our goal when we design
a cryptosystem.

Fig. 1. Relations between the security notions for asymmetric
encryption.

4. The basic assumptions

There are two major families in number theory-based
public-key cryptography:

1. The schemes based on integer factoring, and on the
RSA problem [69].

2. The schemes based on the discrete logarithm prob-
lem, and on the Diffie-Hellman problems [24], in
any “suitable” group. The first groups in use were
cyclic subgroups of Z?

p, the multiplicative group of
the modular quotient ring Zp = Z=pZ. But many
schemes are now converted on cyclic subgroups of
elliptic curves, or of the Jacobian of hyper-elliptic
curves, with namely the so-called ECDSA [1], the
US Digital Signature Standard [54] on elliptic curves.

4.1. Integer factoring and the RSA problem

The most famous intractable problem is factorization of in-
tegers: while it is easy to multiply two prime integers p
and q to get the product n = p �q, it is not simple to de-
compose n into its prime factors p and q.

45



David Pointcheval

Currently, the most efficient algorithm is based on siev-
ing on number fields. The Number Field Sieve (NFS)
method [44] has a complexity in

O(exp((1:923+o(1))(lnn)1=3(ln lnn)2=3)):

It has been used to establish the last record, in August 1999,
by factoring a 155-digit integer, product of two 78-digit
primes [19].
The factored number, called RSA-155, was taken from the
“RSA challenge list”, which is used as a yardstick for the
security of the RSA cryptosystem (see later). The latter is
used extensively in hardware and software to protect elec-
tronic data traffic such as in the SSL (security sockets layer)
Handshake Protocol.
This record is very important since 155 digits correspond
to 512 bits. This is the size which is in use in almost all
the implementations of the RSA cryptosystem (namely for
actual implementations of SSL on the Internet).

RSA-155 =
109417386415705274218097073220403576120\
037329454492059909138421314763499842889\
347847179972578912673324976257528997818\
33797076537244027146743531593354333897

= 102639592829741105772054196573991675900\
716567808038066803341933521790711307779

* 106603488380168454820927220360012878679\
207958575989291522270608237193062808643

However, this record required thousands of machines, and
three months of computation. Furthermore, due to the
above complexity of NFS, integer factoring is believed to
be a difficult problem, especially for products of two primes
of similar sizes larger than 384 bits.
Unfortunately, it just provides a one-way function, with-
out any possibility to invert the process. No information
is known to make factoring easier. However, some alge-
braic structures are based on the factorization of an inte-
ger n, where some computations are difficult without the
factorization of n, but easy with it: the finite quotient
ring Zn which is isomorphic to the product ring Zp�Zq

if n= p �q.
For example, the eth power of any element x can be easily
computed using the square-and-multiply method. It con-
sists in using the binary representation of the exponent
e = ekek�1 : : :e0, computing the successive powers of 2

of x (x20
, x21

, : : : , x2k
) and eventually to multiply alto-

gether the ones for which ei = 1. However, to compute
eth roots, it seems that one requires to know an integer d
such that ed= 1 modϕ(n), where ϕ(n) is the totient Euler
function which denotes the cardinality of the multiplicative
subgroup Z?

n of Zn. In the particular case where n = pq,
ϕ(n) = (p� 1)(q� 1). And therefore, ed�1 is a multi-
ple of ϕ(n) which is equivalent to the knowledge of the
factorization of n [50].
In 1978, Rivest, Shamir and Adleman [69] defined the fol-
lowing problem:

The RSA problem. Let n= pq be the product
of two large primes of similar size and e an

integer relatively prime to ϕ(n). For a given
y 2 Z?

n, compute the modular eth root x of y
(i.e. x2 Z?

n such that xe = y modn.)

The Euler function can be easily computed from the fac-
torization of n, since for any n= ∏ pvi

i
,

ϕ(n) = n�∏
�

1�
1
pi

�
:

Therefore, with the factorization of n (the trapdoor), the
RSA problem can be easily solved. However nobody knows
whether the factorization is required, but nobody knows
how to do without it either:

The RSA assumption. For any product of two
large primes, n = pq, large enough, the RSA
problem is intractable (presumably as hard as
the factorization of n).

4.2. The discrete logarithm and the Diffie-Hellman
problems

The setting is quite general: one is given

– a cyclic group G of prime order q (such as the finite
group (Zq;+), a subgroup of (Z?

p;�) for qjp�1, or
an elliptic curve, etc.);

– a generator g (i.e. G = hgi).

We note in bold (such as g) any element of the group G , to
distinguish it from a scalar x2Zq. But such a g could be an
element in Z?

p or a point of an elliptic curve, according to
the setting. Above, we talked about a “suitable” group G .
In such a group, some of the following problems have to
be hard to solve (using the additive notation).

� The discrete logarithm problem (DL): given y 2
G , compute x2 Zq such that y = x �g = g+ : : :+g
(x times), then one writes x= loggy.

