

Design and analysis of provably secure pseudorandom
generators
Citation for published version (APA):
Sidorenko, A. (2007). Design and analysis of provably secure pseudorandom generators. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR630168

DOI:
10.6100/IR630168

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR630168
https://doi.org/10.6100/IR630168
https://research.tue.nl/en/publications/f8dd35c9-7448-4c8d-ba9d-bd98f8d157c1

Design and analysis of provably secure pseudorandom generators

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 29 oktober 2007 om 16.00 uur

door

Andrey Sidorenko

geboren te Moskou, Rusland

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. H.C.A. van Tilborg

Copromotor:
dr.ir. L.A.M. Schoenmakers

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Sidorenko, Andrey

Design and analysis of provably secure pseudorandom generators /
door Andrey Sidorenko. –
Eindhoven : Technische Universiteit Eindhoven, 2007.
Proefschrift. – ISBN 978-90-386-1130-3
NUR 919
Subject headings : cryptology
2000 Mathematics Subject Classification : 11T71, 65C10, 68Q17

Printed by Printservice Technische Universiteit Eindhoven
Cover by Jorrit van Rijt, Oranje Vormgevers

Moeĭ dorogoĭ babuxke
To my dear grandmother

Contents

Contents v

1 Introduction 1
1.1 Applications of randomness . 2
1.2 Hardware random number generators 3
1.3 Pseudorandom generators . 4
1.4 Provably secure pseudorandom generators 6
1.5 Concrete security . 8

2 Preliminaries 11
2.1 Time units . 11
2.2 Formal definition of pseudorandom generator 11
2.3 Integer factorization and the RSA problem 12
2.4 The discrete logarithm problem and its variants 14

3 Cryptanalysis of the Dual Elliptic Curve pseudorandom generator 17
3.1 Introduction . 17
3.2 The DEC generator . 18
3.3 The distinguishing attack on the DEC generator 19
3.4 Conclusion . 23

4 Efficient pseudorandom generators based on the DDH assumption 25
4.1 Introduction . 25
4.2 DDH generator . 27
4.3 Specific instances of the DDH generator 31
4.4 Generator PRG1 versus Gennaro’s generator 34
4.5 Converting random numbers to random bits 36
4.6 Conclusion . 39

5 Concrete security of the RSA generator 41
5.1 Introduction . 41
5.2 The starting point of the security analysis 43
5.3 The simplified inversion algorithm 45
5.4 The inversion algorithm . 48

v

vi CONTENTS

5.5 Analysis of the inversion algorithm 54
5.6 Main result . 57
5.7 The Blum-Blum-Shub generator . 61
5.8 Conclusion . 62

6 Pseudorandom generator as a building block of a secure scheme 63
6.1 Introduction . 63
6.2 Notions of security . 64
6.3 Concrete security of the compositions 65
6.4 Examples . 68
6.5 Conclusion . 72

7 Generating random numbers from an interval 73
7.1 Introduction . 73
7.2 State of the art . 75
7.3 Bit-by-bit algorithm . 79
7.4 Analysis of the bit-by-bit algorithm 81
7.5 Oblivious algorithms . 85
7.6 Generating shared random numbers 86
7.7 Conclusion . 90

Glossary 91

Bibliography 93

Index 101

Acknowledgements 103

Summary 105

Curriculum Vitae 107

Chapter 1

Introduction

Random numbers should not be
generated with a method chosen
at random. Some theory should
be used.

Donald Ervin Knuth

A cryptographically secure pseudorandom generator is a mechanism for produc-
ing random bits that can be used for cryptographic purposes. Since randomness is
essential for most cryptographic systems, developing robust sources of random data
is a very important problem.

Quite often it is just assumed in cryptographic literature that a source of random
data is available, paying no attention to the fact that actually randomness is quite
difficult to generate. In this thesis, we provide new ideas about how to generate
random data. We analyze several existing pseudorandom generators and we also
propose some new constructions.

Pseudorandom generators are an alternative for hardware random number gen-
erators. Although hardware random number generators are sometimes useful, they
have certain drawbacks and they fail to fulfill requirements of some applications.

We like to emphasize that we focus on provably secure constructions. Provable
security means that the bits produced by the generator are indistinguishable from
independent uniformly random bits unless a certain intractable problem can be
solved. We analyze pseudorandom generators in the setting of concrete security.
For each construction, we determine concrete parameters (e.g., the seed length)
such that a desired level of security is reached under the corresponding intractability
assumption.

The thesis starts with an introduction into the field of randomness. Applica-
tions of randomness as well as different approaches for generating random data are
discussed.

1

2 Introduction

1.1 Applications of randomness

One of the most successful lotteries ever organized in the world is “Sportloto”,
which was founded by the government of the Soviet Union in 1970 to support the
sports organizations. The rules were quite simple. First, a participant chose 6
different numbers between 1 and 49. Then, at the day of the lottery, 6 balls out of
49 were drawn from a well-stirred urn and the participant could win a lot of money
if he had guessed correctly the numbers written on the balls. One can compute that
the chance to win in this lottery was quite small, i.e., 1/13983816. However, the
participation price was reasonably low so every time about 30 million people (more
than 10% of the population of the country) pushed their luck. The week budget
of “Sportloto” was about 9 million rubles. The lottery was stopped only when the
Soviet Union collapsed. Similar lotteries still exist in quite a few other countries.

The key issue of any lottery is randomness. To choose a winner among many
participants in a fair way, a set of random numbers has to be generated.

Of course, lotteries are not the only consumers of random data. There are many
other (perhaps, more important) applications of randomness. Random numbers
are used by a wide spectrum of algorithms. For instance, a well-known technique
to approximate π is to pick many random points in a one-by-one square and to
measure how many points are at a distance at most 1 from a particular apex.
Random numbers are also used to simulate natural phenomena, say, in the area
of hydrodynamics or nuclear physics. Another application of random numbers is
sampling. Imagine, for instance, an election campaign. To estimate a rank of a
candidate, it is possible to interview relatively few random voters.

In this thesis, we focus on cryptographic applications of random numbers. The
central idea of any cryptographic scheme is that there is a secret which is known
only to the authorized users. The best way to make the secret unpredictable for
the adversaries is to choose it uniformly at random (in this case the entropy of the
secret is maximal).

The main cryptographic applications of randomness are the following:

• Session keys for symmetric ciphers.

• Private keys for asymmetric cryptosystems and digital signature schemes.

• Random data for probabilistic encryption and signing.

• Initialization vectors for block ciphers used in chaining modes.

• Random challenges and nonces for cryptographic protocols.

• Salts to be added to passwords and passphrases.

In some cases random data is transmitted and stored in clear (e.g., initialization
vectors and challenges) while in the other cases it is kept secret (e.g., session keys). In
both situations, security of the system relies on the availability of random numbers

1.2 Hardware random number generators 3

with certain properties. Since any system is as secure as its weakest link, it is
important to have a robust source of random numbers.

Unless specified otherwise, by a random number we mean an integer uniformly
distributed in a certain interval.

1.2 Hardware random number generators

The problem is that random numbers are often difficult to generate. A possible
solution is to use a hardware random number generator based on a physical phe-
nomenon, such as thermal noise or radioactive decay. For instance, the Intel 80802
Firmware Hub chip included a hardware random number generator using two free
running oscillators, one fast and one slow. A thermal noise source from two diodes
was used to modulate the frequency of the slow oscillator, which then triggered a
measurement of the fast oscillator. The output rate of this device was somewhat
less than 100,000 bits per second. The device is not included in modern PCs.

Figure 1.1: One of the popular hardware random number generators is a lava lamp
sealed within a transparent liquid-filled cylinder. The illuminated colored globs
inside the lamp slowly rise and fall in such a way that their shapes and paths
change unpredictably. Therefore, a digital camera filming the lamp can produce a
sequence of random numbers.

Although in many cases hardware random number generators are useful, they
have several disadvantages. First of all, they are not always available. Some of them
are quite slow, others are too expensive, many of them have malfunctions that are

4 Introduction

extremely difficult to detect. Marsaglia [Mar95] points out that many seemingly
robust hardware random number generators in fact produce highly correlated data.
Sometimes the malfunctions can be initiated by the adversary. Finally, it is impos-
sible to reproduce the sequences of numbers output by hardware random number
generators, which is quite unfortunate for many applications.

1.3 Pseudorandom generators

Is there any way to generate random numbers on deterministic computers?
Say, is it possible to use the binary expansion of π as a sequence of random

bits? By now, the bits of π have been calculated to billions of places and, in
fact, an arbitrary bit of π can be determined without needing to compute any of
the preceding bits. The bits of π are proved to “behave randomly” in a certain
statistical sense under a plausible conjecture in the field of chaotic dynamics (for
more details see, e.g., [Pre01]). Unfortunately, the bits of π cannot be used for
cryptographic applications simply because they are publicly known. For example,
if you are the organizer of “Sportloto” or any other similar lottery you do not want
someone to compute the winning numbers in advance. The moral is that even if a
sequence of random numbers is produced deterministically it has to be a function
of an unpredictable random seed.

1.3.1 Computational indistinguishability

Loosely speaking, a pseudorandom generator is a deterministic algorithm that
converts a relatively short random seed into a longer sequence of numbers that
“behaves randomly”. The output sequence is called the pseudorandom sequence.

A formal definition of pseudorandom generator is discussed in Chapter 2. At this
point, it is important to specify what we actually mean by saying that a sequence of
numbers “behaves randomly”. A lot of statistical tests have been designed to check if
a sequence of numbers is sufficiently random, that is, it does not deviate much from a
sequence of independent uniformly distributed random numbers. For instance, given
a decimal sequence one can check if all single digits occur about one tenth of the time,
all two-digit combinations occur about one one-hundredth of the time, and so on.
In fact, this simple test is a variant of the first Golumb’s randomness postulate (the
Golumb’s randomness postulates are described, for instance, in [MvOV00]). Other
tests include monobit, frequency, serial, poker, runs/long-runs, and autocorrelation
tests. Some of these tests are included in FIPS 140-1 standard. Even more of them
are a part of the well-known Diehard battery developed by Marsaglia [Mar95].

For cryptographic applications, it is important that a sequence produced by a
pseudorandom generator passes all efficient statistical tests, even those that have
not been discovered yet. At first glance, it sounds like utopia. How can we guarantee
that such a strong requirement is satisfied? It turns out, that sometimes we can.
Actually, there exist pseudorandom generators such that no efficient distinguisher
can tell the difference between the sequences produced by these generators and

1.3 Pseudorandom generators 5

uniformly random sequences. The latter pseudorandom generators are referred to
as cryptographically secure pseudorandom generators.

Except for a few situations, all pseudorandom generators considered in this thesis
are cryptographically secure. Whenever it is clear from the context that a pseudo-
random generator is cryptographically secure, we simply call it a pseudorandom
generator.

It can be shown that sequences produced by pseudorandom generators are unpre-
dictable in the sense that knowledge of many consecutive elements of the sequence
gives no information about the next element. This important result is often at-
tributed to Yao [Yao82] but actually it did not appear in [Yao82]. In fact, Yao
presented this result and the proof idea in his talk at the Symposium on Founda-
tions of Computer Science in 1982. A good exposition of the proof is in [Gol01,
Section 3.3.5].

In some sources, pseudorandom generators are called pseudorandom number gen-
erators [Yao82; KSF99], pseudorandom bit generators [MvOV00; Kal88], or deter-
ministic random bit generators [BK05; Cam06]. The term pseudorandom generator
[Gol95; Lub94] is more common for number-theoretic constructions, on which we
focus in this thesis.

Note that a pseudorandom generator that outputs bits can be transformed into
a pseudorandom generator that outputs numbers in any interval. We discuss this
issue in detail in Chapter 7. For the rest of the thesis we assume that pseudorandom
generators output bits, without loss of generality.

1.3.2 Kolmogorov complexity

Actually, computational indistinguishability is not the only way to determine
the degree of randomness of a sequence. An alternative way is to use the approach
proposed by Solomonov and Kolmogorov in the early 1960s (for a recent treatment
see, e.g., [Gol95]). Loosely speaking, a sequence of numbers is Kolmogorov-random
if its length is the same as the length of the shortest algorithm producing this
sequence. In other words, a sequence is Kolmogorov-random if it cannot be com-
pressed. The reason why the approach of Solomonov and Kolmogorov is not suitable
in our context is that Kolmogorov complexity is a function that in general cannot be
efficiently computed. On the contrary, we consider only computationally bounded
distinguishers.

1.3.3 Generating the seed

Generation of an unpredictable random seed is an important issue. The seed is
typically obtained from operating system events, for instance, mouse and keyboard
activity, disk I/O operations, and specific interrupts. These events are referred to
as sources of entropy.

Unfortunately, in many cases the seed is generated improperly, that is, there are
either too few sources of entropy or the sources of entropy are observable by the
adversary. For instance, the Linux distribution for wireless routers OpenWRT does

6 Introduction

not provide enough entropy for its pseudorandom generator [GPR06] and thus the
seed can be computed by exhaustive search. For a similar reason, the pseudorandom
generator used by the Secure Sockets Layer protocol of the early Netscape browser
is insecure [GW96]. The latter problem is especially dangerous because the SSL
protocol is developed to provide secure Internet transactions.

In this thesis, we do not consider the problem of collecting entropy. We analyse
security of pseudorandom generators assuming that the seed is uniformly random
and unknown for unauthorized users.

1.3.4 Repeatability

For a fixed seed, a pseudorandom generator always outputs the same pseudo-
random sequence. This important property called repeatability gives pseudorandom
generators extra applications that hardware random number generators do not have.

For instance, pseudorandom generators are used as keystream generators for
synchronous stream ciphers. To encrypt a message with a secret key, the sender feeds
a pseudorandom generator with the key and XORs the message with the resulting
pseudorandom sequence. The recipient that knows the key can also compute the
pseudorandom sequence and reconstruct the message.

Furthermore, pseudorandom generators are used as building blocks for commit-
ment schemes [Nao89] and pseudorandom functions [NR04].

1.4 Provably secure pseudorandom generators

In this thesis, we analyze pseudorandom generators in the setting of provable se-
curity . A cryptographic scheme is said to be provably secure if breaking the scheme
can be shown to be essentially as difficult as solving a well-known and supposedly
difficult (typically, number-theoretic) problem. In the case of pseudorandom gener-
ators, to break an algorithm means to distinguish its output from uniformly random
with some non-negligible advantage. Thus, provable security means security under
a certain computational assumption.

The first cryptographically secure pseudorandom generator is proposed by Blum
and Micali [BM82]. The Blum-Micali generator outputs one bit per iteration, which
costs one exponentiation modulo a large prime p. Security of the Blum-Micali
generator is based on intractability of the discrete logarithm problem in Z∗p (for any
integer N > 1, we denote by Z∗N the multiplicative group of integers modulo N that
are relatively prime to N). The Blum-Micali generator is improved by Long and
Wigderson [LW83] and H̊astad and Näslund [HN99] who show that the generator
remains secure if one outputs O(log log p) bits per iteration. Kaliski [Kal88] proposes
an elliptic curve version of the Blum-Micali generator. Patel and Sundaram [PS98]
and Gennaro [Gen05] suggest a further improvement for the Blum-Micali generator.
They propose a pseudorandom generator that outputs O(log p) bits per modular
exponentiation. However, security of the new generator is based on a strong and
not so well-studied “discrete logarithm with short exponents” assumption.

1.4 Provably secure pseudorandom generators 7

Another line of pseudorandom generators is based on factoring-like assumptions.
The well-known RSA generator proposed by Goldwasser et al. [GMT82] iterates
the RSA encryption function x 7→ xe mod N , where N is an RSA modulus, e is a
public exponent, and outputs one bit per iteration. Security of the RSA generator
is based on the RSA problem. Related to the RSA generator is the Blum-Blum-
Shub generator that iterates the Rabin function x 7→ x2 mod N , where N is a Blum
integer, and outputs one bit per iteration [BBS86]. Security of the Blum-Blum-
Shub generator is based on the hardness of factoring. The RSA generator as well
as the Blum-Blum-Shub generator are shown to be secure even if not only one but
O(log log N) bits are output per iteration [BOCS83; VV84; ACGS88; HN99; SS05].
The recent result by Steinfeld et al. [SPW06] implies that O(log N) bits can be
output per iteration if one assumes that a non-standard variant of the RSA problem
(which is potentially easier to solve than the original RSA problem) is intractable.

Many other intractable number-theoretic problems have been used to design
pseudorandom generators. Impagliazzo and Naor [IN89] propose a pseudorandom
generator based on the intractability of the subset sum problem. A promising pseu-
dorandom generator based on the hardness of solving a random system of multivari-
ate quadratic equations over a finite field is presented by Berbarin et al. [BGP06]
(however, as pointed out by Yang et al. [YCBC07], this pseudorandom generator
is secure only if the finite field is small). Boneh et al. [BHHG01] introduce the
modular inversion hidden number problem and present a construction based on the
intractability of this problem.

The seminal paper by H̊astad et al. [HILL99] implies that a provably secure
pseudorandom generator can be constructed from any one-way function. Whether
or not one-way functions exist is an open conjecture. Nevertheless, certain functions
(e.g., exponentiation in a finite field and multiplication of two prime numbers) are
assumed to be one-way.

The above overview suggests that stronger assumptions give rise to more efficient
pseudorandom generators. On the other hand, strong assumptions are sometimes
not thoroughly analyzed so the constructions based on these assumptions cannot be
fully trusted.

An alternative to number-theoretic pseudorandom generators are the generators
that use block ciphers and cryptographic hash functions [KSF99; FS03; DSS00;
BK05]. For instance, Yarrow-160 generator [KSF99] converts a seed K ∈ {0, 1}160
into the sequence EK(c), EK(c + 1), EK(c + 2), . . . , where c is a counter and EK

denotes Triple-DES block cipher keyed by K. Yarrow-160 generator and similar con-
structions are secure in the ideal-cipher model meaning that the security of these
generators relies on the assumption that the corresponding block cipher is a pseu-
dorandom permutation.

In this thesis, we focus on pseudorandom generators provably secure in the stan-
dard model. In particular, we focus on constructions based on the intractability
of integer factorization, computing discrete logarithms, and related problems (e.g.,
the RSA problem and the decisional Diffie-Hellman problem). We do not consider
pseudorandom generators that use block ciphers and cryptographic hash functions.

8 Introduction

The algorithmic transformation of the adversary that breaks a scheme into a
solver for the corresponding intractable problem is called reduction. The notion of
reduction plays an important role not only in cryptology but also in computability
theory and complexity theory.

1.5 Concrete security

In the early papers about pseudorandom generators (e.g., in [BM82; GMT82])
the security is analyzed in the asymptotic sense. The length of the pseudorandom
sequence M is assumed to be polynomial in the seed length n. A pseudorandom gen-
erator is said to be asymptotically secure if, as n increases, no polynomial-time adver-
sary can distinguish the pseudorandom sequences from uniformly random sequences
with probability 1/2+1/f(n), for any polynomial f . To show that a pseudorandom
generator is asymptotically secure, one usually comes up with a polynomial-time
reduction, that is, one has to show that a polynomial-time distinguisher implies a
polynomial-time solver for the underlying intractable problem.

As first emphasized by Bellare and Rogaway [BR96], asymptotic security says
little about the security of a cryptographic scheme in practice for a particular choice
of parameters (such as n) and against adversaries investing a specific amount of
computational effort. Concrete security analysis of a cryptographic scheme is a
way to determine the exact parameters of the scheme such that a desired level of
security is reached. Concrete security analysis is in some sense a refined version
of asymptotic security analysis. A lot of recent papers include concrete security
analysis of digital signature schemes [KW03; Cor02], encryption schemes [BF01;
BR06], and pseudorandom generators [FS00; Gen05; SPW06].

1.5.1 Tightness of security reductions

When analyzing concrete security of a cryptographic scheme, a crucial issue is
tightness of the reduction. If breaking the scheme takes roughly the same compu-
tational effort as solving the underlying intractable problem, the reduction is called
tight. In the opposite case, if the adversary is transformed into a relatively inefficient
(although still polynomial-time) solver, the reduction is called not tight.

A tighter reduction guarantees security of the scheme for smaller parameters,
which makes the scheme more efficient. To illustrate this important point, consider
the following simple example.

Let S be a cryptographic scheme (e.g., a pseudorandom generator) characterized
by a parameter n (e.g., the length of the seed) which is secure under the assumption
that the discrete logarithm in a n-bit field is intractable (see also Figure 1.2). Sup-
pose that for smaller n the scheme is more efficient. Our goal is to choose n as small
as possible under the restriction that the scheme is at least as secure as solving the
discrete logarithm problem in, say, 1200-bit field. There are two possibilities.

1. The reduction is tight so breaking the scheme is exactly as hard as solving the
discrete logarithm problem. In terms of Figure 1.2, it means T = T ′. Thus,

1.5 Concrete security 9

Breaking cryptographic scheme S parameterized by n

Running time T

Solving the discrete logarithm problem in an n-bit finite field

Running time T ′

?

reduction

Figure 1.2: An adversary that breaks the scheme S can be transformed into a solver
for the discrete logarithm problem.

the answer is n = 1200. This is the smallest possible value of n we can expect.

2. The reduction is not tight so T ′ � T . It means that breaking the scheme
can be easier than solving the discrete logarithm problem. Thus, to achieve
the same level of security we have to use n � 1200, which degrades the
performance of the scheme. In this case, there are three possible ways to
improve the efficiency of the scheme. Either the scheme itself can be modified
or a new reduction can be constructed or another intractable problem can be
used as a starting point.

One can argue that tightness of the reduction is not important when computing
parameters of the scheme that provide a certain level of security [YY04; ECS]. So,
in the second case of the above example, even though the reduction is not tight, one
can think that the scheme is secure even for n = 1200. This argument is supported
by the fact that, so far, there exists no natural and realistic provably secure scheme
with a non-tight reduction such that this scheme is shown to be insecure when used
with commonly accepted parameter sizes (cf. [KM06]). Nevertheless, it does not
mean that such schemes do not exist. Moreover, in the second case, S is provably
secure only for n � 1200. For smaller n, the security of the scheme has perhaps
nothing to do with the intractability of the discrete logarithm problem.

In this thesis, we rely only on provable results. When computing parameters of
a scheme that provide a certain level of security, we do take into account tightness
of the reduction.

Early papers about pseudorandom generators, e.g., [GMT82; BOCS83; BM82;
ACGS88; Kal88; VV84] present polynomial-time reductions. These results imply
that the corresponding pseudorandom generators are asymptotically secure. How-
ever, a close look at the reductions shows that they are not tight and they ensure
security of the pseudorandom generators only for unreasonably large lengths of the
seed.

10 Introduction

Design of provably secure schemes (in particular, pseudorandom generators) with
tight reductions is an important problem in modern cryptography. This is one of
the problems addressed in this thesis.

1.5.2 Tight reductions or weak assumptions?

It is not always clear how to compare reductions corresponding to different in-
tractability assumptions. Consider a cryptographic scheme characterized by a pa-
rameter n, as in the previous section. Suppose, the scheme is secure under the
assumption that the discrete logarithm problem is intractable but the reduction is
not tight. Now, suppose that one can construct a tight reduction that connects the
security of the scheme to the decisional Diffie-Hellman problem. The question is,
which of the two reductions is better in the sense that it ensures the security of
the scheme for a shorter n? Although the decisional Diffie-Hellman problem can be
easier than the discrete logarithm problem, the exact “gap” between the two prob-
lems is not known (we discuss this issue in more detail in Section 2.4.2). Therefore,
the above question is difficult to answer. We resolve this uncertainty by assuming
that the decisional Diffie-Hellman problem and the discrete logarithm problem are
equally hard in certain groups, in agreement with common practice. Similarly, the
RSA problem is assumed to be as hard as integer factorization (see Section 2.3.2).

In general, to claim that a scheme is secure, it is not sufficient to construct a
security reduction. It is also important to check that the underlying computational
assumption is plausible.

Chapter 2

Preliminaries

What’s in a name? A rose by any
other name would smell as sweet.

William Shakespeare

In this chapter, we recall the formal definition of pseudorandom generator and
discuss the state of the art in solving intractable problems, e.g., integer factorization
and the discrete logarithm problem. We also set up conventions and introduce some
notation used throughout the thesis.

2.1 Time units

A unit of time has to be set to measure the running time of the algorithms.
Throughout this thesis, the unit of time is one CPU cycle of the 450 MHz Pentium II
processor. We adopt the unit of time used by Lenstra and Verheul [LV01].

For instance, it is reported that one multiplication modulo a prime p takes about
(log2 p)2/24 time units [LV01].

In most of the examples throughout this thesis we require cryptographic schemes
(e.g., pseudorandom generators) to be secure against all adversaries that run in time
at most 288 time units. The reason is that, according to the estimates given in
[Len04], the security level of about 288 time units, which corresponds to 280 DES
encryptions, will be sufficient for all commercial applications until 2018.

2.2 Formal definition of pseudorandom generator

Let X and Y be random variables taking on values in a finite set S. The statistical
distance between X and Y is defined as

∆(X, Y) =
1
2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|.

11

12 Preliminaries

We say that algorithm D distinguishes X and Y with advantage ε if and only if

|Pr[D(X) = 1]− Pr[D(Y) = 1] | ≥ ε.

The statistical distance ∆(X, Y) is an upper bound on the advantage of any distin-
guisher for X and Y (see, e.g., [Lub94, Exercise 22]).

A formal definition of pseudorandom generator is proposed by Yao [Yao82]. Con-
sider a deterministic algorithm PRG that transforms n-bit strings into M -bit strings,
where M > n. Let Ul denote a random variable uniformly distributed on Zl, l > 0
(below l will be 2M or 2n). We say that an algorithm is T -time if it halts in at most
T time units. A T -time algorithm D is called a (T, ε)-distinguisher for PRG if

|Pr[D(PRG(U2n)) = 1]− Pr[D(U2M) = 1] | ≥ ε. (2.1)

One can think of the distinguisher as an algorithm that tries to guess whether the
input is a sequence produced by PRG or it is a uniformly random sequence.

Definition 2.2.1 Algorithm PRG is called a (T, ε)-secure pseudorandom generator
if no (T, ε)-distinguisher exists for PRG.

The distinguisher D is sometimes called a statistical test or an adversary. The
parameter ε is called the advantage of the adversary. The parameter n denotes
the size of the seed and the parameter M denotes the size of the pseudorandom
sequence.

2.3 Integer factorization and the RSA problem

To analyze concrete security of pseudorandom generators based on the intractabil-
ity of computing discrete logarithms, integer factorization, and related problems,
the complexity of the most efficient methods for solving these problems has to be
determined. In this section, we consider integer factorization and the RSA problem.

2.3.1 Integer factorization

The most efficient method for integer factorization today is the Number Field
Sieve abbreviated as NFS (see, e.g., [LV01]). It factors an n-bit integer in asymptotic
expected time

L(n) = exp[(1.9229 + o(1))(n ln 2)1/3(ln(n ln 2))2/3],

as n tends to infinity. To get an explicit formula for the complexity of the NFS, we
assume that

L(n) = A exp[1.9229(n ln 2)1/3(ln(n ln 2))2/3],

where A is a constant, and estimate A from experimental data. Factoring a 512-
bit integer is reported to take about 3 · 1017 time units [LV01]. It implies that
A ≈ 1.7 · 10−2 and thus

L(n) = 1.7 · 10−2 exp[1.9229(n ln 2)1/3(ln(n ln 2))2/3]. (2.2)

2.3 Integer factorization and the RSA problem 13

2.3.2 The RSA problem

Related to integer factorization is the problem of finding e-th roots modulo a
composite number N whose factors are not known. The latter problem is referred
to as the RSA problem since it implies decrypting a ciphertext in the context of the
RSA cryptosystem [RSA78] without any information about the private key. The
formal definition of the RSA problem is below.

Definition 2.3.1 Let N be a product of two primes and let e > 1 be coprime to
φ(N), where φ denotes Euler’s totient function. Let y ∈ Z∗N . The RSA problem is
to find integer x ∈ Z∗N such that xe ≡ y mod N given e, y, and N .

Clearly, the RSA problem can be solved by factoring N . The reverse reduction is not
known. Boneh and Venkatesan [BV98] give an evidence that the RSA problem may
be easier than factoring. In fact, they show that any efficient algebraic reduction
from factoring to solving the RSA problem with low public exponent e can be
converted into an efficient factoring algorithm. Nevertheless, the common practice
is to assume that the RSA problem is as hard as integer factorization.

Assumption 2.3.2 No algorithm solves the RSA problem for an n-bit modulus in
time T with probability ε if T/ε < L(n).

Note that the NFS algorithm is only effective if run to completion [LV01]. In other
words, running the NFS for 10% does not yield the solution with probability 0.1.
Thus, the bound T/ε < L(n) used in Assumption 2.3.2 is a conservative bound.

2.3.3 The flexible RSA problem

In Chapter 6, the following variant of the RSA problem is used.

Definition 2.3.3 Let N be a product of two primes and let y ∈ Z∗N . The flexible
RSA problem is to find x ∈ Z∗N and e > 1 such that e is coprime with φ(N) and
xe ≡ y mod N given y and N .

The flexible RSA problem is first considered by Barić and Pfitzmann [BP97]. As
opposed to the ordinary RSA problem, in this case parameter e is not fixed so the
adversary gets more freedom. Therefore, the flexible RSA problem is not harder
than the ordinary RSA problem. On the other hand, at this moment the most
efficient method for solving the flexible RSA problem is to solve the ordinary RSA
problem.

Assumption 2.3.4 No algorithm solves the flexible RSA problem for an n-bit mod-
ulus in time T with probability ε if T/ε < L(n).

Since the flexible RSA problem is potentially easier than the ordinary RSA problem,
we say that Assumption 2.3.4 is stronger than Assumption 2.3.2. Assumption 2.3.4
is referred to as the strong RSA assumption [CS00].

14 Preliminaries

2.4 The discrete logarithm problem and its variants

This section is about the state of the art in solving the discrete logarithm problem
and its variants.

2.4.1 The discrete logarithm problem

Let G be a multiplicative group of prime order q. For x, y ∈ G, x 6= 1, and
s ∈ Zq such that y = xs, s is called the discrete logarithm of y to the base x. We
write s = logx y.

Definition 2.4.1 The discrete logarithm problem (the DL problem) is to find
logx y given x and y.

The complexity of the DL problem depends on the group G. For instance, if G is a
prime order subgroup of Z∗p, the most efficient methods for solving the DL problem in
G are Pollard’s rho method in G and the discrete logarithm variant of the Number
Field Sieve (DLNFS) in the full multiplicative group Z∗p. The running time of
Pollard’s rho method is estimated to be 1.25

√
q group operations, where q denotes

the order of G (see, e.g., [LV01]). Thus, for n = dlog2(q+1)e and m = dlog2(p+1)e,
the running time of Pollard’s rho method is about 1.25 · 2n/2m2/24 time units. In
turn, the running time of the DLNFS is about the same as the running time of the
NFS (cf. [LV00]).

Throughout this thesis, we assume that no algorithm solves the DL problem in
a subgroup of Z∗p faster than Pollard’s rho method and the DLNFS. Due to the
random-self-reducibility of the DL problem, we can formulate this assumption as
follows.

Assumption 2.4.2 Let G be a subgroup of Z∗p of prime order q. Let m be the bit
length of p and let n be the bit length of q. Then no algorithm solves the DL problem
in G in time T with probability ε if T/ε < min[L(m), 1.25 · 2n/2m2/24].

If G is a group of points of an ordinary elliptic curve, the DLNFS is not appli-
cable so the most efficient algorithm of solving the elliptic curve discrete logarithm
problem (the ECDL problem) is the exponential Pollard’s rho method.

2.4.2 The decisional Diffie-Hellman problem

The pseudorandom generator presented in Chapter 4 relies on the intractability
of the following well-known problem.

Definition 2.4.3 Let XDDH ∈ G4 be a random variable uniformly distributed on
the set consisting of all 4-tuples (x, y, v, w) ∈ G4 such that logx v = logy w and let
YDDH be chosen uniformly at random from G4. Algorithm D is said to solve the
decisional Diffie-Hellman problem (the DDH problem) in G with advantage ε if it
distinguishes the random variables XDDH and YDDH with advantage ε, that is,

|Pr[D(XDDH) = 1]− Pr[D(YDDH) = 1] | ≥ ε.

2.4 The discrete logarithm problem and its variants 15

The DDH problem originates from the security analysis of the Diffie-Hellman key
exchange protocol [DH76]. Related to the DDH problem is the computational Diffie-
Hellman problem (given x, y and xs, compute ys) abbreviated as the CDH problem.

Clearly, the DL problem is at least as hard as the CDH problem. The CDH
problem is proved to be equivalent to the DL problem under certain conditions
[Mau94; MW96]. Moreover, no groups are known such that the CDH problem
is strictly easier to solve than the DL problem. Usually these two problems are
assumed to be equally hard.

On the other hand, there exist groups (e.g., Z∗p) in which a random instance of
the CDH problem is believed to be hard while the DDH problem is trivial. The
latter groups are referred to as the non-DDH groups [GKR04] or the gap groups
[BCP03]. Furthermore, Wolf [Wol99] shows that for all groups G an algorithm that
solves the DDH problem in G is of no help for solving the CDH problem in G.

However, the computational gap between the DDH problem and the CDH prob-
lem is difficult to estimate. It is believed that except for the gap groups, there is
no way to solve the DDH problem rather than to solve the CDH problem. For con-
structing our pseudorandom generator in Chapter 4, we do not use the gap groups
(we use, for instance, prime order subgroups of Z∗p). Therefore, to compute security
parameters for the new generator, we assume that the DDH problem and the DL
problem in this group are equally hard, in agreement with common practice.

The following assumption is about intractability of the DDH problem in a prime
order subgroup of Z∗p.

Assumption 2.4.4 Let G be a subgroup of Z∗p of prime order q. Let m be the bit
length of p and let n be the bit length of q. Then, no T -time algorithm solves the
DDH problem in G with probability ε if T/ε < min[L(m), 1.25 · 2n/2m2/24].

Similarly to the situation in Section 2.3, Assumption 2.4.4 is said to be stronger
than Assumption 2.4.2.

2.4.3 The DLSE problem

Another variant of the discrete logarithm problem is the discrete logarithm with
short exponents problem (the DLSE problem) introduced by van Oorschot and
Wiener [vOW96].

Definition 2.4.5 Let x, y ∈ G and let c be a positive integer. The c-DLSE problem
is to find s, 0 ≤ s < 2c, such that y = xs given x, y, and c (if such an s exists).

Clearly, the DLSE problem is not more intractable than the original discrete loga-
rithm problem.

In the case of Z∗p, the fastest algorithms for solving the DLSE problem are
the discrete logarithm variant of the NFS and Pollard’s lambda method . The
complexity of the latter is close to 2 ·2c/2 multiplications in Z∗p, that is, 2c/2+1n2/24
time units (cf. [Pol00]).

16 Preliminaries

Assumption 2.4.6 No T -time algorithm solves the DLSE problem in Z∗p with prob-
ability ε if T/ε < min[L(n), 2c/2+1n2/24].

2.4.4 The x-logarithm problem

The x-logarithm problem [Bro06; BG07] is a variant of the discrete logarithm
problem which arises in the setting of elliptic curve cryptography.

Let Fp be a prime field and let E(Fp) be an elliptic curve over F. The curve
forms a group under the standard chord-and-tangent addition. Assume that the
curve is chosen in such a way that the order of the group #E(Fp) is prime so any
nonzero element of the group is a generator. Let x : E(Fp) 7→ {0, 1, . . . , p − 1} be
the function that gives the x-coordinate of a point on the curve interpreted as an
integer.

Definition 2.4.7 Let r ∈R {0, 1, . . . ,#E(Fp) − 1} and R ∈R E(Fp). Let P be a
nonzero element of the group E(F). The x-logarithm problem is to distinguish rP
from x(R)P , given P .

In the above definition and throughout this thesis, notation “s ∈R S” means that
the element x is chosen uniformly at random from the set S.

Brown [Bro06] conjectures that the x-logarithm problem is as hard as the ECDL
problem. This fact, however, seems very hard to prove. For this thesis, we do not
need an explicit assumption about the intractability of the x-logarithm problem.

Chapter 3

Cryptanalysis of the Dual Elliptic
Curve pseudorandom generator

Anyone who considers
arithmetical methods of
producing random digits is, of
course, in a state of sin.

John von Neumann

In this chapter, we analyse the security of the Dual Elliptic Curve generator
that appears in NIST SP800-90 [BK05]. We show that even though breaking the
generator is claimed to be as hard as solving a difficult problem the generator is in
fact insecure. An efficient attack is presented.

This chapter is based on the joint work with B. Schoenmakers [SS06].

3.1 Introduction

The Dual Elliptic Curve pseudorandom generator (the DEC generator) is pro-
posed by Barker and Kelsey [BK05]. It is claimed in [BK05, Section 10.3.1] that
the pseudorandom generator is secure unless the adversary can solve the elliptic
curve discrete logarithm problem (the ECDL problem, see Section 2.4.1) for the
corresponding elliptic curve. However, the claim is supported only by an informal
discussion. No security reduction is given, that is, it is not shown that an adversary
that breaks the pseudorandom generator implies a solver for the ECDL problem.

We argue that the DEC generator is insecure and we provide experimental ev-
idence of that. The attack does not imply solving the ECDL problem for the
corresponding elliptic curve. Our method is sufficiently efficient so that it can be
implemented on an ordinary PC.