� The computational Diffie-Hellman problem
(CDH): given two elements in the group G , a = a � g
and b = b � g, compute c = ab � g. Then one writes
c= DH(a;b).

� The decisional Diffie-Hellman problem (DDH):
given three elements in the group G , a= a�g, b= b�g
and c= c�g, decide whether c= DH(a;b) (or equiv-
alently, whether c= ab modq).

It is clear that they are sorted from the strongest problem to
the weakest one. Furthermore, one may remark that they all
are “random self-reducible”, which means that any instance
can be reduced to a uniformly distributed instance: for ex-
ample, given a specific element y for which one wants to
compute the discrete logarithm x in basis g, one can choose
a random z2 Zq, and compute z= z�y. The element z is
therefore uniformly distributed in the group, and the dis-
crete logarithm α = loggz leads to x = α=z modq. As
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a consequence, there are only average complexity cases.
Thus, the ability to solve a problem for a non-negligible
fraction of instances in polynomial time is equivalent to
solve any instance in expected polynomial time.
Very recently, Tatsuaki Okamoto and the author [60] de-
fined a new variant of the Diffie-Hellman problem, which
we called the gap Diffie-Hellman problem (GDH), where
one wants to solve the CDH problem with an access to
a DDH oracle.
One may easily remark the following properties about above
problems:

DL� CDH� fDDH;GDHg;

where A�B means that the problem A is at least as hard as
the problem B. However, in practice, no one knows how to
solve any of them without breaking the DL problem itself.
Currently, the most efficient algorithms to solve this lat-
ter problem depend on the underlying group. For generic
groups (for which no specific algebraic property can be
used), algorithms have a complexity in the square root of q,
the order of the generator g [65, 74]. For example, on well-
chosen elliptic curves only these algorithms can be used.
The last record was established in April 2001 on the curve
defined by the equation y2+xy= x3+x2+1 over the finite
field with 2109 elements.
However, for subgroups of Z?

p, some better techniques can
be applied. The best algorithm is based on sieving on num-
ber fields, as for the factorization. The General Number
Field Sieve method [39] has a complexity in

O(exp((1:923+o(1))(ln p)1=3(ln ln p)2=3)):

It was used to establish the last record, in April 2001 as
well, by computing discrete logarithms modulo a 120-digit
prime. Therefore, 512-bit primes are still safe enough, as
far as the generic attacks cannot be used (the generator must
be of large order q, at least a 160-bit prime).
For signature applications, one only requires groups where
the DL problem is hard, whereas encryption needs trapdoor
problems and therefore requires groups where some of the
DH’s problems are also hard to solve.
The CDH problem is usually believed to be much stronger
than the DDH problem, which means that the GDH prob-
lem is difficult. This was the motivation of our work on
new encryption schemes based on the GDH problem [58]
(see Section 5.3.2).

5. Provably secure designs

5.1. Introduction

Until 1996, no practical DL-based cryptographic scheme
has ever been formally studied, only heuristically. And
surprisingly, at the Eurocrypt’96 conference, two oppo-
site studies were conducted on the El Gamal signature
scheme [26], the first DL-based signature scheme designed
in 1985 and depicted in Fig. 2.

Whereas existential forgeries were known for that scheme,
it was believed to prevent universal forgeries. The first
analysis, from Daniel Bleichenbacher [12], showed such
a universal forgery when the generator g is not properly
chosen. The second one, from Jacques Stern and the au-
thor [62], proved the security, against existential forgeries
under adaptive chosen-message attacks, of a slight variant
with a randomly chosen generator g. The slight variant
simply replaces the message m by H(m; r) in the compu-
tation, while one uses a hash function H that is assumed
to behave like a random oracle. It is amazing to remark
that the Bleichenbacher’s attack also applies on our vari-
ant. Therefore, depending on the initialization, our variant
could be a very strong signature scheme or become a very
weak one!

Initialization

g a generator of Z?
p,

where p is a large prime

K: Key generation
private key x2 Z?

p�1

public key y= gx mod p

! (y;x)

Σ: Signature of m! (r;s)

K is randomly chosen in Z?
p�1

r = gK mod p s= (m�xr)=K mod p�1

! (r;s) is a signature of m

V: Verification of (m; r;s)

check whether gm ?
= yrrs mod p

Fig. 2. The El Gamal signature scheme.

As a consequence, a proof has to be performed in details.
Furthermore, the conclusions have to be strictly followed
by developers, otherwise the concrete implementation of
a secure scheme can be very weak.

5.2. Digital signature schemes

5.2.1. History

The first secure signature scheme was proposed by Gold-
wasser et al. [35] in 1984. It used the notion of claw-free
permutations. A pair of permutations ( f ;g) is said claw-
free if it is computationally impossible to find a claw (x;y),
which satisfies f (x) = g(y). Their proposal provided poly-
nomial algorithms with a polynomial reduction between
the research of a claw and an existential forgery under an
adaptive chosen-message attack. However, the scheme was
totally unpractical. What about practical schemes?

The RSA signature scheme. Two years after the Diffie-
Hellman paper [24], Rivest, Shamir and Adleman [69]
proposed the first signature scheme based on the “trap-
door one-way permutation paradigm”, using the RSA func-
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tion: the generation algorithm produces a large compos-
ite number N = pq, a public key e, and a private key d
such that e�d = 1 modϕ(N). The signature of a mes-
sage m, encoded as an element in Z?

N, is its eth root,
σ = m1=e = md modN. The verification algorithm simply
checks whether m= σe modN.
However, the RSA scheme is not secure by itself since
it is subject to existential forgery: it is easy to create
a valid message-signature pair, without any help of the
signer, first randomly choosing a certificate σ and getting
the signed message m from the public verification relation,
m= σe modN.

The Schnorr signature scheme. In 1986 a new paradigm
for signature schemes was introduced. It is derived
from fair zero-knowledge identification protocols involv-
ing a prover and a verifier [34], and uses hash functions in
order to create a kind of virtual verifier. The first applica-
tion was derived from the Fiat-Shamir [27] zero-knowledge
identification protocol, based on the hardness of extracting
square roots, with a brief outline of its security. Another
famous identification scheme [71], together with the signa-
ture scheme [72], has been proposed later by Schnorr, based
on that paradigm: the generation algorithm produces two
large primes p and q, such that q� 2k, where k is the secu-
rity parameter, and qj p�1, as well as an element g in Z?

p
of order q. It also creates a pair of keys, the private key
x2 Z?

q and the public key y= g�x mod p. The signature
of a message m is a triple (r;e;s), where r = gK mod p,
with a random K 2 Zq, the “challenge” e= H(m; r) and
s= K+exmodq. This latter satisfies r = gsye mod p with
e= H(m; r), which is checked by the verification algorithm.
The security results for that paradigm have been consid-
ered as folklore for a long time but without any formal
validation.

5.2.2. Secure designs

Schnorr’s signature and variants. In our papers [62, 63],
with Jacques Stern, we formally proved the above paradigm
when H is assumed to behave like a random oracle. The
proof is based on the by now classical oracle replay tech-
nique: by a polynomial replay of the attack with different
random oracles (the Qi’s are the queries and the ρi’s are
the answers), we allow the attacker to forge signatures that

Fig. 3. The oracle replay technique.

are suitably related. This generic technique is depicted
in Fig. 3, where the signature of a message m is a triple
(σ1;h;σ2), with h= H(m;σ1) which depends on the mes-
sage and the first part of the signature, both bound not to
change for the computation of σ2, which really relies on the
knowledge of the private key. If the probability of fraud is
high enough, then with good probability, the adversary is
able to answer to many distinct outputs from the H func-
tion, on the input (m;σ1).

Initialization (security parameter k)

g a generator of any cyclic group (G ;+)

of order q, with 2k�1� q< 2k

H a hash function: f0;1g?! Zq

K: Key generation

private key x2 Z?
q

public key y =�x �g

! (y;x)

Σ: Signature of m! (r ;h;s)

K is randomly chosen in Z?
q

r = K �g h= H(m; r) s= K+xh modq

! (r ;h;s) is a signature of m

V: Verification of (m; r;s)

check whether h
?
= H(m; r)

and r ?
= s�g+h �y

Fig. 4. The Schnorr signature scheme.

To be more concrete, let us consider the Schnorr signa-
ture scheme, which is presented in Fig. 4, in any “suitable”
cyclic group G of prime order q, where at least the discrete
logarithm problem is hard. We expect to obtain two sig-
natures (r = σ1;h;s= σ2) and (r 0 = σ 0

1;h
0;s0 = σ 0

2) of an
identical message m such that σ1 = σ 0

1, but h 6= h0. We
then can extract the discrete logarithm of the public key:

r = s�g + h �y
r = s0 �g + h0 �y

�
) (s�s0) �g= (h0�h) �y;

which leads to

loggy = (s�s0) � (h0�h)�1 modq:

Let use denote by ε the success probability of the adver-
sary in performing an existential forgery after qh queries
to the random oracle H. One can prove that for ε large
enough, more precisely ε � 7qh=2k, after less than 16qh=ε
repetitions of this adversary, one can obtain such a pair of
signatures with probability greater than 1=9.
However, this just covers the no-message attacks, which
are the weakest attacks! But because we can simulate any
zero-knowledge protocol, even without having to restart the
simulation since we are in front of an honest verifier (i.e. the
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challenge is randomly chosen by the random oracle H) one
can easily simulate the signer without the private key:

– one first chooses random h;s2 Zq;

– one computes r = s�g+h �y and defines H(m; r) to
be equal to h, which is a uniformly distributed value;

– one can output (r ;h;s) as a valid signature of the
message m.