Actually, the generator is insecure because pseudorandom bits are extracted
from points of the elliptic curve improperly. The authors of [BK05] assume that

17

18 Cryptanalysis of the Dual Elliptic Curve pseudorandom generator

the 240 least significant bits of the x-coordinate of a random point of the elliptic
curve over the prime field Fp, where dlog2 pe = 256, are indistinguishable from 240
uniformly distributed random bits. We show that this is not the case. Based on this
observation, we construct an algorithm (an adversary) that efficiently distinguishes
the pseudorandom sequences produced by the DEC generator from the sequences
of uniformly distributed random bits.

3.2 The DEC generator

Before describing the DEC generator, some notation has to be introduced.
Let p = 2256− 2224 +2192 +296− 1. Let E(Fp) denote the elliptic curve over the

prime field Fp consisting of all pairs (x, y) ∈ Fp × Fp such that

y2 = x3 + ax + b,

a, b ∈ Fp, and a point at infinity O. The elliptic curve equipped with the standard
chord-and-tangent addition forms a group. The field elements a and b are chosen in
such a way that the order of the group #E(Fp) is prime so the group is cyclic and
any nonzero element of the group is a generator (see also [BK05, Appendix A.1]).
According to Hasse’s theorem

|#E(Fp)− p− 1| ≤ 2
√

p,

so in our case #E(Fp) ≈ 2256.
Recall that x : E(Fp) 7→ {0, 1, . . . , p − 1} is the function that gives the x-

coordinate of a point on the curve interpreted as an integer (see also Section 2.4.4).
Let Li(s) = s mod 2i, for s, i ∈ Z, i > 0.

Let P = (xP , yP) and Q = (xQ, yQ) be two points on the curve E(Fp). Note
that in general the number α such that P = αQ is difficult to compute due to the
intractability of the ECDL problem. The points P and Q are the system parameters
of the DEC generator. Their coordinates are specified in [BK05, Appendix A.1].
The seed of the DEC generator is a random integer s0 ∈R {0, 1, . . . ,#E(Fp) − 1}.
The DEC generator (Algorithm 3.2.1) transforms the seed into the pseudorandom
sequence of length 240k, k > 0.

Algorithm 3.2.1 The Dual Elliptic Curve pseudorandom generator
Input: s0 ∈ {0, 1, . . . ,#E(Fp)− 1}, system parameters P,Q ∈ E(Fp), k > 0
Output: 240k bits

for i = 1 to k do
set si ← x(si−1P)
set ri ← L240(x(siQ))

end for
return r1, . . . , rk

Observe that for i ≥ 1, the i-th state of the generator si is a number from the set
{0, 1, . . . , p−1} while the seed s0 is taken from the set {0, 1, . . . ,#E(Fp)−1}. It may

3.3 The distinguishing attack on the DEC generator 19

seem to be a problem because p 6= #E(Fp) so siP is not distributed uniformly at ran-
dom in the set E(Fp). Fortunately, the statistical distance ∆(U#E(Fp), Up) ≈ 2−128,
which is negligible, so the above fact does not affect the security of the pseudoran-
dom generator (the notion of statistical distance is introduced in Section 2.2).

A more serious issue is that in the original version of the DEC generator [BK05]
the seed s0 is chosen uniformly at random from the set {0, 1, . . . , 2256−1} rather than
from the set {0, 1, . . . ,#E(Fp)−1}. Now, the statistical distance ∆(U2256 , U#E(Fp)) ≈
2−32, which is not negligible. Nevertheless, we do not know how to explore this
weakness of the original version, since the value of s0 is not directly used to produce
an output of the pseudorandom generator. The attack presented in the next section
is based on different ideas. The version described above (with s0 ∈R {0, 1, . . . ,
#E(Fp)− 1}) is due to [Bro06; BG07].

3.3 The distinguishing attack on the DEC generator

3.3.1 General idea

It is shown by Brown and [Bro06] that the sequence of points siQ is indistinguish-
able from the sequence of points chosen uniformly at random under the assumption
that the DDH problem in E(Fp) and the x-logarithm problem in this group are
intractable (see Section 2.4.1). Therefore, it is reasonable to assume that for all
i = 1, . . . , k, siQ behaves like a random point on the curve.

The points of the elliptic curve can be divided into 2240 equivalence classes as
follows. We say that a point R ∈ E(Fp) belongs to i-th equivalence class, i ∈
{0, 1, . . . , 2240 − 1}, if and only if L240(x(R)) = i.

Now, we introduce two random variables. Let X denote the size of i-th equiv-
alence class for i ∈R {0, 1, . . . , 2240 − 1}. Let Y denote the size of an equivalence
class in which a random point R ∈R E(Fp) lies.

Remarkably, if random variables X and Y can be efficiently distinguished, that
is, if there exists a distinguisher D with a reasonable running time such that

|Pr[D(X) = 1]− Pr[D(Y) = 1] | = ε, (3.1)

for a non-negligible ε, then the output of the DEC generator can be efficiently
distinguished from the sequence of independent uniformly distributed random bits.
Indeed, suppose X and Y can be distinguished. Consider a sequence of 240k bits.
Our goal is to guess if the sequence is produced by the DEC generator or it is
just a sequence of independent uniformly distributed bits. Let Z be the size of
the equivalence class corresponding, say, to the first 240 bits of the sequence. If
the sequence is produced by the DEC generator, Z is distributed similarly to Y ;
otherwise, Z is distributed similarly to X.

The question is, can the random variables X and Y be distinguished? Our
experiments and also our empirical argument show that it is possible. The crucial
point is that the expected value of Y is higher than the expected value of X. The
reason why E(Y) exceeds E(X) is that when measuring the size of the equivalence

20 Cryptanalysis of the Dual Elliptic Curve pseudorandom generator

class in which a randomly chosen point lies the larger equivalence classes have more
chances to be hit. In fact, it turns out that E(Y) ≈ E(X)+1. The details are below.

Lemma 3.3.1 For the random variables X and Y defined above,

E(Y) = E(X) +
Var(X)
E(X)

.

Proof: Clearly,

E(X) =
#E(Fp)

2240
.

Let s > 0. Let Cs
1 , Cs

2 . . . , Cs
ts

be the equivalence classes of size s, where ts
denotes the total number of such equivalence classes. Observe that

ts = 2240 Pr[X = s].

Let R ∈R E(Fp). Then, X and Y are connected as follows.

Pr[Y = s] =
ts∑

i=1

Pr[R ∈ Cs
i] = ts ·

s

#E(Fp)
=

2240 Pr[X = s]s
#E(Fp)

=
Pr[X = s]s

E(X)
. (3.2)

It implies that

E(Y) =
1

E(X)

∑
s

s2 Pr[X = s].

Note that
Var(X) = E(X2)− E(X)2 =

∑
s

s2 Pr[X = s]− E(X)2.

Therefore,

E(Y) =
1

E(X)
(E(X)2 + Var(X)) = E(X) +

Var(X)
E(X)

.

tu

To determine the distribution of the random variable X and, in particular,
Var(X), we have performed a simulation. We have generated 1320000 random 240-
bit strings and measured the sizes of the corresponding equivalence classes. The
240-bit strings have been divided into 330 files each consisting of 4000 strings. The
analysis of one file have taken about 2 hours and 30 minutes on a 3GHz Linux
machine with 1Gb of memory.

To produce the random bit strings, we have used the RtlGenRandom() generator
of the Platform SDK. This pseudorandom generator is built according to FIPS 186-2
Appendix 3.1 with SHA1 as the iterated function [DSS00]. It gets the seed from the
current system information (current process ID, current thread, current time, etc.).
The on-line documentation and also our own evaluation indicate that the output of
the generator is not biased so the generator is suitable for statistical measurements.

The simulation implies that Var[X] ≈ E(X), and therefore E(Y) ≈ E(X) + 1.

3.3 The distinguishing attack on the DEC generator 21

3.3.2 Probability distributions of X and Y

The fact that E(Y) ≈ E(X) + 1 suggests the following simple way to tell apart
X and Y . Let D be a distinguisher that given Z, which is either X or Y , outputs
1 if and only if Z > E(X). Let ε be the distinguishing advantage of D. To estimate
ε, it is not sufficient to know the expected values and the variances of X and Y . It
is important to determine the probability distributions of these random variables.

Let R ∈ E(Fp) and i ∈R {0, 1, . . . , 2240 − 1}. The probability that R belongs to
the i-th equivalence class is 1/2240. Now, suppose we consider all points of the curve
one after the other and measure how many of them are in the i-th equivalence class.
Assume that each point belongs to the i-th equivalence class with probability close
to 1/2240. Then, the size of the i-th equivalence class (denoted by X) is distributed
according to binomial distribution with parameters n = #E(Fp) and δ = 1/2240,
that is, for all s ≥ 0,

Pr[X = s] =
(

n

s

)
δs(1− δ)n−s.

Note that δ is quite small. It is well-known that for δ → 0 and for the fixed average
value E(X) = nδ (this limit is sometimes known as the law of rare events) the
binomial distribution approaches the Poisson distribution with parameter λ = nδ
so

Pr[X = s] ≈ λse−λ

s!
.

In the case of the Poisson distribution, the expected value always equals the variance
(see Lemma 3.3.1).

Our experiments confirm the above informal argument. They demonstrate that
X is statistically close to a Poisson-distributed random variable with parameter
λ = #E(Fp)/2240 (see Figure 3.1). From now on, we assume that X is indeed a
Poisson-distributed random variable.

Lemma 3.3.2 If X is a Poisson-distributed random variable, then for all s > 0
Pr[Y = s] = Pr[X = s − 1], so the distribution of Y is just a shifted distribution
of X.

Proof: Random variables X and Y are connected by Formula (3.2):

Pr[Y = s] =
Pr[X = s]s

E(X)
=

λse−λ

s!
· s

λ
= Pr[X = s− 1].

tu

3.3.3 Success probability of the distinguishing attack

Finally, we estimate the advantage ε of the distinguisher D defined in the begin-
ning of Section 3.3.2.

22 Cryptanalysis of the Dual Elliptic Curve pseudorandom generator

65000 65500 66000 66500

1000

2000

3000

4000

Figure 3.1: Number of equivalence classes as a function of their size (unscaled
probability density function of random variable X). In total, 1320000 random 240-
bit strings were generated and the sizes of the corresponding equivalence classes were
measured. The simulation implies that the probability density function of random
variable X is close to that of the Poisson distribution with parameter #E(Fp)/2240 ≈
216.

On one hand, Pr[X > λ] ≈ 1/2 (the probability density function of X is almost
symmetric). On the other hand,

Pr[Y > λ] =
∫ ∞

λ

λs−1e−λ

(s− 1)!
ds ≈ 0.50156.

Therefore, ε = |Pr[D(X) = 1]− Pr[D(Y) = 1]| ≈ 0.00156, which is a non-negligible
value.

The distinguishing advantage can be further improved. Recall that the DEC
generator outputs not one 240-bit string but k such strings. One can take into ac-
count all the output strings, add together the sizes of the corresponding equivalence
classes, and compare the result to kλ. In terms of X and Y , this means that we
consider a distinguisher Dk that is given Z1, . . . , Zk, which are either all instances
of X or all instances of Y . Whenever Z1 + . . . + Zk > kλ, Dk outputs 1. In our
experiments, we used k = 4000.

Note that the sum of k Poisson-distributed random variables with parameter λ
is a Poisson-distributed random variables with parameter kλ. Therefore, Pr[X1 +
. . . + Xk > kλ] ≈ 1/2 and

Pr[Y1 + . . . + Yk > kλ] =
∫ ∞

λ

(kλ)s−1e−kλ

(s− 1)!
ds ≈ 0.59757,

3.4 Conclusion 23

which means that the output of the DEC generator with k = 4000 can be distin-
guished from a sequence of independent uniformly distributed random bits with
advantage almost 10%.

In independent work, Gjøsteen [Gjø06] shows that there exists an algorithm that
predicts the next bit of the DEC generator with advantage 0.0011. The work by
Gjøsteen is based on ideas similar to those proposed in this chapter.

3.4 Conclusion

Note that the complexity of our attack is proportional to 2256−l, where l is the
number of bits extracted from a single point. So, for l = 240, the complexity of
the attack is about 216. If one extracts significantly less than 240 bits (for instance,
l = 176 bits) the attack becomes impractical. However, extracting less random
bits does not guarantee that there exists no other attack that successfully breaks
the pseudorandom generator. The reason is that the DEC generator is not provably
secure, its security does not provably rely on the intractability of the ECDL problem.

The main conclusion of this chapter is that when designing a provably secure
cryptographic scheme (e.g., a pseudorandom generator) one has to pay attention to
the security proof (the reduction). An informal argument like the one in [BK05,
Section 10.3.1] is definitely not good enough. The scheme with a certain choice of
parameters can be claimed to be provably secure only if it is shown that breaking
the scheme is as hard as solving a difficult problem faster than the fastest algorithm
known so far.

In Chapter 4, we discuss possible ways to repair the DEC generator.

24 Cryptanalysis of the Dual Elliptic Curve pseudorandom generator

Chapter 4

Efficient pseudorandom generators
based on the DDH assumption

Indistinguishable things are
identical.

Gottfried Wilhelm Leibniz

In this chapter, a family of pseudorandom generators based on the DDH as-
sumption is proposed. The new construction is a modified and generalized version
of the DEC generator [BK05]. Although in Chapter 3 the original DEC generator
is shown to be insecure, the modified version is provably secure and very efficient.

Our generator can be based on any group of prime order provided that an addi-
tional requirement is met (i.e., there exists an efficiently computable function that
in some sense enumerates the elements of the group). Two specific instances are
presented. The techniques used to design the instances, for example, the new prob-
abilistic randomness extractor are of independent interest for other applications.

Additionally, we analyze the algorithm proposed by Juels et al. [JJSH00] that
transforms uniformly random numbers into uniformly random bits. This algorithm
can be used as a building block for the new pseudorandom generator.

This chapter is an extended version of the joint work with R. R. Farashahi and
B. Schoenmakers [FSS07].

4.1 Introduction

As discussed in Section 1.4, a pseudorandom generator can be constructed from
any one-way function. Thus, intractability of the discrete logarithm problem suffices
to construct a pseudorandom generator. Such a construction was first proposed by
Blum and Micali [BM82]. However, the Blum-Micali pseudorandom generator and
similar ones are inefficient in the sense that only a single bit is output per modular
exponentiation. In this chapter, we show that the stronger assumption that the

25

26 Efficient pseudorandom generators based on the DDH assumption

decisional Diffie-Hellman problem is hard to solve (DDH assumption) gives rise to
much more efficient pseudorandom generators.

The DDH assumption is introduced in Section 2.4.2. In comparison with many
other assumptions, the DDH assumption is thoroughly studied (for more details
about the intractability of the DDH problem, refer e.g. to [NR04]) and has become
a basis for a wide variety of cryptographic schemes.

Security of our construction is tightly related to the intractability of the DDH
problem.

4.1.1 Related work

This chapter is inspired by the publication of Barker and Kelsey [BK05], in
which the the DEC generator is proposed. This generator is thoroughly analyzed in
Chapter 3. Now, we briefly recall its basic idea.

Let P and Q be points on a prime order elliptic curve over a prime field Fp

such that p is close to 2256. Let q denote the order of the curve. On input s0

chosen uniformly at random from Zq the DEC generator produces two sequences
of points siP and siQ such that si is set to be the x-coordinate of si−1P , i =
1, 2, . . . , k. The generator outputs k binary strings each string consisting of the
240 least significant bits of the x-coordinate of siQ. The sequence of points siQ
is shown to be indistinguishable from the sequence of uniformly random points
of the elliptic curve under the assumption that the DDH problem and the non-
standard x-logarithm problem (see Section 2.4.1) are intractable in E(Fp) [BG07].
However, as shown in Chapter 3, the binary sequence produced by the generator
is distinguishable from uniform. The reason is that points of the elliptic curve are
transformed into random bits in an improper way.

Some ideas of the DEC generator are present in the earlier work by Naor and
Reingold [NR04]. Let p be a prime and let g be a generator of a subgroup of Z∗p of
prime order q. Let a ∈ Zq be a fixed number. Naor and Reingold [NR04] propose a
simple function G that on input b ∈ Zq outputs (gb, gab). If b is chosen uniformly
at random, the output of the function is computationally indistinguishable from
uniform under the DDH assumption in the subgroup. Note, however, that function
G produces random elements of the subgroup rather than random bits and therefore
it is not a pseudorandom generator in the sense of Definition 2.2.1 (converting ran-
dom elements of the subgroup into random bits is a nontrivial problem). Moreover,
although function G doubles the input it cannot be iterated to produce as much
pseudorandomness as required by the application. Namely, it is not clear how to
produce a new value of b given two group elements gb and gab. Admittedly, the goal
of Naor and Reingold [NR04] is to construct not a pseudorandom generator but a
pseudorandom function, for which function G turns out to be a suitable building
block.

4.2 DDH generator 27

4.1.2 Our contributions

A possible way to repair the DEC generator is to use a robust randomness
extractor instead of just outputting the 240 least significant bits of the x-coordinates
of the corresponding points on the elliptic curve. One of such extractors is proposed
by Farashahi et al. [FPS07]. This extractor converts a uniformly random point of
an elliptic curve over F2n for an even n to n/2 random bits statistically close to
uniform (the statistical distance is shown to be about 2−n/2). Thus, for n = 256
the updated version of the DEC generator outputs 128 bits per iteration so it is
240/128 ≈ 1.9 times slower than the original generator. On the positive side, the
result of Brown [Bro06] implies that the the updated version of the generator is
provably secure under the DDH assumption and the x-logarithm assumption. A
disadvantage of the updated version is that the x-logarithm assumption is relatively
new so it is not extensively studied.

In this chapter, we modify and generalize the DEC generator so that the secu-
rity of the modified version relies only on the DDH assumption. Compared to the
original DEC generator, our generator can be based on any group of prime order
meeting an additional requirement (i.e., there exists an efficiently computable func-
tion that in some sense enumerates the elements of the group). The new generator
is more efficient than many other pseudorandom generators based on discrete log
assumptions.

We present two specific instances of the new pseudorandom generator.
The first instance is based on the group of quadratic residues modulo a safe

prime p = 2q+1. This instance uses an idea of Cramer and Shoup [CS04] who show
that there exists a simple bijective function that maps quadratic residues modulo p
to Zq.

The second instance is based on an arbitrary prime order subgroup of Z∗p, where p
is prime but not necessarily a safe prime. To construct this instance, we first propose
a surprisingly simple probabilistic randomness extractor that provided with some
extra randomness converts a uniformly random element of the subgroup of order q
to a uniformly random number in Zq, which in turn can be easily converted to a
string of uniformly random bits using, for instance, algorithm Q2 from [JJSH00] (for
an overview of probabilistic randomness extractors, refer to [Sha02]). Note that all
(probabilistic and deterministic) extractors known so far can only convert random
elements of the subgroup to bits that are statistically close to uniform.

We derive the security parameters of the new pseudorandom generators from the
corresponding security reductions. For this purpose, we make practical assumptions
about intractability of the discrete logarithm problems in the corresponding groups.

4.2 DDH generator

In this section, the main result of the chapter is presented. We propose a new
provably secure pseudorandom generator. We call it the DDH generator, since the
security of this generator relies on the intractability of the DDH problem in the

28 Efficient pseudorandom generators based on the DDH assumption

corresponding group.

4.2.1 Construction of the generator

Let G be a multiplicative group of prime order q and let enum : G×Zl 7→ Zq×Zl,
l > 0, be a bijection. Thus, on uniformly distributed input, function enum produces
uniformly distributed output. Typically, but not necessarily, l is chosen to be small.
The advantage of a smaller l is that the seed of the generator is shorter.

The seed of the DDH generator (Algorithm 4.2.1) consists of s0 ∈R Zq and
randp0, randq0 ∈R Zl. The DDH generator transforms the seed into the sequence
of k > 0 pseudorandom numbers from Zq.

Algorithm 4.2.1 DDH generator
Input: s0 ∈ Zq, randp0 ∈ Zl, randq0 ∈ Zl, system parameters x, y ∈R G, k > 0
Output: k pseudorandom integers from Zq

for i = 1 to k do
set (si, randpi)← enum(xsi−1 , randpi−1)
set (outputi, randqi)← enum(ysi−1 , randqi−1)

end for
return output1, output2, . . . , outputk

Note that the random elements x and y are not a part of the seed. These two
elements are public system parameters. In the security analysis of the generator we
assume that x and y are known to the distinguisher.

4.2.2 Security analysis

The following theorem implies that under the DDH assumption for group G
an output sequence of the DDH generator is indistinguishable from a sequence of
uniformly random numbers in Zq.

Theorem 4.2.1 Suppose there exists a T -time algorithm that distinguishes the out-
put of the DDH generator from the sequence of independent uniformly distributed
random numbers in Zq with advantage ε. Then the DDH problem in G can be solved
in time T with advantage ε/k.

Proof: The proof follows the classical hybrid technique (see, e.g., [Gol01, Sec-
tion 3.2.3]).

Suppose there exists a T -time algorithm D that distinguishes the output of
the DDH generator from a sequence of independent uniformly distributed random
numbers in Zq with advantage ε, that is,

|Pr[D(output1, output2, . . . , outputk) = 1]− Pr[D(U) = 1] | ≥ ε,

where U = (u1, u2, . . . , uk), ui ∈R Zq, i = 1, . . . , k. Consider the following hybrid
random variables.

Zi = (u1, u2, . . . , ui, output1, output2, . . . , outputk−i),

4.2 DDH generator 29

i = 0, 1, . . . , k. Note that Z0 = (output1, output2, . . . , outputk) and Zk = U .
Let j ∈R {0, 1, . . . , k − 1}. Then |Pr[D(Zj) = 1] − Pr[D(Zj+1) = 1]| ≥ ε/k,

where the probability is taken not only over internal coin flips of D but also over
the choice of j. Indeed,

|Pr[D(Zj) = 1]− Pr[D(Zj+1) = 1] |

=
k−1∑
i=0

Pr[j = i] · |Pr[D(Zi) = 1]− Pr[D(Zi+1) = 1] |

≥ 1
k

∣∣∣∣∣
k−1∑
i=0

Pr[D(Zi) = 1]− Pr[D(Zi+1) = 1]

∣∣∣∣∣
=

1
k
|Pr[D(Z0) = 1]− Pr[D(Zk) = 1]| ≥ ε/k.

Now, we show how to solve the DDH problem in G using the distinguisher D
as a building block. Let (x, y, v, w) ∈ G4. A solver for the DDH problem decides if
logx v = logy w or v and w are independent uniformly distributed random elements
of G as follows:

select j ∈R {0, 1, . . . , k − 1}
select r1, r2, . . . , rj−1 ∈R Zq, randp0 ∈R Zl, randq0 ∈R Zl

set (s1, randp1)← enum(v, randp0)
set (rj , randq1)← enum(w, randq0)
for i = 1 to k − j do

set (si+1, randpi+1)← enum(xsi , randpi)
set (ri+j , randqi+1)← enum(ysi , randqi)

end for
set Z ← (r1, r2, . . . , rk)
return D(Z)

If there exists s0 ∈ Zq such that v = xs0 and w = ys0 then rj and rj+1 are
distributed as the first and the second outputs of the DDH generator respectively,
so Z is distributed as Zj .

Otherwise, if v and w are independent uniformly distributed random elements
of G then rj+1 is distributed as the first output of the DDH generator while rj is
uniformly distributed over Zq and independent of rj+1, so Z is distributed as Zj+1.

Therefore, the above algorithm solves the DDH problem in G in time at most T
with advantage ε/k. tu

The DDH generator is not a pseudorandom generator in the sense of Definition
2.2.1. It outputs numbers in Zq rather than bits. However, converting random
numbers to random bits is a relatively easy problem. For instance, one can use
Algorithm Q2 from [JJSH00] which produces on average n−2 bits given a uniformly
distributed random number Uq, where n denotes the bit length of q (see also Section

30 Efficient pseudorandom generators based on the DDH assumption

4.5). In the latter case, the average number of bits produced by the generator is
k(n− 2).

For the sake of simplicity, in Sections 4.3 and 4.4, we assume that q is close to a
power of 2, that is, 0 ≤ (2n − q)/2n ≤ δ for a small δ. So, the uniform element Uq

is statistically close to n uniformly random bits.
The following simple lemma is a well-known result. We reproduce the proof of

this lemma for the sake of completeness.

Lemma 4.2.2 Under the condition that 0 ≤ (2n−q)/2n ≤ δ, the statistical distance
between Uq and U2n is bounded above by δ.

Proof: Let X ∈R Z2n and Y ∈R Zq. Then

2∆(Uq, U2n) =
2n−1∑
s=0

|Pr[X = s]− Pr[Y = s]|

=
q−1∑
s=0

|Pr[X = s]− Pr[Y = s]|+
2n−1∑
s=q

|Pr[X = s]− Pr[Y = s]|

=
q−1∑
s=0

∣∣∣∣ 1
2n
− 1

q

∣∣∣∣+ 2n−1∑
s=q

∣∣∣∣ 1
2n
− 0
∣∣∣∣ = q ·

∣∣∣∣ 1
2n
− 1

q

∣∣∣∣+ (2n − q) · 1
2n

= 2 · 2
n − q

2n
≤ 2δ.

tu

The next statement implies that if q is close to a power of 2, the DDH generator
is a cryptographically secure pseudorandom generator under the DDH assumption
in G.

Corollary 4.2.3 Let 0 ≤ (2n − q)/2n ≤ δ. Suppose the DDH generator is not
(T, ε)-secure. Then, if ε/k − δ ≥ 0, there exists an algorithm that solves the DDH
problem in G in time at most T with advantage ε/k − δ.

Proof: Suppose there exists a distinguisher D that runs in time at most T and

|Pr[D(output1, output2, . . . , outputk) = 1]− Pr[D(U2kn) = 1] | ≥ ε.

Let ui ∈R Zq, i = 1, 2, . . . , k, and U = (u1, . . . , uk). Lemma 4.2.2 implies that the
statistical distance ∆(U,U2kn) ≤ kδ. Thus,

|Pr[D(output1, output2, . . . , outputk) = 1]− Pr[D(U) = 1] | ≥ ε− kδ.

Now, the statement follows from Theorem 4.2.1. tu

4.3 Specific instances of the DDH generator 31

4.3 Specific instances of the DDH generator

To implement the DDH generator, one has to choose the group G of prime order
q and function enum that enumerates the group elements. In this section, we propose
two specific instances of the DDH generator.

Throughout this section, we assume that q is close to a power of 2, that is,
0 ≤ (2n − q)/2n ≤ δ for a small δ and some integer n. We like to emphasize that
this assumption is made for the sake of simplicity only. M denotes the total number
of pseudorandom bits produced by the generator.

4.3.1 Group of quadratic residues modulo safe prime

To construct the first instance of the DDH generator, we use an idea of Cramer
and Shoup [CS04] who show that there exists a simple deterministic function that
enumerates elements of the group of quadratic residues modulo safe prime.

Let p be a safe prime, p = 2q + 1, where q is prime. Let G1 be a group of
nonzero quadratic residues modulo p. The order of G1 equals q. Consider the
following function enum1 : G1 7→ Zq,

enum1(x) =


x, if 1 ≤ x < q;
p− x, if q + 2 ≤ x < p;
0, otherwise.

It is shown in [CS04] that function enum1 is a bijection. For completeness, we
reproduce the proof of this fact here.

Lemma 4.3.1 Function enum1 defined above is a bijection.

Proof: Since q is odd, there are two possibilities: either q ≡ 3 mod 4 or q ≡ 1
mod 4. In both cases, p ≡ 3 mod 4 so

(
−1
p

)
= −1.

Now, we prove that for all x ∈ G1, we have p− x /∈ G1. Indeed,(
p− x

p

)
=
(
−x

p

)
= −

(
x

p

)
= −1.

In particular, it implies that either q ∈ G1 or q + 1 ∈ G1 but not both. tu

Note that enum1 does not require any additional input so in terms of Section
4.2.1 l = 1.

Let s0 ∈R Zq be the seed. Generator PRG1 (Algorithm 4.3.1) transforms the
seed into a sequence of kn pseudorandom bits.

The next statement follows from Corollary 4.2.3.

Proposition 4.3.2 Suppose pseudorandom generator PRG1 is not (T, ε)-secure.
Then, if ε/k − δ ≥ 0, there exists an algorithm that solves the DDH problem in
G1 in time at most T with advantage ε/k − δ.

32 Efficient pseudorandom generators based on the DDH assumption

Algorithm 4.3.1 Generator PRG1

Input: s0 ∈ Zq, system parameters x, y ∈R G1, k > 0
Output: kn pseudorandom bits

for i = 1 to k do
set si ← enum1(xsi−1)
set outputi = enum1(ysi−1)

end for
return output1, output2, . . . , outputk

The seed length n plays the role of security parameter of the generator. Clearly,
smaller n gives rise to a faster generator. On the other hand, for larger n the
generator is more secure. Our goal is to select n as small as possible such that the
generator is (288, 0.01)-secure.

Let δ = ε/(2k). Then, it follows from Proposition 4.3.2 under the DDH assump-
tion (Assumption 2.4.4) that the generator is (T, ε)-secure if 2kT/ε < L(n), where
L(n) is the complexity of the discrete logarithm variant of the Number Field Sieve
(cf. Section 2.4.2). Since k = M/n, we get

2MT/(nε) < L(n). (4.1)

For M = 220, T = 288 and ε = 0.01, the smallest parameter n that satisfies the
above inequality is n ' 1800.

Recall that q satisfies 0 ≤ (2n − q)/2n ≤ δ and we assume that δ = ε/(2k). For
M = 220, n = 1800, and ε = 0.01, this condition implies that 0 < 21800 − q < 21783.
There are plenty of safe primes p = 2q + 1 such that q satisfies the above condition.

4.3.2 Arbitrary prime order subgroup of Z∗p
In this section, we show that the DDH generator can not only be based on the

group of quadratic residues modulo a safe prime but on any prime order subgroup
of Z∗p, where p is a prime but not necessarily a safe prime.

Let q be a prime factor of p− 1, p− 1 = lq, l ≥ 2, such that gcd(l, q) = 1. If p is
a safe prime then l = 2. Denote the subgroup of Z∗p of order q by G2. Throughout
this section, multiplication of integers is done modulo p.

Let split : Z∗p 7→ Zq × Zl denote a bijection that splits an element of Z∗p into
two smaller numbers. An example of split is a function that on input z ∈ Z∗p
returns (z − 1) mod q and b(z − 1)/qc. Let t ∈ Z∗p be an element of order l. Let
enum2 : G2 × Zl 7→ Zq × Zl be the following function:

enum2(x, rand) = split(xtrand),

where x ∈ G2, rand ∈ Zl. The following lemma shows that enum2 is a bijection and
thus it is suitable for building the DDH generator.

Lemma 4.3.3 Function enum2 defined above is a bijection.

4.3 Specific instances of the DDH generator 33

Proof: Define f : G2×Zl 7→ Z∗p by f(x, rand) = xtrand, for x ∈ G2, t ∈ Z∗p of order
l, and rand ∈ Zl. To prove the statement of the lemma, we first show that f is a
bijection.

Suppose that x1t
rand1 = x2t

rand2 for xi ∈ G2, randi ∈ Zl, i = 1, 2. Since x2 ∈ G2,
x2 6= 0. Then, x1/x2 = trand1−rand2 ∈ G2, so tq(rand1−rand2) = 1. Therefore, l divides
q(rand1 − rand2). Since gcd(q, l) = 1, this implies that l divides rand1 − rand2. The
latter implies that rand1 = rand2 and thus x1 = x2.

Therefore, f is indeed a bijection and thus enum2 is also a bijection as a
composition of two bijective functions. tu

Let PRG2 denote the instance of the DDH generator that uses the group G2 and
the function enum2 defined above. The next statement follows from Corollary 4.2.3.

Proposition 4.3.4 Suppose pseudorandom generator PRG2 is not (T, ε)-secure.
Then, if ε/k − δ ≥ 0, there exists an algorithm that solves the DDH problem in
G2 in time at most T with advantage ε/k − δ.

Let m denote the bit length of p. At each step i = 1, 2, . . . , n, pseudorandom
generator PRG2 computes xsi−1 and ysi−1 and then uses these elements to compute
the corresponding outcomes of function enum2. Therefore, each step implies two
modular exponentiations with n-bit exponents and two modular exponentiations
with (m− n)-bit exponents. Since PRG2 outputs n bits per step the computational
effort per output bit is proportional to m3/n. Our goal is now to determine param-
eters m and n that minimize the computational effort under the condition that the
generator is (288, 0.01)-secure.

As before, let δ = ε/(2k). Then, it follows from Proposition 4.3.4 that under
Assumption 2.4.4 the generator PRG2 is (T, ε)-secure if

2MT/(nε) < min[L(m), 1.25 · 2n/2m2/24]. (4.2)

For M = 220, T = 288, ε = 0.01, the above condition is satisfied for m & 1800,
n & 180. The computational effort is minimized if n ' m.

In comparison with PRG1, the seed of PRG2 is somewhat longer, although if
n ' m it is roughly of the same size. Moreover, PRG2 is less efficient than PRG1

in terms of computational effort since the computation of enum2 implies a modular
exponentiation while enum1 implies at most 1 integer subtraction. A significant
advantage of PRG2 versus PRG1 is that the former can be based on any prime order
subgroup of Z∗p for any prime p provided that the size of the subgroup is sufficiently
large to resist Pollard’s rho attack.

4.3.3 Discussion

Function enum2 used as a building block of generator PRG2 is of independent
interest. The reason is that this function can be viewed as a probabilistic randomness
extractor (for an overview of probabilistic randomness extractors, refer to [Sha02]).
Provided with some extra randomness, it converts a uniformly random element of a

34 Efficient pseudorandom generators based on the DDH assumption

subgroup of Z∗p of order q to a uniformly random number in Zq, which in turn can be
easily converted to a string of uniformly random bits using, for instance, algorithm
Q2 from [JJSH00] (cf. Section 4.5). Note that all (probabilistic and deterministic)
extractors known so far can only convert random elements of the subgroup to bits
that are statistically close to uniform.

Our extractor is more efficient than the known general purpose probabilistic
randomness extractors (e.g., the universal hash functions [HILL99]) in terms of the
number of extra random bits required. For instance, let m = 1024 and n = 160
(these parameters are used for the Digital Signature Algorithm developed by FIPS
[DSS00]). Suppose the statistical distance to be reached is ε = 2−40. Then, the
approach based on the universal hash functions converts a random element of the
160-bit subgroup to n−2 log2(1/ε) = 80 bits requiring m+n−2 log2(1/ε)−1 = 1103
extra random bits. In contrast, our approach converts a random element of the
subgroup to about 160 bits requiring only m−n = 844 extra random bits. Moreover,
our extractor outputs uniformly random bits whereas the approach based on the
universal hash functions outputs bits statistically close to uniform.

The recently proposed deterministic extractor by Fouque et al. [FPSZ06] does
not require any extra randomness to produce the output. However, it extracts
substantially less than half of the bits of a uniformly distributed random element of
the subgroup. Our extractor does require extra randomness rand ∈ Zl, l ≥ 1, but
one gets this randomness back in the sense that the extractor outputs not only the
integer from Zq but also an element of Zl. The crucial advantage of our extractor
is that it extracts all the bits of the subgroup element.

The new extractor can be used not only for designing pseudorandom generators
but also for key exchange protocols to convert the random group element shared by
the parties involved to the random binary string.

4.4 Generator PRG1 versus Gennaro’s generator

In this section, we compare the first instance of the DDH generator, i.e., gen-
erator PRG1, with the well-known Gennaro’s generator [Gen05] in the setting of
concrete security.

Security of Gennaro’s generator relies on the intractability of the discrete log-
arithm with short exponent problem (the DLSE problem) in Z∗p. This problem is
discussed in Section 2.4.3.

Now, we recall the main result of [Gen05].
Let g be a generator of Z∗p, where p is an n-bit safe prime. Let x1 ∈R Zp−1

be the seed. Gennaro’s generator (Algorithm 4.4.1) parameterized by c and k such
that 0 < c < n, k > 0 transforms the seed into a pseudorandom sequence of length
k(n− c− 1). For x ≥ 0 and j > 0, let `j(x) ∈ {0, 1} denote the j-th least significant
bit of x, so

x =
∑

j

`j(x)2j−1.

4.4 Generator PRG1 versus Gennaro’s generator 35

Algorithm 4.4.1 Gennaro’s pseudorandom generator
Input: x1 ∈ Zp−1, integer parameters c, k
Output: k(n− c− 1) pseudorandom bits

for i = 1 to k do
set outputi ← `2(xi), `3(xi), . . . , `n−c(xi)
set xi+1 ← g

∑n
j=n−c+1 `j(xi)2

j−1+`1(xi)

end for
return output1, output2, . . . , outputk

The following statement is the concrete version of Theorem 2 of [Gen05].

Theorem 4.4.1 (Gennaro) Suppose Gennaro’s pseudorandom generator is not
(T, ε)-secure. Then there exists an algorithm that solves the c-DLSE in Z∗p in ex-
pected time 16c(ln c)(k/ε)3T .

Note that k = M/(n−c−1), where M denotes the total number of pseudorandom
bits output by the generator. The above theorem implies that under the DLSE
assumption (Assumption 2.4.6) Gennaro’s generator is (T, ε)-secure if

16c(ln c)M3T

ε3(n− c− 1)3
< min[L(n), 2c/2+1n2/24]. (4.3)

Let n = 3000, c = 225,M = 220 as suggested by Gennaro [Gen05]. Figure 4.1
shows the values of T and ε for which Gennaro’s generator is provably (T, ε)-secure in
accordance with Condition (4.3). Namely, if log2 T and log2(1/ε) are inside the black
triangle then Gennaro’s generator is (T, ε)-secure. The figure also shows the values
of T and ε for which generator PRG1 with n = 1800 is (T, ε)-secure. In comparison
with Gennaro’s generator, PRG1 is secure for a wider range of parameters T and ε.