This furthermore simulates the oracle H, by defining
H(m; r) to be equal to h. This simulation is almost per-
fect since H is supposed to output a random value to any
new query, and h is indeed a random value. Neverthe-
less, if the query H(m; r) has already been asked, H(m; r)
is already defined, and thus the definition H(m; r) h is
impossible. But such a situation is very rare, which al-
lows us to claim the following result, which stands for the
Schnorr signature scheme but also for any signature derived
from a three-round honest verifier zero-knowledge interac-
tive proof of knowledge: let A be an adversary against the
Schnorr signature scheme, with security parameter k, in
the random oracle model. We assume that, after qh queries
to the random oracle and qs queries to the signing oracle,
A produces, with probability ε � 10(qs+1)(qs+qh)=2k,
a valid signature. Then, after less than 23qh=ε repetitions
of this adversary, one can extract the private key x with
probability ε 0 � 1=9.
From a more practical point of view, this result states that if
an adversary manages to perform an existential forgery un-
der an adaptive chosen-message attack within an expected
time T , after qh queries to the random oracle and qs queries
to the signing oracle, then the discrete logarithm problem
can be solved within an expected time less than 207qhT .
Brickell, Vaudenay, Yung and the author extended this tech-
nique [16, 64] to many variants of El Gamal [26] and
DSA [54], such as the Korean Standard KCDSA [41]. How-
ever, the original El Gamal and DSA schemes were not cov-
ered by this study, and are certainly not provably secure,
even if no attack has ever been found against DSA.

RSA-based signatures. Unfortunately, with these signa-
tures, we do not really achieve our goal, because the re-
duction is costly: if one can break the signature scheme
within an expected time T, and qh queries to the hash func-
tion, then one can compute loggy within an expected time
207qhT , where qh can be huge, as much as 260 in prac-
tice. This security proof is meaningful only for very large
groups.
In 1996, Bellare and Rogaway [10] proposed other can-
didates, based on the RSA assumption. The first scheme
is the by now classical hash-and-decrypt paradigm
(a.k.a. the Full-Domain Hash paradigm): as for the ba-
sic RSA signature, the generation algorithm produces
a large composite number N = pq, a public key e, and
a private key d such that e�d = 1 modϕ(N). In order
to sign a message m, one first hashes it using a full-
domain hash function H :f0;1g?!Z?

N, and computes the

eth root, σ = H(m)d mod N. The verification algorithm
simply checks whether the following equality holds,
H(m) = σe modN. For this scheme, they proved, in the
random oracle model: if an adversary can produce, with
success probability ε , an existential forgery under a chosen-
message attack within a time t, after qh and qs queries to
the hash function and the signing oracle respectively, then
the RSA function can be inverted with probability ε 0 within
time t 0 where

ε 0 �
ε

qs+qh
and t 0 � t +(qs+qh)Texp;

with Texp the time for an exponentiation to the power e,
modulo N. This reduction has been recently improved [21],
thanks to the random self-reducibility of the RSA function,
into:

ε 0 �
ε
qs
�exp(�1) and t 0 � t +(qs+qh)Texp:

This latter reduction works as follows: we assume the ex-
istence of an adversary that produces an existential forgery,
with probability ε , within time t, after qh queries to the
random oracle H and qs queries to the signing oracle. We
provide this adversary with all the inputs/outputs he needs,
while trying to extract the eth root of a given y. For that,
we have to simulate the random oracle and the signing
oracle.

Simulation of the random oracle H. For any fresh
query m to H, one chooses a random r 2 Z?

N and flips
a biased coin (which returns 0 with probability p, and 1
with probability 1� p.) If 0 appears, one defines and re-
turns H(m) = re mod N, otherwise one defines and returns
H(m)=yre mod N.

Simulation of the signing oracle. For any fresh query m,
one first invokes the random oracle on m (if not yet done).
If H(m) = re modN for some known r , then one returns r
as the signature of m, otherwise we stop the simulation and
return a failure signal.

At the end of the game, the adversary outputs a valid
message/signature H(m) = σe modN. If H(m) has been
asked to H during the simulation then, with probability
1�p, H(m)= yre=σe modN and thus y=(σ=r)e modN,
which leads to an eth root of y. Otherwise we return a fail-
ure signal.
One must first remark that the H simulation is perfect
since a new random element in Z?

N is returned for any
new query. However, the signing oracle simulation may
fail when a signing query is done on a message such that
H(m) = yre modN. Indeed, in this case, the simulation
aborts. But such a case happens with probability 1� p
for any signature. Therefore, the simulation is perfect with
probability pqs, and in such a good case, the forgery leads
to the eth root of y with probability 1� p. Therefore, the
success probability of our RSA inversion is (1� p)pqsε ,
which is optimal for p = 1�1=(qs+1). And for this pa-
rameter, and a huge value qs, the success probability is
approximately ε=eqs.
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As far as time complexity is concerned, each random oracle
simulation (which can be launched by a signing simulation)
requires a modular exponentiation to the power e, hence the
result.
This is a great improvement since the success probability
does not depend anymore on qh. Furthermore, qs can be
limited by the user, whereas qh cannot. In practice, one
only assumes qh� 260, but qs can be limited below 230.
However, one would like to get more, suppressing any coef-
ficient. In their paper [10], Bellare and Rogaway proposed
such a better candidate, the probabilistic signature scheme
(PSS, see Fig. 5): the key generation is still the same, but
the signature process involves three hash functions