Next, we compare the computational efforts of these two generators.
Gennaro’s generator outputs (n − c − 1) bits per modular exponentiation with

c-bit exponent. The standard right-to-left exponentiation costs on average c/2 mul-
tiplications and c squarings. Assume that a squaring modulo p takes about 80% of
the time of a multiplication modulo p (cf. [LV00]). Then, the average computational
effort is 1.3cn2/(24(n − c − 1)) time units per output bit. For n = 3000, c = 225,
we get about 40000 time units per output bit.

Generator PRG1 outputs n bits at the cost of 2 modular exponentiations with n-
bit exponent. The average computational effort for n = 1800 is 2.6n2/24 ≈ 290000.

So, although the DDH generator provides provable security for a wider range
of parameters T and ε, it is about 7 times less efficient in terms of computational
effort. There is a tradeoff between security and efficiency.

Finally, note that the DLSE problem has not been studied as extensively as the
DDH problem which gives more credibility to our construction.

36 Efficient pseudorandom generators based on the DDH assumption

20 40 60 80
log2 T

20

40

60

80

log2 H1�ΕL

20 40 60 80
log2 T

20

40

60

80

log2 H1�ΕL

Figure 4.1: If the values of log2 T and log2(1/ε) are inside the black triangle then
Gennaro’s generator with parameters n = 3000, c = 225, M = 220 is (T, ε)-secure.
Generator PRG1 with n = 1800 is secure not only for log2 T and log2(1/ε) from the
black triangle but also for the ones from the gray area.

4.5 Converting random numbers to random bits

In this section, we consider the algorithm proposed by Juels et al. [JJSH00] that
transforms uniformly random numbers into uniformly random bits. This algorithm
can be used as a building block for the DDH generator and also has some other
important applications (e.g., key exchange protocols).

In the original paper [JJSH00], the authors analyze the expected number of bits
one can extract from a single random integer. They show that on average at least
dlog2(b + 1)e − 2 random bits can be extracted from a random integer uniformly
distributed over an interval of length b.

We provide a more detailed analysis of the algorithm. We compute not only
the average number of extracted bits but also its probability distribution and the
variance.

4.5.1 The algorithm of Juels et al.

Let m be a random integer uniformly distributed over an interval {0, 1, . . . , b−1},
2n−1 ≤ b < 2n, n > 0. The algorithm proposed by Juels et al. traverses m bit by
bit starting at the most significant bit `n(m). Whenever `i(m) < `i(b), 0 ≤ i < n,
the extractor outputs the i− 1 least significant bits of m.

More formally, the algorithm is as follows.

4.5 Converting random numbers to random bits 37

Algorithm 4.5.1 The algorithm that converts random numbers to random bits
Input: random integer m ∈R Zb

Output: i uniformly random bits, 0 ≤ i < n
i← n
while `i(m) = `i(b) do

i← i− 1
end while
return `1(m), . . . , `i−1(m)

The algorithm can extract up to n − 1 random bits. Under the condition that
`i(m) < `i(b), the i least significant bits of m are distributed uniformly.

4.5.2 Analysis of the algorithm

Let Y be a random variable that denotes the number of random bits extracted
from an integer m chosen uniformly at random from an interval {0, 1, . . . , b − 1},
2n−1 ≤ b < 2n. We determine the probability distribution, the expected value, and
the variance of the random variable Y .

The expression for the expected value of Y is already known from [JJSH00]. We
reproduce this analysis for the sake of completeness and also provide more details.

Probability distribution and expected value

Theorem 4.5.1 The probability distribution of random variable Y that represents
the number of random bits extracted by Algorithm 4.5.1 from an integer m ∈R Zb

with 2n−1 ≤ b < 2n is as follows.

Pr[Y = i] =
2i`i+1(b)

b
, 0 ≤ i < n.

Proof: Let gi, 0 ≤ i < n, denote the event that the n − i − 1 most significant
bits of m are the same as the n − i − 1 most significant bits of b, `i+1(m) = 0 and
`i+1(b) = 1. Algorithm 4.5.1 extracts i bits if and only if event gi happens. Then,
for 0 ≤ i < n,

Pr[Y = i] = Pr(gi) =
2i`i+1(b)

b
. (4.4)

This completes the proof. tu

The above result implies that the expected value of Y satisfies

E(Y) =
n−1∑
i=1

2i`i+1(b)i
b

. (4.5)

Next, we show that b = 2n − 1 is the worst case in the sense that the average
number of extracted bits is minimal for this value of b.

38 Efficient pseudorandom generators based on the DDH assumption

Lemma 4.5.2 Let 2n−1 ≤ b < 2n, and suppose that `i+1(b) = 1 for some i, 0 ≤
i < n− 1. Put b̃ = b− 2i. Let E(Y) (resp., E(Ỹ)) be the expected value of Y (resp.,
Ỹ) corresponding to the upper bound b (resp., b̃). Then E(Y) < E(Ỹ).

Proof: Since the expected value satisfies (4.5), we have to prove that

n−1∑
j=0

2j`j+1(b)j

n−1∑
k=0

2k`k+1(b)
<

n−1∑
j=0

2j`j+1(b)j − 2ii

n−1∑
k=0

2k`k+1(b)− 2i

,

which is equivalent to

n−1∑
j=0

2j`j+1(b)j > i
n−1∑
j=0

2j`j+1(b).

Since i ≤ n− 2, the result follows from

n−1∑
j=0

2j`j+1(b)(j − n + 2) = 2n−1 −
n−2∑
j=0

2j`j+1(b)(n− j − 2)

≥ 2n−1 −
n−2∑
j=0

2j(n− j − 2) =
n−1∑
j=0

2j(j − n + 2) = n > 0,

using that `n(b) = 1. tu
Let b = 2n − 1. Then Equation (4.5) and Lemma 4.5.2 implies that

Emin(Y) =
n−1∑
i=1

2i

2n − 1
i = n− 2 +

n

2n − 1
. (4.6)

Corollary 4.5.3 The expected value E(Y) of the number of random bits extracted
by Algorithm 4.5.1 from an integer m ∈R Zb is more than n−2 for all n and b such
that 2n−1 ≤ b < 2n. If b = 2n − 1, then E(Y)→ n− 2 as n→∞.

Variance

Now, we determine the variance of random variable Y that represents the number
of random bits extracted from an integer m chosen uniformly at random from an
interval {0, 1, . . . b− 1}, 2n−1 ≤ b < 2n.

Theorem 4.5.4 The variance Var(Y) of the number of random bits extracted by
Algorithm 4.5.1 from an integer m ∈R Zb, 2n−1 ≤ b < 2n, satisfies the following
equation:

Var(Y) =
n−1∑
i=0

2i`i+1(b)(i− E(Y))2

b
.

4.6 Conclusion 39

Proof: By definition, Var(Y) = E((Y − µ)2), where µ denotes E(Y). Recall that
gi, 0 ≤ i < n, denotes the event that the n− i− 1 most significant bits of m are the
same as the n− i− 1 most significant bits of b, `i+1(m) = 0 and `i+1(b) = 1. Then,

Var(Y) =
n∑

i=0

E((Y − µ)2|gi) Pr(gi),

Note that E((Y − µ)2|gi) = (i− µ)2. It follows from (4.4) that

Var(Y) =
n−1∑
i=0

2i`i+1(b)(i− µ)2

b
.

tu

4.6 Conclusion

Independent of our work, Jiang [Jia06] recently proposed a pseudorandom gener-
ator which is also provably secure under the DDH assumption. The security proper-
ties of Jiang’s generator are similar to ours (hence his generator compares similarly
to Gennaro’s generator). In comparison to Jiang’s generator, our construction has
two major advantages. Firstly, Jiang’s generator can be based only on the group
of quadratic residues modulo a safe prime while our construction extends to many
other groups of prime order. Secondly, the seed of our generator PRG1 is half as
long as the seed of Jiang’s generator.

The seed length is a critical issue for pseudorandom generators. For instance, if
a pseudorandom generator is used as a keystream generator for a stream cipher the
seed length corresponds to the length of the secret key. Also, from a theoretical point
of view, the seed length is perhaps the most important parameter of a pseudorandom
generator, as discussed in detail in a recent paper by Haitner et al. [HHR06].

Finally, we note that constructing an efficient provably secure pseudorandom
generator which relies on the intractability of the DDH problem on an ordinary
elliptic curve is an interesting open problem. For most ordinary elliptic curves, the
best known methods for solving the elliptic curve discrete logarithm problem are
the exponential square root attacks, so to reach a security level of 288 time units it
suffices to let the size of the group be about 2176. Hence, such an elliptic curve based
generator would allow for a considerable reduction of the seed length, potentially to
a seed of 176 bits only.

To implement the DDH generator based on an elliptic curve, one has to construct
an efficiently computable function that bijectively maps the points of the curve to
Zq, where q is the order of the group. This function seems to be difficult to construct
for ordinary elliptic curves. For some supersingular elliptic curves, the function can
be constructed (see, e.g., [Kal88]). However, the latter curves cannot be used for
the DDH generator since the DDH problem in these curves can be easily solved by
computing Weil pairings [MOV93; JN03].

40 Efficient pseudorandom generators based on the DDH assumption

Recall that the updated version of the DEC generator considered at the be-
ginning of Section 4.1.2 is secure not only under the DDH assumption but also
under the non-standard assumption that the x-logarithm is intractable. The latter
assumption seems to be difficult to get rid of.

Chapter 5

Concrete security of the RSA
generator

No one can duplicate the
confidence that RSA offers after
20 years of cryptanalytic review.

Bruce Schneier

In this chapter, a new security proof for the RSA generator is proposed. Our
reduction algorithm relies on the techniques of Fischlin and Schnorr [FS00], as well
as ideas of Vazirani and Vazirani [VV84]. We combine these approaches in a novel
way for the case that the generator outputs more than one bit per application of
the RSA function. The new reduction is more efficient than all previously known
reductions. We show how to select both the size of the modulus and the number
of bits extracted on each iteration such that a desired level of provable security is
reached, while minimizing the computational effort per output bit.

This chapter is based on the joint work with B. Schoenmakers [SS05].

5.1 Introduction

The RSA problem is the problem of decrypting a ciphertext in the context of
the RSA cryptosystem [RSA78] without any information about the private key (this
problem is stated formally in Section 2.3.2). The RSA generator is a provably secure
pseudorandom generator based on the intractability of the RSA problem. This is
one of the classical pseudorandom generators.

Before describing the RSA generator, we introduce some notation. Let N be an
RSA modulus, i.e., let N be a product of two primes and let e > 1 be coprime with
φ(N), where φ denotes Euler’s totient function. We denote by [x]N the smallest
nonnegative residue of x modulo N , that is, [x]N = x mod N , [x]N ∈ {0, 1, . . . ,
N − 1}. As before, `j(x) denotes the j-th least significant bit of x and Lj(y) =

41

42 Concrete security of the RSA generator

y mod 2j , for any x ≥ 0, j > 0, and y ∈ Z.
Let x0 ∈R ZN be a seed. The RSA generator (Algorithm 5.1.1) transforms

the seed into the pseudorandom sequence of length M > 0 by iterating the RSA
encryption function EN (x) = [xe]N .

Algorithm 5.1.1 RSA generator with j output bits per iteration
Input: Modulus N , seed x0 ∈R ZN , parameters e, j, k
Output: Pseudorandom sequence of length M = kj

for i = 1 to k do
xi ← [xi−1]N
return Lj(xi)

end for

The first result concerning the security of the RSA generator is published by
Goldwasser et al. [GMT82]. They show that a polynomial-time algorithm that
recovers (x mod 2) from EN (x) can be transformed into a polynomial-time solver for
the RSA problem. Note that Goldwasser et al. consider only algorithms that recover
(x mod 2) from EN (x) with probability 1 so their result does not immediately imply
that the RSA generator with one output bit per iteration (j = 1) is asymptotically
secure.

The result of Goldwasser et al. is improved in a number of ways. Ben-Or et al.
[BOCS83, Section 3] show that no polynomial-time algorithm can recover (x mod 2)
from EN (x) with probability more than 3/4 + 1/f(log N), for any polynomial f ,
unless there exists a polynomial-time solver for the RSA problem. In [BOCS83,
Section 4] this result is generalized for almost any individual RSA message bit.
Finally, Alexi et al. [ACGS88] prove that (x mod 2) cannot be recovered from
EN (x) with probability more than 1/2 + 1/f(log N), which implies that the RSA
generator with one output bit per iteration is indeed asymptotically secure. Besides
that, Alexi et al. consider a problem of simultaneous security of the RSA message
bits and prove that the O(log log N) least significant bits are secure. The latter
result implies that the RSA generator is asymptotically secure for j = O(log log N).

Vazirani and Vazirani [VV84] prove that the Blum-Blum-Shub generator [BBS86]
based on the Rabin function RN (x) = [x2]N , where N = pq, p ≡ q ≡ 3 mod 4, is
also asymptotically secure for j = O(log log N).

A disadvantage of the above results is that they establish asymptotic security
of the pseudorandom generators rather than concrete security. As discussed in Sec-
tion 1.5, asymptotic security implies that no polynomial time adversary can break
the pseudorandom generator while, in practice, it is important to protect crypto-
graphic systems against adversaries investing a specific amount of computational
effort.

The reductions [GMT82; BOCS83; VV84; ACGS88] are polynomial-time but
they are not tight. Therefore, according to these reductions the seed length of
the RSA generator that corresponds to a reasonable level of security is enormously
large. For instance, the reduction of Alexi et al. [ACGS88] implies that to protect

5.2 The starting point of the security analysis 43

against adversaries with running time 2120 and advantage 0.01 one has to use a
50000-bit modulus N (for j = 6, M = 220). Of course, one exponentiation modulo
a 50000-bit number is a high price for just one output bit. Moreover, the results
[BOCS83; VV84; ACGS88] do not explain how to choose the number of bits j to be
output on each iteration, that is, the constant in front of log log N is unclear. For
instance, in [YY04; ECS] it is recommended to use the Blum-Blum-Shub generator
with log2 log2 N output bits per iteration. Koblitz and Menezes [KM06] show that
this choice is not backed up by the security proof.

In this chapter, we solve the following problems. We tighten the security proof
for the RSA generator in case j > 1 and we explain how to select both the size of
the modulus and the number of bits extracted on each iteration such that a desired
level of security is reached, while minimizing the computational effort per output
bit.

The new reduction is more efficient than all previously known reductions. It
shows that the RSA generator (for j = 6, M = 220) is provably secure against
adversaries with running time 2120 and advantage 0.01 for 13000-bit modulus, which
is still large but significantly less than 50000.

Our work is based on the approach of Fischlin and Schnorr [FS00] who propose a
strong reduction for the RSA generator with one output bit per iteration. Using an
idea of Vazirani and Vazirani (i.e., the computational XOR proposition) we extend
the argument of [FS00] to the case in which more than one bit is extracted on
each iteration. A similar generalization is suggested by Fischlin and Schnorr [FS00,
Section 2] however they do not provide any sufficient detail.

Throughout this chapter, n denotes the bit length of the modulus N ; we assume
that n > 29.

5.2 The starting point of the security analysis

Our ultimate goal of the security analysis of the RSA generator is to transform
an adversary that distinguishes sequences produced by the generator from uniformly
random sequences into a solver for the RSA problem.

The starting point of the analysis is Lemma 5.2.1, which shows that if the RSA
generator is not secure then one can construct an algorithm Oxor with certain prop-
erties. In Section 5.4, we show that algorithm Oxor can be used as an oracle for
inversion of the RSA one-way function. The idea to use oracle Oxor for the security
analysis of the RSA generator originates from [VV84].

Lemma 5.2.1 uses the following notation. Let π ⊆ {1, 2, . . . , j} be a nonempty
set. For an integer y, y ≥ 0, let

π(y) =
∑
i∈π

`i(y) mod 2.

Note that the set and the corresponding XOR-function are denoted by the same
symbol π.

44 Concrete security of the RSA generator

Lemma 5.2.1 Let x ∈R ZN and let π be a random nonempty subset of the set
{1, 2, . . . , j} with uniform probability distribution. Suppose the RSA generator is
not (T, ε)-secure. Then there exists an algorithm Oxor that on input (π,EN (x))
guesses π(x) with probability at least 1/2 + δ, where δ = (2j − 1)−1(ε/M). Here,
the probability is taken over choices of x and π and also over internal coin flips of
Oxor. The running time TOxor

of Oxor satisfies TOxor
≤ T + Mn2/24.

Proof: The proof of the lemma uses the hybrid technique (see, e.g., [Gol01,
Section 3.2.3]) and the computational XOR-proposition [VV84; Gol95].

In the first part of the proof, we construct an algorithm Odist that on input
EN (x) distinguishes Lj(x) from r ∈R {0, 1}j with advantage ε/k, i.e.,

|Pr[Odist(EN (x), Lj(x)) = 1]− Pr[Odist(EN (x), r) = 1]| ≥ ε/k,

where k is the number of iterations done by Algorithm 5.1.1. In the second part of
the proof, we transform Odist into Oxor.

Let x1, x2, . . . , xk be the sequence of numbers computed by the RSA generator
with seed x, that is, x1 = EN (x), x2 = EN (x1), . . . , xk = EN (xk−1). The output
of the RSA generator is a random variable

Z0 = (Lj(x1), Lj(x2), . . . , Lj(xk)).

For i = 1, 2, . . . , k, consider hybrid random variables

Zi = (r1, r2, . . . , ri, Lj(x1), Lj(x2), . . . , Lj(xk−i)),

where ri ∈R {0, 1}j .
Suppose there exists a T -time algorithm D that distinguishes the output of the

RSA generator from a uniformly random sequence with advantage ε, that is,

|Pr[D(Z0) = 1]− Pr[D(Zk) = 1] | ≥ ε.

Let s ∈R {0, 1, . . . , k − 1}. Following the hybrid technique, one can prove that

|Pr[D(Zs) = 1]− Pr[D(Zs+1) = 1] | ≥ ε/M.

Now, we construct algorithm Odist. Let (EN (x), z), where either z = Lj(x) or
z = r, be the input. Algorithm Odist distinguishes the two possibilities as follows.

let s ∈R {0, 1, . . . , k − 1}
for i = 1 to s do

select ri ∈R {0, 1}j
end for
compute x1 = EN (x), x2 = EN (x1), . . . , xk−s−1 = EN (xk−s−2)
assign Z ← (r1, r2, . . . , rs, z, Lj(x1), Lj(x2), . . . , Lj(xk−s−1))
return D(Z)

5.3 The simplified inversion algorithm 45

If z = Lj(x) then Z is distributed as Zs. In the opposite case, if z = r then Z
distributed as Zs+1. Therefore,

|Pr[Odist(EN (x), Lj(x)) = 1]− Pr[Odist(EN (x), r) = 1]| ≥ ε/k,

which concludes the first part of the proof.
Without loss of generality, assume that

Pr[Odist(EN (x), Lj(x)) = 1]− Pr[Odist(EN (x), r) = 1] ≥ ε/k.

Now, we define algorithm Oxor in the same way as algorithm G is defined in [Gol95,
Section 2.1.1].

let {r1, r2, . . . , rj} ∈R {0, 1}j

assign r ←
∑j

i=1 ri2i−1

if Odist(EN (x), r1, r2, . . . , rj) = 1 then
return π(r)

else
return 1− π(r)

end if

The computational XOR-proposition [Gol95] implies that Oxor guesses π(x) with
probability at least 1/2 + δ, where δ = (2j − 1)−1(ε/M). tu

5.3 The simplified inversion algorithm

The key ingredient of the security analysis of the RSA generator, is a proof
that the RSA one-way function EN , can be inverted given an oracle of a particular
type. In this section, we consider the related problem of inverting EN given a more
powerful oracle Olsb, see below. The treatment of this case serves as a stepping
stone to the general case.

5.3.1 Majority decision

Let Olsb be a probabilistic algorithm that for all α ∈ ZN , given EN (α), guesses
bit `1(α) with advantage δ > 0. Algorithm Olsb is more powerful than Oxor in the
sense that its advantage is the same for all inputs.

In order to determine the least significant bit of some number, one has to run Olsb

several times and then use the majority decision. The following lemma shows that
running the oracle a certain number of times yields the desired bit with probability
close to 1.

Lemma 5.3.1 Let α ∈ ZN and let X1, X2, . . . , Xm be the outputs of Olsb on input
EN (α). Let X be the majority decision, that is,

X =

[
1
m

m∑
i=1

Xi >
1
2

]
.

46 Concrete security of the RSA generator

Then, for m = 1
2 ln(n/γ)δ−2, 0 < γ < 1, the probability that X = `1(α) is at least

1− γ/n. The probability is taken over internal coin flips of Olsb.

Proof: Without loss of generality, assume that `1(α) = 0. Then the majority
decision errs if

1
m

m∑
i=1

Xi >
1
2
. (5.1)

Since for each α ∈ ZN the probability that Olsb successfully guesses `1(α) equals
1
2 + δ, the expected value E[Xi] is E[Xi] = 1

2 − δ, i = 1, 2, . . . ,m. Inequality (5.1)
implies that

1
m

m∑
i=1

Xi − E[Xi] > δ.

Note that X1, X2, . . . , Xm are mutually independent so Hoeffding’s bound [Hoe63]
gives

Pr

[
1
m

m∑
i=1

Xi − E[Xi] > δ

]
≤ exp

(
−2mδ2

)
.

This implies that for m = 1
2 ln(n/γ)δ−2 the majority decision errs with probability

at most γ/n. tu

Majority decision is used as a tool for constructing reductions for pseudorandom
generators in many papers, e.g., in [ACGS88; VV84; FS00].

5.3.2 Binary division

The main tool of the inversion algorithm is the binary division technique [GMT82;
FS00], which is a means to solve the following problem: recover a value α ∈ ZN ,
given `1(α), `1([2−1α]N), . . . , `1([2−(n−1)α]N).

The solution to this problem is given in terms of rational approximations. For
a rational number u0, 0 ≤ u0 < 1, we call βN a rational approximation of integer
α ∈ ZN , with error |α − u0N |. Given a rational approximation u0N for α we can
get a rational approximation u1N for α1 = [2−1α]N for which the error is reduced
by a factor of 2 as follows. If α is even, then α1 = α/2 so put u1 = u0/2; otherwise,
α1 = (α + N)/2 so put u1 = (u0 + 1)/2. Then we have |α1 − u1N | = 1

2 |α − u0N |.
Note that to determine u1, the only required information on α is its parity.

Given `1(α), `1([2−1α]N), . . . , `1([2−(n−1)α]N), the value of α can be recovered as
follows. Put u0 = 1/2, then u0N is a rational approximation of α with error at most
N/2. Next, we apply the above technique n times to obtain rational approximations
β1N, . . . , βnN for [2−1α]N , . . . , [2−nα]N respectively, at each step reducing the error
by a factor of 2. We thus get a rational approximation unN to [2−nα]N , for which
the error is less than N/2n+1 < 1/2. The closest integer to unN is therefore equal
to [2−nα]N , and from this value we find α.

5.3 The simplified inversion algorithm 47

5.3.3 The simplified algorithm

Algorithm 5.3.1 inverts the RSA one-way function EN as follows. It picks a
random a ∈R ZN and approximates [ax]N by N/2 (which means u0 = 1/2). Next,
the algorithm determines the parity of [ax]N via Olsb and computes the rational
approximation u1N for [a1x]N (we denote at = [2−ta]N , t = 1, 2, . . . , n) such that
|[a1x]N − u1N | < 1

2 |[ax]N − u0N |, as described in Section 5.3.2. After that, the
algorithm determines the parity of [a1x]N , computes the rational approximation
u2N for [a2x]N , and so on. Finally, a precise rational approximation unN for
[anx]N is computed and x is recovered.

Algorithm 5.3.1 The simplified inversion algorithm for the RSA one-way function
(uses oracle Olsb)
Input: Modulus N , EN (x) for x ∈ ZN , parameter γ such that 0 < γ < 1
Output: x

m← 1
2 ln(n/γ)δ−2

u0 ← 1/2
repeat

a ∈R ZN

for t = 0 to n− 1 do
at ← [2−ta]N
compute EN ([atx]N) = EN (at)EN (x) mod N
run Olsb on input EN ([atx]N) m times
lt ← majority output bit
at+1 ← [2−1at]N
ut+1 ← (ut + lt)/2

end for
x′ ← a−1

n bunN + 1/2c mod N
until EN (x′) 6= EN (x)
return x′

Each parity bit `1([atx]N), t = 0, 1, . . . , n−1 is determined by majority decision.
If at some step t ∈ {0, 1, . . . , n−1} the majority decision is not correct, the algorithm
finds it out only at the last step by comparing EN (x′) with EN (x). Therefore,
an “early abort” in the case that one of the majority decisions is incorrect is not
possible. If all the majority decisions are correct, we get lt = `1([atx]N). Otherwise,
the algorithm restarts with a different multiplier a ∈R ZN .

It follows from Lemma 5.3.1 that a single majority decision is correct with proba-
bility at least 1−γ/n. Thus, the probability that EN (x′) = EN (x) for each random
multiplier a is at least 1 − γ. Therefore, the expected running time of the sim-
plified inversion algorithm is at most 1

2 (1 − γ)−1n ln(n/γ)δ−2TOlsb
, where TOlsb

is
the running time of Olsb. For instance, for γ = 1/2 the running time is essentially
n(lnn)δ−2TOlsb

.

48 Concrete security of the RSA generator

5.4 The inversion algorithm

Now, we construct an algorithm that retrieves x ∈ ZN from EN (x) using algo-
rithm Oxor as an oracle. Recall that Oxor on input (π,EN (x)), π ⊆ {0, 1, . . . , j},
guesses π(x) with probability 1/2 + δ, where δ = (2j − 1)−1(ε/M).

The inversion algorithm described in this section is based on the same ideas
as Algorithm 5.3.1. The main difference between these two algorithms is that, in
comparison with Olsb, the advantage of Oxor is, in general, not the same for all
input values. To determine `1([atx]N), t ∈ {1, 2, . . . , n − 1} via Oxor, it does not
suffice to run the oracle on the same input. Instead, the input values have to be
“randomized”.

Tightening the rational approximations.

Suppose EN (x) is given for x ∈ ZN . The goal is to recover x using Oxor as an
oracle.

Let a, b ∈R ZN (a and b are used to randomize the inputs of Oxor). Let u0N
and vN be rational approximations of [ax]N and [bx]N . To invert the RSA one-way
function, we search through a certain set of quadruples (u0N, vN, la,0, lb), where
la,0, lb ∈ {0, 1}, so that for at least one of them

la,0 = `1([ax]N), lb = `1([bx]N),
|[ax]N − u0N | ≤ ηaN, |[bx]N − vN | ≤ ηbN,

(5.2)

where ηa = 2−j−4δ3, ηb = 2−j−4δ. Condition (5.2) implies that we have to try at
most 1/(ηaηb) quadruples. For the rest of the section, we assume that this condition
holds.

The basic principle of the inversion algorithm is as follows. Let at = [2−ta]N ,
t = 1, 2, . . . , n. Provided that the bits `1([atx]N), t = 0, . . . , n − 1, are determined,
the binary division technique yields rational approximations utN for [atx]N such
that

|[atx]N − utN | ≤
ηaN

2t
, t = 1, 2, . . . , n.

Therefore, |[anx]N − unN | < 1/2, i.e. the closest integer to unN is [anx]N so
x = [a−1

n bunN + 1
2c]N .

Below we show how to determine the bits `1([atx]N), t = 1, 2, . . . , n− 1.

How to determine `1([atx]N)?

Consider step t of the inversion algorithm for 1 ≤ t < n. At this step the rational
approximation utN for [atx]N is known. The goal is to determine bit `1([atx]N).

Let i be an integer from a multiset σt ⊂ {−d8nδ−2e,−d8nδ−2e+1, . . . , d8nδ−2e}.
(we define the multisets later in this section). The idea is to measure bit `1([atx]N)
a certain number of times (for all i ∈ σt) so that each measurement is correct with
probability slightly higher than 1/2. After that, the bit is determined by majority
decision. The details follow.

5.4 The inversion algorithm 49

Let ct,i = at(1 + 2i) + b. Then

[ct,ix]N = ([atx]N (1 + 2i) + [bx]N) mod N.

Let wt,i = ut(1 + 2i) + v, w̃t,i = wt,i − bwt,ic. Clearly, w̃t,iN is an approximation
of [ct,ix]N , while wt,iN is an approximation of [atx]N (1 + 2i) + [bx]N . If the error
of the rational approximation wt,iN is small enough then

[2jct,ix]N = 2j ([atx]N (1 + 2i) + [bx]N)− b2jwt,icN. (5.3)

The latter condition is crucial for the rest of the analysis. It turns out that if
Condition (5.3) holds for some i ∈ σt then the i-th measurement of `1([atx]N) is
correct with probability 1/2+δ (this probability cannot be higher since Oxor guesses
correctly with probability 1/2 + δ). In Section 7.4, we analyze the probability that
this condition holds. For the rest of this section we assume that it does hold.

The following lemma provides a way to determine `1([atx]N).

Lemma 5.4.1 If Condition (5.3) holds then for every nonempty subset πt,i ⊆
{1, 2, . . . , j} and r = max{k | k ∈ πt,i}, we have

`1([atx]N) = πt,i([2r−1ct,ix]N) + πt,i(Lr(−b2r−1w̃t,icN))+
`1([bx]N) + bwt,ic mod 2.

(5.4)

The value of r used in Lemma 5.4.1 actually depends on t and i. We write r
instead of rt,i to avoid cumbersome notation.

Lemma 5.4.1 is proved in Section 5.4.2.
Now, suppose that πt,i is a random nonempty subset of {1, 2, . . . , j} with uniform

probability distribution. Then, in Eq. (5.4), the component πt,i([2r−1ct,ix]N) can
be replaced by the oracle reply Oxor(πt,i, EN ([2r−1ct,ix]N)). Recall, however, that
the oracle gives the correct output only with probability slightly higher than 1/2.

The majority decision on bit `1([atx]N) works as follows. If for the majority of
indices i ∈ σt

Oxor(πt,i, EN ([2r−1ct,ix]N)) ≡ πt,i(Lr(−b2r−1w̃t,icN))+
`1([bx]N) + bwt,ic mod 2,

(5.5)

decide that `1([atx]N) = 0, otherwise decide that `1([atx]N) = 1.

Multisets σt.

Now, we formally define the multisets σt, t = 1, 2, . . . , n− 1, mentioned above.
For t < log2 n + 4, denote mt = 2tδ−2. Let

σt = {i | |1 + 2i| < mt}, t = 1, 2, . . . , log2 n + 3.

As t grows we choose a larger value for mt so more measurements of the least
significant bit `1([atx]N) are done. Therefore, the majority decisions become more

50 Concrete security of the RSA generator

reliable as t grows. We cannot choose large mt for small t for the following reason.
For small t, the error |utN − [atx]N | is large. If mt is also large then [atx]N (1 +
2i) + [bx]N can differ much from wt,i = ut(1 + 2i) + v so that (5.3) does not hold
and (5.5) cannot be used for the majority decision.

However, it is not true that our goal is to maximize the number of measurements
of `1([atx]N) for all t = 1, 2, . . . , n − 1. Although a large number of measurements
implies a small error probability of the majority decision, it also means that the
oracle Oxor is used many times, which in turn affects the total running time of the
inversion algorithm. In this sense, the number of the measurements has to meet a
certain tradeoff.

Define ρ = {i | |1+2i| < 16nδ−2}. We randomly select m = 2δ−2 log2 n elements
σ = {i1, i2, . . . , im} with repetition from ρ and let

σt = σ, mt = m, t = log2 n + 4, . . . , n− 1.

For t ≥ log2 n+4, σt is chosen to be a random subset of ρ rather than the whole set
to reduce the number of runs of Oxor without increasing much the error probability
of the majority decisions.

Note that for all t = 1, 2, . . . , n− 1, σt has cardinality mt.

5.4.1 Formal description of the algorithm

Algorithm 5.4.1 is a formal version of the inversion algorithm described above.
On input (EN (x), N , j, δ), where x ∈ ZN , Algorithm 5.4.1 outputs either x or the
failure message denoted by ⊥. The algorithm has access to the oracle Oxor that
given EN (x) and π ⊆ {1, 2, . . . , j} guesses π(x) with advantage δ.

On step t, the goal of the algorithm is to determine `1([atx]N). This bit is
determined via the majority decision. Note that gt,i = Oxor(πt,i, EN ([2r−1ct,ix]N))
and ei = lb +πt,i(Lr(−b2r−1w̃t,icN)+bwt,ic mod 2 (see also (5.5)). If for a majority
of indices i ∈ σt we have gt,i = ei then the majority decision outputs 0, otherwise it
outputs 1. If the majority decision is correct then la,t = `1([atx]N).

5.4.2 Proof of Lemma 5.4.1

Recall that Lemma 5.4.1 states that if Condition (5.3) holds, that is, if

[2jct,ix]N = 2j ([atx]N (1 + 2i) + [bx]N)− b2jwt,icN

then for every nonempty subset πt,i ⊆ {1, 2, . . . , j} and r = max{k | k ∈ πt,i}, we
have

`1([atx]N) = πt,i([2r−1ct,ix]N) + πt,i(Lr(−b2r−1w̃t,icN))+
`1([bx]N) + bwt,ic mod 2.

To show this statement, we first prove two claims.

5.4 The inversion algorithm 51

Algorithm 5.4.1 The inversion algorithm for the RSA one-way function (uses Oxor

as an oracle)
Input: EN (x) for x ∈ ZN , modulus N , parameters j, δ
Output: x or ⊥

n← dlog2(N + 1)e
let a, b ∈R ZN

{First part: oracle calls}
for t = 1 to n− 1 do

at ← [2−ta]N
for all i ∈ σt do

ct,i ← at(1 + 2i) + b
select a random nonempty set πt,i ⊆ {1, 2, . . . , j}
r ← max{k | k ∈ πt,i}
gt,i ← Oxor(πt,i, EN ([2r−1ct,ix]N))

end for
end for
{Second part: tightening the rational approximations}
rational ηa ← 2−j−4δ3, ηb ← 2−j−4δ
for ũ = 0 to b1/(2ηa)c, ṽ = 0 to b1/(2ηb)c, la,0 = 0 to 1, lb = 0 to 1 do

rational u0 ← 2ηaũ, v ← 2ηbṽ
for t = 1 to n− 1 do

rational ut ← 1
2 (la,t−1 + ut−1)

for all i ∈ σt do
rational wt,i ← ut(1 + 2i) + v
r ← max{k | k ∈ πt,i}
w̃t,i ← wt,i − bwt,ic
ei ← lb + πt,i(Lr(−b2r−1w̃t,icN)) + bwt,ic mod 2

end for
la,t ← MajorityDecision(gt,∗ + e∗ mod 2)

end for
x′ ← [a−1

n bunN + 1
2c]N

if EN (x′) = EN (x) then
return x′

else
return ⊥

end if
end for

52 Concrete security of the RSA generator

Claim 5.4.2 Let α be an arbitrary integer. Consider a rational number w such that

[2jα]N = 2jα− b2jwcN (5.6)

for some integer j ≥ 1. Then

(i) [α]N = α− bwcN .

(ii) For all r, 1 ≤ r ≤ j, [2r−1α]N = 2r−1[α]N − b2r−1w̃cN , where w̃ = w mod 1.

Proof: Denote

µ =
α

N
∈ Q;

µ̃ = µ− bµc.

Note that µN = α and µ̃N = [α]N . Therefore, [2kα]N = 2kα − b2kµcN , [2kα]N =
2k[α]N − b2kµ̃cN for all k ≥ 0.

1. Suppose that Statement (i) is false, i.e. [α]N 6= α− bwcN . Hence, bwc 6= bµc.
Therefore b2wc 6= b2µc, . . . , b2jwc 6= b2jµc. We have

[2jα]N 6= 2jα− b2jwcN.

This contradicts Condition (5.6) so Statement (i) is valid.

2. Now, suppose that Statement (ii) is false, i.e. there exists r, 1 ≤ r ≤ j, such
that

[2r−1α]N 6= 2r−1[α]N − b2r−1w̃cN.

Hence, b2r−1µ̃c 6= b2r−1w̃c. It follows that b2rµ̃c 6= b2rw̃c, . . . , b2jµ̃c 6= b2jw̃c.
The j least-significant bits of b2jµc equal b2jµ̃c, and the j least-significant bits
of b2jwc equal b2jw̃c. Hence, b2jµc 6= b2jwc and

[2jα]N 6= 2jα− b2jwcN.

The contradiction proves the Statement (ii).

tu

Let α = [atx]N (1+2i)+ [bx]N , w = wt,i. Then, the Statement (i) of Claim 5.4.2
implies that if Condition (5.3) holds then

[ct,ix]N = [atx]N (1 + 2i) + [bx]N − bwt,icN.

Since `1(N) = 1, we get

`1([ct,ix]N) = `1([atx]N) + `1([bx]N) + bwt,ic mod 2. (5.7)

Statement (ii) of Claim 5.4.2 is used to prove another claim.