F : f0;1gk2! f0;1gk0; G : f0;1gk2!f0;1gk1;

H : f0;1g?! f0;1gk2;

where k = k0+ k1+ k2+ 1 is the bit-length of the modu-
lus N. For each message m to be signed, one chooses a ran-
dom string r 2 f0;1gk1. One first computes w=H(m; r),
s = G(w) � r and t = F(w). Then one concatenates
y = 0kwkskt, where akb denotes the concatenation of the
bit strings a and b. Finally, one computes the eth root,
σ = yd modN.

Fig. 5. Probabilistic signature scheme.

The verification algorithm first computes y= σe modN,
and parses it as y = bkwkskt. Then, one can get r =
= s�G(w), and checks whether b = 0, w = H(m; r) and
t = F(w).
About PSS, Bellare and Rogaway proved, in the random
oracle model: if an adversary can produce, with success
probability ε , an existential forgery under a chosen-message
attack within a time t, after qh and qs queries to the hash
functions (F , G and H altogether) and the signing oracle
respectively, then the RSA function can be inverted with
probability ε 0 within time t 0 where

ε 0 � ε�
1

2k2
� (qs+qH) �

�
qs

2k1
+

qh+qs+1

2k2

�

and t 0 � t +(qs+qH)k2Texp;

with Texp the time for an exponentiation to the power e,
modulo N.
The reduction is a bit more intricate than the previous one:
once again, we assume the existence of an adversary that
produces an existential forgery, with probability ε , within
time t, after qF , qG, qH queries to the random oracles F ,
G, H (we denote qh = qF + qG + qH ) and qs queries to
the signing oracle. We provide this adversary with all the
inputs/outputs he needs, while trying to extract the eth root
of a given y. For that, we have to simulate the random
oracles and the signing oracle. For any fresh query (m; r)
to the random oracle H, one chooses a random u2 Z?

N and
computes z= yue modN, until the most significant bit of
z is 0. Then one parses z into 0kwkskt. Then one defines
H(m; r) w, G(w)  s� r and F(w)  t. One finally
returns w.
For any query w to the random oracles F or G, if the answer
has not already been defined (during a H simulation) then
a random string is returned.
A signing query m is trivially answered: one chooses a ran-
dom r and runs a specific simulation of H(m; r): one
chooses a random u 2 Z?

N and computes z= ue modN,
until the most significant bit of z is 0. Then one parses z
into 0kwkskt, and defines H(m; r) w, G(w) s� r and
F(w) t. One finally returns u as a signature of m.
At the end of the game, the adversary outputs a valid mes-
sage/signature (m;σ), where σe = 0kwkskt modN, which
corresponds to the signature of m with the random r =
= G(w)� s. If H(m; r) has not been asked, H(m; r) = w
with probability 1=2k2. Therefore

Pr[valid(m;σ) j:AskH(m; r)]� 2�k2;

where “valid(m;σ)” denotes the event that the mes-
sage/signature (m;σ) is a valid one (and thus accepted by
the verification algorithm), and “AskH(m; r)” denotes the
event that the query (m; r) has been asked to the random
oracle H.
Since this is a forgery, m has never been signed by the
signing oracle, and thus H(m; r) has been asked directly by
the adversary: H(m; r) w, G(w) s� r and F(w) t,
where yue = 0kwkskt, which leads to an eth root of y.
However, the simulations may not be perfect:

� The random oracles simulations may fail if when
defining F(w) and G(w), during an H-simulation
(a direct one, or the simulation done for the signing
simulation), one of them had already been defined
before. But this may just occur with probability less
than qF � 2

�k2 (because of a previous direct query
to F), qG �2

�k2 (because of a previous direct query
to G) or (qH +qs) �2�k2 (because of a previous direct
or indirect H-simulation).

� Even after many iterations, the z (computed during
the H-simulation, or the signing simulation) may still
be greater than N=2. We limit this number of iter-
ations to k2. Then the probability for z to be still
greater than N=2 is less than 1=2k2.
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� The signing simulation may fail if the H(m; r) value
has already been defined. But this may only occur
with probability (qH +qs)2�k1.

Therefore, the global success probability in inverting y is
greater than

ε�2�k2� (qH +qs)

�
qF +qG

2k2
+

qH +qs

2k2
+

1

2k2
+

qs

2k1

�
;

hence the result.
As fas as time complexity is concerned, each H simulation
(which can be launched by a signing simulation) requires
at most k2 modular exponentiations to the power e, hence
the result. Thanks to this exact and efficient security re-
sult, RSA-PSS has become the new PKCS #1 v2.0 standard
for signature [70]. Another variant has been proposed with
message-recovery. PSS-R allows one to include a large part
of the message inside the signature. This makes a signed-
message shorter than the size of the signature plus the size
of the message, since this latter is inside the former one.