5.4 The inversion algorithm 53

Claim 5.4.3 If Condition (5.3) holds for a pair (t, i) such that t ∈ {1, 2, . . . , n−1},
i ∈ σt then for every nonempty subset πt,i ⊆ {1, 2, . . . , j} and r = max{k | k ∈ πt,i},
we have

`1([ct,ix]N) = πt,i([2r−1ct,ix]N) + πt,i(Lr(−b2r−1w̃t,icN)) mod 2. (5.8)

Proof: To prove the claim we show that

πt,i([2r−1ct,ix]N) = πt,i(2r−1[ct,ix]N − b2r−1w̃t,icN) (5.9)

and

πt,i(2r−1[ct,ix]N − b2r−1w̃t,icN) =

`1([ct,ix]N) + πt,i(Lr(−b2r−1w̃t,icN)) mod 2.
(5.10)

The second statement of Claim 5.4.2 implies that if Condition (5.3) holds then for
all r, 1 ≤ r ≤ j,

[2r−1ct,ix]N = 2r−1[ct,ix]N − b2r−1w̃t,icN. (5.11)

Applying function πt,i to both sides of (5.11) gives (5.9). To prove (5.10) we first
note that

Lr(2r−1[ct,ix]N − b2r−1w̃t,icN) =

(2r−1`1([ct,ix]N) + Lr(−b2r−1w̃t,icN)) mod 2r.
(5.12)

It follows from (5.11) that 2r−1[ct,ix]N − b2r−1w̃t,icN ≥ 0. Hence, in this case
Lr corresponds to the r least-significant bits. Thus applying function πt,i to the
left-hand side of (5.12) gives

πt,i(Lr(2r−1[ct,ix]N − b2r−1w̃t,icN)) = πt,i(2r−1[ct,ix]N − b2r−1w̃t,icN). (5.13)

Then we apply πt,i to the right-hand side of (5.12):

πt,i((2r−1`1([ct,ix]N) + Lr(−b2r−1w̃t,icN)) mod 2r) =

πt,i(2r−1`1([ct,ix]N) + Lr(−b2r−1w̃t,icN)) =

`1([ct,ix]N) + πt,i(Lr(−b2r−1w̃t,icN)) mod 2,

(5.14)

since πt,i ⊆ {1, 2, . . . , r}, r ∈ πt,i. Equalities (5.12), (5.13), and (5.14) result in
(5.10). This completes the proof of the claim. tu

Equations (5.7) and (5.8) give

`1([atx]N) = πt,i([2r−1ct,ix]N) + πt,i(Lr(−b2r−1w̃t,icN))+
`1([bx]N) + bwt,ic mod 2,

which concludes the proof of Lemma 5.4.1.

54 Concrete security of the RSA generator

5.5 Analysis of the inversion algorithm

In this section, we determine the success probability of Algorithm 5.4.1. We
prove the following lemma.

Lemma 5.5.1 Algorithm 5.4.1, given modulus N , EN (x) for x ∈ ZN , parameters
j and δ, outputs x with probability at least 2/9, where the probability is taken over
internal coin flips of the algorithm (which includes the coin flips of Oxor).

Note that the success probability of Algorithm 5.4.1 does not depend on N ,
δ, and j. This is not counterintuitive because actually the running time of the
algorithm depends on these parameters (see Section 5.6).

The proof presented below is analogous to the proof of a similar statement in
[FS00, Section 2].

Recall that the inversion algorithm is as follows. For a, b ∈R ZN , we search
through a certain set of quadruples (u0N, vN, la,0, lb) such that for at least one of
them Condition (5.2) holds, i.e. la,0 = `1([ax]N), lb = `1([bx]N); |[ax]N − u0N | ≤
ηaN, |[bx]N−vN | ≤ ηbN . Throughout this section we only consider a quadruple for
which the condition holds (for the other quadruples we assume that the algorithm
outputs x with probability 0).

At each step t, 1 ≤ t < n, the goal of the inversion algorithm is to determine
`1([atx]N). Using Oxor, this bit is determined by majority decision, which depends
on a certain number of measurements. For all i ∈ σt, the i-th measurement is set
to 0 if (5.5) holds, otherwise it is set to 1. The majority decision is correct if the
majority of the measurements is correct.

Consider step t, 1 ≤ t < n. Assume that for all t′ < t we have determined
correctly the bits `1([at′x]N). There exist two reasons why for some i ∈ σt the i-th
measurement can be incorrect.

• The error of the rational approximation wt,iN is too large so that Condition
(5.3) does not hold.

• Oracle Oxor outputs a wrong bit (recall that it outputs the correct bit only
with probability 1/2 + δ).

5.5.1 Probability that the rational approximation is imprecise

Claim 5.5.2 Assume that Condition (5.2) holds and the set of bits `1([at′x]N),
t′ < t, is determined correctly. Then the probability that Condition (5.3) does not
hold for some i ∈ σt is at most δ/4. Here the probability is taken over all choices of
random multipliers a, b ∈R ZN .

Proof: Let us rewrite (5.3) again:

[2jct,ix]N = 2j ([atx]N (1 + 2i) + [bx]N)− b2jwt,icN.

Intuitively, (5.3) does not hold if and only if there exists a multiple of N between
2j([atx]N (1+ 2i)+[bx]N) and 2jwt,iN . Denote ∆t,i = 2jwt,iN−2j([atx]N (1+2i)+

5.5 Analysis of the inversion algorithm 55

[bx]N). Then, a multiple of N can exist between 2j([atx]N (1 + 2i) + [bx]N) and
2jwt,iN only if

|∆t,i| ≥
∣∣2j([atx]N (1 + 2i) + [bx]N)

∣∣
N

=
∣∣2jct,ix

∣∣
N

,

where |z|N = min([z]N , N− [z]N) denotes the distance from z to the closest multiple
of N , for any z ∈ Z.

If (5.2) holds and for all t′ < t the bits `1([at′x]N) are determined correctly then

|[atx]N − utN | = 2−t ([ax]N − u0N) ≤ 2−t−j−4δ3N,

|[bx]N − v| ≤ 2−j−4δN.

Due to the choice of the multisets σt, 2−tδ2|1 + 2i| ≤ 1 for i ∈ σt (see also the end
of Section 5.4). Therefore, the triangular inequality gives

|∆t,i| = 2j |utN(1 + 2i)− [atx]N (1 + 2i) + vN − [bx]N | ≤
δ

16
(2−tδ2|1 + 2i|+ 1)N ≤ δ

8
N.

Thus (5.3) does not hold only if
∣∣2jct,ix

∣∣
N
≤ δN/8. Since ct,i is uniformly distributed

in ZN , the probability that (5.3) does not hold is at most δ/4. This completes the
proof of Claim 5.5.2. tu

5.5.2 Error probability of the majority decisions

The i-th measurement of `1([atx]N) is correct if (5.3) holds and the output of
Oxor is correct. Following the notation of [FS00], we define Boolean variables Xi

such that Xi = 1 implies that the i-th measurement is incorrect:

Xi = 1 if and only if (5.3) does not hold or Oxor([ct,ix]N , πt,i) 6= πt,i([ct,ix]N).

It is shown in [FS00] that for any fixed t, 1 ≤ t < n, the ct,i’s are pairwise indepen-
dent. Thus Boolean variables Xi, i ∈ σt, are also pairwise independent.

The majority decision errs if and only if more than half of the measurements are
incorrect, that is,

1
mt

∑
i∈σt

Xi >
1
2
. (5.15)

Due to the different choice of σt for t < log2 n + 4 and for t ≥ log2 n + 4 (see
Section 5.4) we divide our analysis into two parts.

Case t < log2 n + 4.

Consider step t with t < log2 n + 4. Since Oxor guesses correctly with probability
1
2 + δ, Claim 5.5.2 implies that the expected value E[Xi] ≤ 1/2 − 3δ/4. Thus, it
follows from Inequality (5.15) that the majority decision errs if and only if

1
mt

∑
i∈σt

Xi − E[Xi] ≥
3
4
δ.

56 Concrete security of the RSA generator

Since the variance of any Boolean variable is at most 1/4 we have Var(Xi) ≤ 1/4.
Then, Chebyshev’s inequality for µt pairwise independent random variables Xi gives

Pr

[
1

mt

∑
i∈σt

Xi − E[Xi] ≥
3
4
δ

]
≤
(

3
4
δ

)−2

Var

(
1

mt

∑
i∈σt

Xi

)
≤ 4

9mtδ2
.

Here the probability is taken over all choices of random multipliers a, b ∈R ZN , and
internal coin flips of Oxor.

Since mt = 2tδ−2, the majority decision for `1([atx]N) errs with probability 4
92−t.

Thus the probability that at least one of the majority decisions for t < log2 n + 4
errs is at most 4/9.

Case t ≥ log2 n + 4.

Consider step t with t ≥ log2 n + 4. The technique we use in this case is called
the subsample majority decision. It is proposed by Fischlin and Schnorr [FS00].
Instead of using indices from a large sample ρ = {i | |1 + 2i| < 16nδ−2} we use only
indices from a small random subsample σ = {i1, . . . , im} ⊂ ρ, where m = 2δ−2 log2 n
(see also Section 5.4). Although the original random variables Xi’s, i ∈ ρ, are just
pairwise independent we note that the random variables Xi1 , . . . , Xim are mutually
independent. Therefore, for the latter random variables we can use a stronger bound
instead of Chebyshev’s inequality, namely Hoeffding’s bound [Hoe63].

Similarly to the previous case, the majority decision errs if and only if

1
m

∑
is∈σ

Xis − E[Xi] ≥
3
4
δ. (5.16)

Let
X =

1
|ρ|
∑
i∈ρ

Xi.

Then, Condition (5.16) implies that either

1
m

∑
is∈σ

Xis −X ≥ 1
2
δ

or X − E[Xi] ≥ δ/4. Chebyshev’s inequality for pairwise independent Xi’s, i ∈ ρ,
gives Pr[X − E(Xi) ≥ δ/4] ≤ 4/(|ρ|δ2). Hoeffding’s bound [Hoe63] implies that for
a fixed set of Xi’s, i ∈ ρ, and a random subsample σ ⊂ ρ

Pr

[
1
m

∑
is∈σ

Xis
−X ≥ 1

2
δ

]
≤ exp

(
−2m

(
δ

2

)2
)

= exp
(
−1

2
mδ2

)
. (5.17)

Since m = 2δ−2 log2 n and |ρ| = 16nδ−2 the majority decision at each step t with
t ≥ log2 n + 4 errs with probability at most 4/(|ρ|δ2) + exp(−mδ2/2) = 1/(4n) +

5.6 Main result 57

n−1/ ln 2 < 1/(3n) for n > 29. Thus the probability that at least one of the subsample
majority decisions for t ≥ log2 n + 4 errs is at most 1/3.

Therefore the inversion algorithm of Section 5.4, given EN (x), j, and N , out-
puts x with probability at least 1 − (4/9 + 1/3) = 2/9. It completes the proof of
Lemma 5.5.1.

5.6 Main result

In this section, we determine the running time of the inversion algorithm and
state the main result of this chapter. We give a concrete bound for the running time
and the success probability of the adversary that aim to distinguish the output of
the RSA generator from a uniformly random sequence.

5.6.1 Computational cost of arithmetic operations

To determine the running time of Algorithm 5.4.1 and to express the result of
Fischlin and Schnorr [FS00] in terms of our time units, the computational cost of
several arithmetic operations has to be estimated.

We have performed a simulation using the GMP library [GNU] and the eBATS
tools [eBA]. The simulation shows that adding two l-bit numbers for l in the range
32 to 128 takes about 300 time units. In turn, multiplying an l1-bit integer by an
l2-bit integer takes about l1l2/70 time units provided that l1 is in the range 32 to
128 and l2 is in the range 4096 to 16384. We have also analyzed the computational
cost of each iteration of the inner loop in the second part of Algorithm 5.4.1. The
computational cost of each iteration is dominated by the computational cost of the
multiplication ut · i, which is confirmed by our simulation.

The above estimates fit all our data points with error less than 10%. Lemma 5.6.1
and the subsequent results rely on these estimates.

5.6.2 Running time of the inversion algorithm

Lemma 5.6.1 The expected running time of Algorithm 5.4.1 is at most

2n(log2 n + 8)δ−2(TOxor + 22j+8δ−4Ω),

where Ω = (n + 3 log2(1/δ) + j + 4) log2(8nδ−2)/70.

Proof: First, note that the total number of measurements of the least significant
bits `1([atx]N), t = 1, 2, . . . , n− 1, is

n−1∑
t=1

mt =
log2 n+3∑

t=1

2tδ−2 + (n− 1− (log2 n + 3))2δ−2 log2 n < 2n(log2 n + 8)δ−2.

Therefore, the computational cost of the first part of Algorithm 5.4.1 is at most
2n(log2 n + 8)δ−2TOxor .

58 Concrete security of the RSA generator

In the second part of Algorithm 5.4.1, some arithmetic operations are performed.
As mentioned in Section 5.6.1, the computational cost of one iteration of the inner
loop in the second part of the algorithm is about the same as that of the multipli-
cation ut · i. The bit length of ut is t + log2(1/ηa) < n + log2(1/ηa); the bit length
of i is at most log2(8nδ−2) (for a practical choice of parameters n, j, and ε, the bit
length of i is in the range 32 to 128 while the sum n+log2(1/ηa) is in the range 4096
to 16384). Therefore, the computational cost of the multiplication ut · i is less than
(n + log2(1/ηa)) log2(8nδ−2)/70. Hence the total computational cost of the second
part of the algorithm is bounded by the product of the following factors:

1. Number of quadruples (u0N, vN, la,0, lb), which equals 1/(ηaηb);

2. Number of iterations of the inner loop for each quadruple, which is less than
2n(log2 n + 8)δ−2;

3. Computational cost of one iteration of the inner loop, which is less than Ω =
(n + log2(1/ηa)) log2(8nδ−2)/70.

Since ηa = 2−j−4δ3, ηb = 2−j−4δ, the computational cost of the second part is at
most 22j+9δ−6n(log2 n + 8)Ω.

All in all, the expected running time of Algorithm 5.4.1 is at most 2n(log2 n +
8)δ−2(TOxor

+ 22j+8δ−4Ω) time units. tu

5.6.3 Main theorem

Now, we are ready to state the main theorem of this chapter which states that
the RSA generator is secure under the RSA assumption (Assumption 2.3.2).

Theorem 5.6.2 Under Assumption 2.3.2, the RSA generator is (T, ε)-secure if

T ≤ L(n)
9n(log2 n + 8)δ−2

− 22j+8Ωδ−4 −Mn2/24, (5.18)

where δ = (2j − 1)−1(ε/M) and Ω = (n + 3 log2(1/δ) + j + 4) log2(8nδ−2)/70.

Proof: Suppose the RSA generator is not (T, ε)-secure. Then, it follows from
Lemma 5.2.1 that there exists an algorithm Oxor that on input (π,EN (x)) guesses
π(x) with probability at least 1/2 + δ, where δ = (2j − 1)−1(ε/M). The running
time TOxor of Oxor satisfies TOxor ≤ T + Mn2/24. Finally, Lemmas 5.5.1 and 5.6.1
imply that Oxor can be used to solve the RSA problem in expected time less than
9n(log2 n + 8)δ−2(T + Mn2/24 + 22j+8δ−4Ω). According to Assumption 2.3.2, no
algorithm can solve the RSA problem faster than the NFS algorithm, which means
that 9n(log2 n + 8)δ−2(T + Mn2/24 + 22j+8δ−4Ω) ≤ L(n). tu

Note that Mn2/24 � 22j+8Ωδ−4, for a practical choice of parameters. For
instance, if ε = 0.01, M = 220, n = 13000, j = 6 then Mn2/24 ' 243 while
22j+8Ωδ−4 ' 2165.

5.6 Main result 59

5.6.4 Comparison with known results

In this section, we compare Theorem 5.6.2 with the results of [ACGS88; FS00].
One can observe that our security reduction is not tight, meaning that the running
time of the solver for the RSA problem is significantly larger than the running time
of the adversary that breaks the pseudorandom generator. However, it turns out
that our security proof is still tighter than the one of [ACGS88].

Alexi et al. [ACGS88] prove the following result (actually, in [ACGS88] this
result is stated without paying attention to the specific constant in the denominator
but the constant is mentioned in the proof).

Theorem 5.6.3 (Alexi et al.) Under Assumption 2.3.2, the RSA generator is
(T, ε)-secure if

T ≤ L(n)
24j+21n3(ε/M)−8

. (5.19)

The latter result is weaker than Theorem 5.6.2 both in asymptotic and concrete
sense. This is because the right-hand side of Condition (5.19) contains M8 in the
denominator while the first component of the right-hand side of Condition (5.18)
contains just M2. For instance, let M = 220 and j = 6. Suppose the RSA generator
has to be protected against adversaries with running time at most T = 2120 and
advantage ε = 0.01. Then, Theorem 5.6.2 guarantees security if n is at least 13000.
In contrast, Theorem 5.6.3 guarantees security only for n ' 50000.

The following lemma is due to Fischlin and Schnorr [FS00]. It is about the RSA
generator with 1 output bit per iteration.

Theorem 5.6.4 (Fischlin and Schnorr) Under Assumption 2.3.2, the RSA gen-
erator with 1 output bit per iteration is (T, ε)-secure if

T ≤ L(n)
3n(log2 n + 8)(ε/M)−2

−28n(ε/M)−2 log2(8n(ε/M)−1)
log2 n + 8

·300−Mn2/24. (5.20)

The factor of 300 in the second term on the right-hand side of Condition (5.20)
is due to the fact that addition of integers of bit length up to 176, which is done
in the algorithm described in [FS00, Section 4], takes about 300 time units (cf.
Section 5.6.1).

The first component in Condition (5.20) is essentially the same as the first com-
ponent in Condition (5.18) for j = 1. On the other hand, the absolute value of
the second component in (5.20) is smaller than the absolute value of the second
component in (5.18) by a factor of (ε/M)−2 so for j = 1 the reduction [FS00] is
more efficient than our reduction. The reason is that there is a trick in the reduction
[FS00] (namely, processing all approximate locations simultaneously) that allows to
decrease the second component. We do not know how to apply this trick for j > 1.

5.6.5 Choice of parameters for the RSA generator

The following example shows how to choose parameters of the RSA generator in
order to minimize the computational effort for a given level of provable security.

60 Concrete security of the RSA generator

Suppose our goal is to generate a sequence of M = 220 bits such that no ad-
versary can distinguish this sequence from uniformly random binary sequence with
advantage ε = 0.01 in time T , which is specified later in this section. The question
is what length of the modulus n and parameter j should be used to minimize the
computational effort per output bit.

Conditions (5.18) and (5.20) connect characteristics of the adversary (T, ε) with
parameters of the RSA generator (M,n, j) for j ≥ 1 and j = 1 respectively. In order
to find the optimal values of n and j we fix T, ε,M and analyze n as a function of j.

For public exponents e with small Hamming weight, e.g., for e = 3, the com-
putational work of the RSA generator is proportional to n2/j (each modular mul-
tiplication costs O(n2) time units, so the generation of an output sequence takes
O(Mn2/j) time units).