5.3. Public-key encryption

5.3.1. History

The RSA encryption scheme. In the same paper as the
RSA signature scheme [69], Rivest, Shamir and Adleman
also proposed a public-key encryption scheme, thanks to the
“trapdoor one-way permutation” property of the RSA func-
tion: the generation algorithm produces a large composite
number N = pq, a public key e, and a private key d such
that e�d = 1 modϕ(N). The encryption of a message m,
encoded as an element in Z?

N, is simply c= me modN.
This ciphertext can be easily decrypted thanks to the knowl-
edge of d, m= cd modN. Clearly, this encryption is OW-
CPA, relative to the RSA problem. The determinism makes
a plaintext-checking oracle useless. Indeed, the encryp-
tion of a message m, under a public key kp is always the
same, and thus it is easy to check whether a ciphertext c
really encrypts m, by re-encrypting it. Therefore the RSA-
encryption scheme is OW-PCA relative to the RSA problem
as well.
Because of this determinism, it cannot be semantically se-
cure: given the encryption c of either m0 or m1, the adver-
sary simply computes c0 = me

0 modN and checks whether
c0 = c. Furthermore, with a small exponent e (e.g. e= 3),
any security vanishes under a multi-user attack: given
c1 =m3 modN1, c2 =m3 modN2 and c3 =m3 modN3, one
can easily compute m3 modN1N2N3 thanks to the Chinese
Remainders Theorem, which is exactly m3 in Z and there-
fore leads to an easy recovery of m.

The El Gamal encryption scheme. In 1985, El Gamal [26]
also designed a public-key encryption scheme based on the
Diffie-Hellman key exchange protocol [24]: given a cyclic
group G of order prime q and a generator g, the genera-
tion algorithm produces a random element x2 Z?

q as pri-
vate key, and a public key y = x � g. The encryption of

a message m, encoded as an element m in G , is a pair
(c= a �g;d = a �y+m). This ciphertext can be easily de-
crypted thanks to the knowledge of x, since

a �y = ax�g= x �c;

and thus m = d�x �c. This encryption scheme is well-
known to be OW-CPA relative to the computational Diffie-
Hellman problem. It is also semantically secure (against
chosen-plaintext attacks) relative to the decisional Diffie-
Hellman problem [79]. For OW-PCA, it relies on the new
gap Diffie-Hellman problem [60].

5.3.2. Secure designs

As we have seen above, the expected security level is
IND-CCA, whereas the RSA encryption just reaches
OW-CPA under the RSA assumption, and the El Gamal
encryption achieves IND-CPA under the DDH assump-
tion. Can we achieve IND-CCA for practical encryption
schemes?

OAEP: the optimal asymmetric encryption padding. In
1994, Bellare and Rogaway proposed a generic conver-
sion [9], in the random oracle model, the optimal asym-
metric encryption padding (OAEP, see Fig. 6), which was
claimed to apply to any family of trapdoor one-way permu-
tations, such as RSA. The key generation produces a one-
way permutation f : f0;1gk! f0;1gk, the public key. The
private key is the inverse permutation g, which requires
a trapdoor to be computable. The scheme involves two
hash functions

G : f0;1gk0! f0;1gn+k1; H : f0;1gn+k1! f0;1gk0;

where k = k0 + k1 +n+ 1. For any message m2 f0;1gn

to be encrypted. Instead of computing f (m), as done
with the above plain-RSA encryption, one first modifies m,
choosing a random string r 2 f0;1gk0. Then one computes
s= (mk0k1)�G(r) and t = r�H(s). Finally, one computes
c= f (skt).

Fig. 6. Optimal asymmetric encryption padding.

51



David Pointcheval

The decryption algorithm first computes P= g(c), granted
the private key g, and parses it as P= skt. Then, one can
get r = t�H(s), and M = s�G(r), which is finally parsed
into M = mk0k1, if the k1 least significant bits are all 0.
For a long time, the OAEP conversion has been widely
believed to provide an IND-CCA encryption scheme from
any trapdoor one-way permutation. However, the sole
proven result (weak plaintext-awareness [9]) was the seman-
tic security against non-adaptive chosen-ciphertext attacks
(a.k.a. lunchtime attacks [52]). And recently, Shoup [78]
showed that it was very unlikely that a stronger secu-
rity result could be proven. However, because of the
wide belief of a strong security level, RSA-OAEP be-
came the new PKCS #1 v2.0 for encryption [70], and thus
a de facto standard, after an effective attack against the
PKCS #1 v1.5 [13].
Fortunately, Fujisaki, Okamoto, Stern and the author [31]
provided a complete security proof: first we proved that
combined with a trapdoor partial-domain one-way permu-
tation, the OAEP construction leads to an IND-CCA cryp-
tosystem. A partial-domain one-way permutation f is a one-
way permutation such that given y= f (skt) it is intractable
to recover the full skt, but even s only. Furthermore, we
provided a complete reduction between the full-domain in-
version of RSA and the partial-domain inversion. There-
fore, RSA-OAEP really achieves IND-CCA security under
the RSA assumption.
The proof is a bit intricate, so we refer the reader to [31]
for more information. Anyway, we can claim

if there exists a CCA-adversary against the “se-
mantic security” of RSA-OAEP (with a k-bit
long modulus, with k> 2k0), with running time
bounded by t and advantage ε , making qD, qG
and qH queries to the decryption oracle, and
the hash functions G and H respectively, then
the RSA problem could be solved with proba-
bility ε 0, within time bound t 0, where

ε 0 �
ε2

4
� ε �

�
2qDqG+qD +qG

2k0
+

2qD

2k1
+

32

2k�2k0

�

t 0 � 2t +qH � (qH +2qG)�O(k3):

Unfortunately, the reduction is very expensive, and is thus
meaningful only for huge moduli, more than 4096-bit
long. Indeed, the RSA inverter we can build, thanks
to this reduction, has a complexity at least greater than
qH � (qH +2qG)�O(k3). As already remarked, the adver-
sary can ask up to 260 queries to the hash functions, and
thus this overhead in the inversion is at least 2151. However,
current factoring algorithms can factor up to 4096 bit-long
integers within this number of basic operations (see [45]
for complexity estimates of the most efficient factoring al-
gorithms).
Anyway, the formal proof shows that the global design of
OAEP is sound, and that it is still probably safe to use it
in practice (e.g. in PKCS #1 v2.0, while being very careful
during the implementation [48]).

More general conversions. Unfortunately, there is no
hope to use OAEP with any DL-based primitive, because
of the “permutation” requirement. The OAEP construc-
tion indeed requires the primitive to be a permutation
(trapdoor partial-domain one-way), which is the case of
the RSA function. However, the only trapdoor problem
known in the DL-setting is the Diffie-Hellman problem,
and it does not provide any bijection. Thus, first Fujisaki
and Okamoto [29] proposed a generic conversion from
any IND-CPA scheme into an IND-CCA one, in the ran-
dom oracle model. While applying this conversion to the
above El Gamal encryption (see 5.3.1.), one obtains an
IND-CCA encryption scheme relative to the DDH prob-
lem. Later, independently, Fujisaki and Okamoto [30] and
the author [61] proposed better generic conversions since
they apply to any OW-CPA scheme to make it into an
IND-CCA one, still in the random oracle model.
This high security level is just at the cost of two more
hashings for the new encryption algorithm, as well as two
more hashings but one re-encryption for the new decryption
process.

REACT: a rapid enhanced-security asymmetric cryp-
tosystem transform. The re-encryption cost is the main
drawback of these conversions for practical purposes.
Therefore, Okamoto and the author tried and succeeded
in providing a conversion that is both secure and effi-
cient [58]: REACT, for “rapid enhanced-security asym-
metric cryptosystem transform”.
This latter conversion is indeed very efficient in many
senses

– the computational overhead is just the cost of two
hashings for both encryption and decryption,

– if one can break IND-CCA of the resulting scheme
with an expected time T , one can break OW-PCA of
the basic scheme within almost the same amount of
time, with a low overhead (not as with OAEP). It
thus provides a practical security result.

Let us describe this generic conversion REACT [58] on any
encryption scheme S= (K;E;D)

E : PK�M �R! C D : SK�C!M ;

where PK and SK are the sets of the public and private
keys, M is the messages space, C is the ciphertexts space
and R is the random coins space. One should remark that
R may be small and even empty, with a deterministic en-
cryption scheme, such as RSA. But in many other cases,
such as the El Gamal encryption, it is as large as M . We
also need two hash functions G and H,

G : M !f0;1g`;H : M �f0;1g`�C�f0;1g`!f0;1gκ ;

where κ is the security parameter, while ` denotes the size
of the messages to encrypt. The REACT conversion is
depicted in Fig. 7.
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K0: Key generation

(kp;ks) K(1k)

! (kp;ks)

E0: Encryption of m2M 0 = f0;1g`! (a;b;c)

R2M and r 2 R are randomly chosen

a= E(kp;R; r) b= m�G(R) c= H(R;m;a;b)

! (a;b;c) is the ciphertext

D0: Decryption of (a;b;c)

Given a2 C, b2 f0;1g` and c2 f0;1gκ

R= D(ks;a) m= b�G(R)

if c= H(R;m;a;b) and R2M !m is the plaintext

(otherwise, “Reject: invalid ciphertext”)

Fig. 7. Rapid enhanced-security asymmetric cryptosystem trans-
form S0.

In this new scheme S0, one can claim that if an attacker,
against the semantic security in a chosen-ciphertext sce-
nario, can gain an advantage ε after qD, qG and qH queries
to the decryption oracle and to the random oracles G and H
respectively, within a time t, then one can design an algo-
rithm that outputs, for any given C, the plaintext of C, after
less than qG+qH queries to the plaintext-checking oracle
with probability greater than ε=2� qD=2κ , within a time
t +(qG+qH)TPCA, where TPCA denotes the times required
by the PCA oracle to answer any query.
This security result, in the random oracle model, comes
from two distinct remarks:

� The adversary has necessarily asked either G(R) or
H(R;mi ;a;b) to get any information about the en-
crypted message m (either m0 or m1). Which means
that for a given C = E(kp;R; r), R is in the list of
queries asked to G or to H. Simply asking for the
qG+qH candidates to the plaintext-checking oracle,
one can output the right one. Then, with probabil-
ity ε=2, one inverts E, after (qG+qH) queries to the
plaintext-checking oracle.

� However, in the chosen-ciphertext scenario, the ad-
versary may ask queries to the decryption oracle. We
have to simulate this. For each query (a;b;c) asked
by the adversary to the decryption oracle, one looks
at all the pairs (R;m) such that (R;m;a;b) has been
asked to the random oracle H. For any such R, one
asks the plaintext-checking oracle whether a is a ci-
phertext of R (remark that it does not make more
queries to the plaintext-checking oracle, since it has
already been taken into account above). Then it com-
putes K = G(R), maybe using a simulation of G if
the query R has never been asked. If b= K�m then
one outputs m as the plaintext of the triple (a;b;c).
Therefore, any correctly computed ciphertext is de-
crypted by the simulator. But if the adversary has not
asked H(R;m;a;b) the probability that the ciphertext

is valid, and thus the decryption not correctly simu-
lated, is less than 1=2κ .

Hybrid conversion. In this REACT conversion, one can
improve efficiency, replacing the one-time pad [81] by any
symmetric encryption scheme: indeed, we have computed
some b= m�K, where K = G(R) can be seen as a session
key used in an one-time pad encryption scheme. But one
could use any symmetric encryption scheme (E;D) that is
just semantically secure (under no plaintext nor ciphertext
attacks). Indeed, the one-time pad achieves perfect seman-
tic security, against this kind of very weak attacks. But one
can tolerate some imperfection. Anyway, most of the candi-
dates to the AES process (the call for symmetric encryption
schemes, from the NIST, to become the new international
standard), and the AES itself (the winner), resisted to more
powerful attacks, and thus can be considered strongly se-
cure in our scenario. Therefore, plaintexts of any size could
be encrypted using this conversion (see Fig. 8), with a very
high speed rate.

Fig. 8. Hybrid rapid enhanced-security asymmetric cryptosystem
transform.

RSA-OAEP alternatives. As we have said, RSA-OAEP
has become a de facto standard, even if its security has
recently been subject to controversy. However, the practi-
cal security, for usual sizes (between 512 and 1024 bits),
is not really proven because of the huge overhead in the
reduction. Some alternatives have been proposed, such as
OAEP+ [78] and SAEP(+) [14], but still with expensive
reductions, in the general RSA context (some efficient re-
ductions have been proposed for OAEP or SAEP, but only
with RSA exponent 3, or the Rabin primitive [66]). There-
fore RSA-REACT [59] looks like the best alternative to
RSA-OAEP, thanks to the efficient reduction, and the prov-
able security relative the RSA assumption (in the random
oracle model).

6. Conclusion

Recently, Cramer and Shoup proposed the first schemes, for
both encryption [22] and signature [23], with formal secu-
rity proofs in the standard model (without any ideal assump-
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tion). The encryption scheme achieves IND-CCA under the
sole DDH assumption, which says that the DDH problem is
intractable. The signature scheme prevents existential forg-
eries, even against adaptive chosen-message attacks, under
the Strong RSA assumption [2, 28], which claims the in-
tractability of the Flexible RSA problem:

Given an RSA modulus N and any y 2 Z?
N,

produce x and a prime integer e such that
y= xe modN.

Both schemes are very nice because they are the first ef-
ficient schemes with formal security proofs in the stan-
dard model. However, we have not presented them, nor
the reductions either. Actually, they are very intricate and
pretty expensive. Furthermore, even if no ideal assumptions
are required, the complexity of the reductions make them
meaningless for practical parameters. Moreover, even if the
schemes are much more efficient than previous proposals
in the standard model, they are still much more than twice
as expensive as the schemes presented along this paper, in
the random oracle model. This is enough to rule them out
from practical use. Indeed, everybody wants security, but
only if it is quite transparent (and particularily from the
financial point of view). Therefore, provable security must
not decrease efficiency. It is the reason why strong security
arguments, under a realistic restriction on the adversary’s
capabilities, for efficient schemes have a more practical im-
pact than security proofs in the standard model for less ef-
ficient schemes. Of course, quite efficient schemes with
formal security proofs are still the target, and thus an ex-
citing challenge.
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