Figure 5.1 presents the computational work of the RSA generator for j in the
range 1 to 15. On this figure, we consider two cases T = 2120 and T = 288. There are
three values of the computational work for j = 1 on the figure. Two of them (marked
by stars) result from Condition (5.20) for T = 2120 and T = 288 respectively while
the third one (denoted by a diamond) results from Condition (5.18). Note that our
reduction yields almost the same points for all T in the range 288 ≤ T ≤ 2120.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j

2´ 107

3´ 107

4´ 107

5´ 107

6´ 107

7´ 107

nj
2

������������

j Computational work of the RSA generator

our reduction, 288
£T£2120

@FS00D, T=2120

@FS00D, T=288

Figure 5.1: Computational work of the RSA generator as a function of the number
of bits extracted per iteration. Here we fix M = 220, ε = 0.01 and consider two
cases T = 2120 and T = 288. For T = 2120, extraction of 6 bits per iteration makes
the RSA generator about 5/3 times faster in comparison with the 1-bit case. On
the other hand, for T = 288 the computational work is minimal for j = 1.

It turns out that for T = 2120 extraction of 6 bits per iteration makes the RSA
generator about 5/3 times faster in comparison with the 1-bit case. However, even
for j = 6 the RSA generator is quite slow since the corresponding length of the

5.7 The Blum-Blum-Shub generator 61

modulus is n ' 13000. On the other hand, for T = 288 the computational work is
minimal for j = 1. The reason is that for T = 288 the second component in (5.18)
is relatively large.

5.6.6 Sensitivity of the results

Note that Conditions (5.18) and (5.20) contain constants (e.g., 70 and 300)
that characterize the computational cost of certain arithmetic operations. Although
these constants are fairly accurately estimated in Section 5.6.1, they can in general
depend on the platform. The coefficient 1.7 · 10−2 in Formula (2.2) also depends on
the platform.

Fortunately, Conditions (5.18) and (5.20) are not very sensitive to small changes
in these constants. Consider, for instance, the following equation derived from
Condition (5.18).

c1 ·
L(n)

9n(log2 n + 8)δ−2
− c2 · 22j+8Ωδ−4 − c3 ·Mn2/24− T = 0, (5.21)

where all the parameters are as above and c1, c2, c3 are positive constants. Let
M = 220, j = 6, ε = 0.01, and T = 288. Then for all ci, i = 1, 2, 3, such that
−4 ≤ log2 ci ≤ 4 the roots n of Equation (5.21) do not differ more than 10%. A
similar observation can be done for the equation derived from Condition (5.20). It
shows that our analysis is meaningful.

5.7 The Blum-Blum-Shub generator

Let N = pq, p ≡ q ≡ 3 mod 4. Let QRN be the set of quadratic residues modulo
N . As briefly mentioned in Section 5.1, the Blum-Blum-Shub generator (the BBS
generator) is a pseudorandom generator that on input x ∈R QRN iterates the Rabin
function RN (x) = [x2]N and outputs Lj(x), for a fixed j such that 1 ≤ j < n. Since
squaring is faster than general exponentiation, the BBS generator is more efficient
than the RSA generator, for the same number of output bits.

In two recent papers [FS00, Section 6] and [SS05], the modification of the BBS
generator is analyzed. The modified generator iterates the function R′

N (x) =
|[x2]N |N , where | · |N denotes the distance to the closest multiple of N , as be-
fore. Fischlin and Schnorr [FS00, Section 6] construct a relatively tight reduction
for the BBS generator with j = 1. Sidorenko and Schoenmakers [SS05] generalize
their result for the case j > 1.

The reductions for the BBS generator are similar to the reductions for the RSA
generator. The main difference is that in the former case not all values i ∈ σt can be
used for the majority decision on step t but only those for which 2r−1ct,i ∈ QRN ,
1 ≤ r ≤ j (see Section 5.4).

Let j = 1, for simplicity. Recall that ct,i = at(1 + 2i) + b, b ∈R ZN . The
argument in [FS00, Section 6] is based on the result of Peralta [Per92] which implies
that for every fixed t ∈ {1, 2, . . . , n−1} the sequence of Jacobi symbols of ct,i, i ∈ σt,

62 Concrete security of the RSA generator

deviates from the uniform distribution on {±1}mt by at most mt(3+
√

p′)/p′, where
mt is the size of σt, p′ = min{p, q}.

Unfortunately, the way the result of Peralta [Per92] is interpreted in [FS00,
Section 6] is not correct. In fact, the result implies that the probability that the
sequence of Jacobi symbols of ct,i, i ∈ σt, matches any particular element of {±1}mt

is in the range 1/2mt ±mt(3 +
√

p′)/p′. Note that mt � n for some values of t (see
[FS00, Section 2]) so 1/2mt � mt(3+

√
p′)/p′. Therefore, the result of Peralta does

not necessarily imply that the fraction of ct,i’s with Jacobi symbol +1 is close to 1/2
so it is not clear if there are enough measurements to make the majority decisions
reliable.

For j > 1, as considered in [SS05], a similar problem occurs. In this case the
sequence of numbers 2r−1ct,i cannot even be represented as c′t,i +b′, where b′ ∈R ZN

and c′t,i does not depend on b′ so the result [Per92] is not applicable. That is why
we have chosen to focus on the RSA generator here.

5.8 Conclusion

According to Theorem 3 from [FS00], inverting the RSA one-way function EN (x)
in the oracle access model (if the only source of information about x is an oracle that
on input EN (x) predicts one bit of x with probability 1/2+ δ) requires (ln 2/4)nδ−2

oracle calls. Recall that our inversion algorithm calls the oracle on average less
than 9n(log2 n + 8)δ−2 times. Therefore, the number of oracle calls in our inversion
algorithm is optimal up to a factor of log n. On the other hand, besides using the
oracle our inversion algorithm also involves some additional computations, which
result in the second component in Condition (5.18). Although in some situations
this component turns out to be not significant in other situations it can be too large
(cf. Section 5.6.5). Reducing the second component in (5.18) is an important open
problem.

A new way of analyzing the RSA generator is proposed in a recent paper of Ste-
infeld et al. [SPW06]. They show that under a stronger assumption (namely, under
the assumption that the small-solution RSA problem is intractable) the generator
remains secure if it outputs O(n) bits per iteration. Thus, their approach gives
rise to the first pseudorandom generator beating the rate O(log n) bits per modular
multiplication. Note, however, that the strong assumption used by Steinfeld et al.
[SPW06] is not as thoroughly studied as the original RSA assumption. This is simi-
lar to our result of Chapter 4, where we have shown that under the DDH assumption
(rather than the weaker DL assumption) one gets an efficient pseudorandom gen-
erator with a tight security reduction. The difference is that the DDH assumption
is a standard assumption, in contrast with the intractability of the small-solution
RSA problem.

Chapter 6

Pseudorandom generator as a
building block of a secure scheme

A chain is no stronger than its
weakest link.

English proverb

In this chapter, we consider a pseudorandom generator as a part of a more
complex cryptographic system. In particular, we analyze the concrete security of
probabilistic digital signature schemes and public key encryption schemes that use
a pseudorandom generator as a source of randomness. We show that if the scheme
is secure under the assumption of the availability of a source of independent uni-
formly distributed random bits it remains secure if one uses the output of a secure
pseudorandom generator instead of this source.

6.1 Introduction

Pseudorandom generators have many applications in the field of cryptography.
One of the most important applications is to provide randomness for other crypto-
graphic schemes, e.g., probabilistic digital signature schemes and public key encryp-
tion schemes. Security of the latter schemes is usually proved under the assumption
that a source of independent uniformly distributed random bits is available. How-
ever, as discussed in Chapter 1, random bits are often difficult to get. In this chap-
ter, we show that the composition of a secure cryptographic scheme and a secure
pseudorandom generator results in a secure scheme. That is, if a scheme is secure
under the assumption that a source of independent uniformly distributed random
bits is available it remains secure if one uses the output of a secure pseudorandom
generator instead of this source.

The framework of universal composability proposed by Canetti [Can01] and inde-
pendently by Pfitzmann and Waidner [PW00] implies that a cryptographic protocol

63

64 Pseudorandom generator as a building block of a secure scheme

that uses another protocol as a subroutine is secure provided that the building blocks
are secure. Security of protocols is defined by comparing the protocol execution to
an ideal process for carrying out the task at hand. A protocol is said to be secure if
no polynomial-time adversary can tell the difference between the protocol execution
and the ideal process for this functionality, except for negligible probability (for
more details, refer to [Can01]).

According to Definition 2.2.1, an output of a secure pseudorandom generator
is indistinguishable from a sequence of independent uniformly distributed random
bits. Therefore, the composition theorem [Can01; PW00] implies that if a prob-
abilistic cryptographic scheme is secure under the assumption that the input bits
are uniformly random then the corresponding scheme that uses pseudorandom bits
instead of uniformly random bits is also secure.

Note, however, that the composition theorem [Can01; PW00] is stated in terms
of asymptotic security. That is, the theorem implies that the composed scheme is
secure against polynomial-time adversaries. The contribution of this chapter is con-
crete security analysis of probabilistic cryptographic schemes (i.e., digital signature
schemes and public key encryption schemes) that use pseudorandom generators as a
source of randomness, which means that the running time and the success probabil-
ity of the adversary are limited by concrete values of T and ε (the concrete security
approach is discussed in detail in Section 1.5).

We show how to compute concrete parameters of cryptographic schemes such
that the corresponding compositions reach a desired level of security. As an example,
concrete parameters for two schemes designed by Cramer and Shoup [CS00; CS98]
combined with the pseudorandom generator PRG1 presented in Section 4.3.1 are
computed.

6.2 Notions of security

In this section, we recall the commonly used notions of security for digital sig-
nature schemes and public key encryption schemes.

6.2.1 Signature schemes

Let S be a probabilistic signature scheme consisting of a key generation algo-
rithm, signing algorithm, and verification algorithm. In this chapter, we consider
a standard notion of security for signature schemes, called existential unforgeabil-
ity under an adaptive chosen message attack [GMR88], which is defined using the
following game between a challenger and an adversary.

First, the challenger runs the key generation algorithm of S. Then the public
key is given to the adversary. Proceeding adaptively, the adversary makes queries
to a signing oracle, to sign at most qsig messages of his choice.

The goal of the adversary is then to forge a signature for a message that has not
been signed by the oracle on the previous step. Let p be the probability that the
adversary outputs a valid forgery taken over the coin flips made by the adversary,

6.3 Concrete security of the compositions 65

the key generation algorithm, and the signing oracle. We will refer to p as the
success probability of the adversary. The adversary (T, ε, qsig)-breaks the scheme S
if he runs in time at most T and achieves p ≥ ε.

Definition 6.2.1 A signature scheme S is (T, ε, qsig)-existentially unforgeable un-
der an adaptive chosen message attack if no adversary (T, ε, qsig)-breaks S.

6.2.2 Public key encryption schemes

Let E be a probabilistic public key encryption scheme consisting of a key genera-
tion algorithm, encryption algorithm, and decryption algorithm. A standard notion
of security for public key encryption schemes is security against adaptive chosen
ciphertext attacks IND-CCA2 [GM84; NY90; RS92]. This notion is defined using
the following game between a challenger and an adversary.

First, the challenger runs the key generation algorithm of E and gives the public
key to the adversary. Next, the adversary makes queries to a decryption oracle, to
decrypt ciphertexts of his choice. The queries may depend on the previous queries
and answers. Then the adversary chooses two messages m0 and m1 and sends them
to the challenger. The challenger chooses a bit b ∈ {0, 1} uniformly at random and
gives an encryption of mb to the adversary. After receiving the ciphertext from the
challenger, the adversary continues to query the decryption oracle, subject only to
the restriction that the queries should be different from the output of the challenger.

At the end of the game the adversary outputs b′ ∈ {0, 1}, as his guess of the
value b. If the probability that b′ = b is 1/2+ ε, then the advantage of the adversary
is defined to be ε. Here the probability is taken over the coin flips made by the
adversary, the key generation algorithm, and the decryption oracle.

The adversary (T, ε, qdec)-breaks the encryption scheme E if he queries the de-
cryption oracle at most qdec times, runs in time at most T , and guesses b with
advantage at least ε.

Definition 6.2.2 An encryption scheme E is (T, ε, qdec)-secure if no adversary (T, ε,
qdec)-breaks the scheme.

6.3 Concrete security of the compositions

In this section, we show that if a scheme and a pseudorandom generator are
secure then the composition of the scheme and the pseudorandom generator, that
is, the scheme that uses the output of the pseudorandom generator as a source of
randomness is also secure. We start with an informal argument that demonstrates
the basic idea of the approach.

Consider an abstract cryptographic scheme C that makes use of uniformly ran-
dom bits. Suppose C is (T, εC)-secure for some parameters T, εC > 0 according to a
certain definition of security under the assumption that the input bits are indepen-
dent and uniformly distributed. Let M be the total number of random bits used
by the scheme during the period of time when it is observable by the adversary.

66 Pseudorandom generator as a building block of a secure scheme

Now, let PRG be a (T, εPRG)-secure pseudorandom generator that outputs M bits,
where εPRG > 0. Denote by CPRG the scheme which is the same as C except that it
uses pseudorandom bits produced by PRG (on uniformly random input) instead of
uniformly random bits.

We now proceed to show that under the above conditions, the composition CPRG

is (T, εC + εPRG)-secure. Indeed, suppose this is not the case, i.e., there exists an
adversary A that (T, εC + εPRG)-breaks the composition CPRG. The trick is to ask
A to break the original scheme C. It can happen that when trying to break C the
adversary does not halt in time T . In this case, we make A stop and assume that
it fails to break the scheme in time T . Let ε be the probability that A breaks C.
There are two possibilities for ε.

1. Case ε < εC. In this case, A provides a (T, εPRG)-distinguisher for the pseu-
dorandom generator PRG. Indeed, consider algorithm D that is given either
a pseudorandom sequence produced by PRG or a sequence of M uniformly
random bits. Let r denote the input of D. D proceeds as follows. D asks A
to break the scheme C that uses r as a source of randomness. If A succeeds
D outputs 1, otherwise D outputs 0. Then,

Pr[D(PRG(Un)) = 1] = Pr[A breaks CPRG] ≥ εC + εPRG

and
Pr[D(UM) = 1]| = Pr[A breaks C] = ε < εC,

where n denotes the seed length of the generator PRG. Therefore,

|Pr[D(PRG(Un)) = 1]− Pr[D(UM) = 1]| > εPRG.

2. Case ε ≥ εC. In this case, A (T, εC)-breaks the scheme C.

In both cases we have a contradiction since PRG is assumed to be a (T, εPRG)-
secure pseudorandom generator and C is assumed to be a (T, εC)-secure scheme.
The contradiction proves that the composition CPRG is indeed (T, εC + εPRG)-secure.

Although the above argument is informal, the reader can notice that it is suitable
for a wide range of probabilistic cryptographic schemes. In this chapter, we focus
only on digital signature schemes and public key encryption schemes.

6.3.1 Signature schemes composed with pseudorandom generators

Let S be a probabilistic signature scheme. Let lsig be the number of random
bits used by S to produce a single signature. Let PRG be a pseudorandom generator
that produces qsiglsig bits for some qsig > 0. Consider the scheme SPRG which is
identical to S except that it uses PRG as a source of randomness. More precisely,
the signing algorithm of SPRG first initializes PRG with uniformly random seed and
then uses the successive bits of its output to produce signatures.

Let r ∈ {0, 1}qsiglsig be the pseudorandom sequence generated by PRG on uni-
formly random input. We define security of SPRG in a similar way as described in

6.3 Concrete security of the compositions 67

Section 6.2.1. The only difference is that now the signing oracle uses the successive
bits of r (instead of uniformly random bits) to compute signatures. The goal of
the adversary is to forge a signature for a message that has not been signed by the
oracle. The adversary (T, ε, qsig)-breaks the scheme SPRG if he runs in time at most
T and outputs a valid forgery with probability at least ε.

Definition 6.3.1 The composition SPRG of a signature scheme S and a pseudoran-
dom generator PRG is (T, ε, qsig)-existentially unforgeable under an adaptive chosen
message attack if no adversary (T, ε, qsig)-breaks SPRG.

The following theorem shows that if a signature scheme and a pseudorandom
generator are secure then their composition is also secure.

Theorem 6.3.2 If S is (T, εS, qsig)-existentially unforgeable, PRG is (T, εPRG)-secure,
and εS + εPRG < 1 then SPRG is (T, εS + εPRG, qsig)-existentially unforgeable.

Proof: The proof of this theorem 6.3.2 is a formal version of the argument in the
beginning of Section 6.3 for the case of probabilistic signature schemes.

Suppose there exists an adversary F that (T, εS+εPRG, qsig)-breaks SPRG. Denote
M = qsiglsig. Let C be an algorithm (challenger) that on input r ∈ {0, 1}M does
the following. C runs the key generation algorithm of S. Next, C gives the public
key to the adversary F and runs F to forge a signature for S. Whenever F asks
C to sign a message, C produces the signature using the successive bits of r. Since
the length of r is M = qsiglsig, C has enough bits to produce qsig signatures. If F
does not halt in time T or asks for more than qsig signatures, we make F stop and
assume that it fails to forge a signature in time T . In case F forges a signature for a
message that has not been signed by C on the previous step in time T , C outputs 1.

For r = PRG(Un), where n denotes the seed length of the generator PRG, F
forges a signature with probability at least εS + εPRG. Let ε be the probability that
F forges a signature for r = UM . There are two possibilities for ε.

1. Case ε < εS. In this case, C is a (T, εPRG)-distinguisher for the generator PRG.
Indeed,

Pr[C(PRG(Un)) = 1] = Pr[F forges a signature for SPRG] ≥ εS + εPRG

and
Pr[C(UM) = 1] = Pr[F forges a signature for S] = ε < εS

so
|Pr[C(PRG(Un)) = 1]− Pr[C(UM) = 1]| > εPRG.

2. Case ε ≥ εS. In this case, F (T, εS, qsig)-breaks S.

The contradiction proves the theorem. tu

68 Pseudorandom generator as a building block of a secure scheme

6.3.2 Encryption schemes composed with pseudorandom generators

Let E be a probabilistic encryption scheme and let lenc be the number of random
bits used by E to produce a single encryption. Let PRG be a pseudorandom generator
that produces qenclenc bits for some qenc > 0. We denote by EPRG the encryption
scheme which is identical to E except that it uses PRG as a source of randomness.
To be precise, the encryption algorithm of EPRG first initializes PRG with uniformly
random seed and then uses the successive bits of its output to encrypt messages.

Let r ∈ {0, 1}qenclenc be the pseudorandom sequence generated by PRG on uni-
formly random input. To define the security of EPRG, we slightly change the stan-
dard setting discussed in Section 6.2.2. We let the adversary access not only the
decryption oracle but also the encryption oracle that uses the subsequent bits of r
to encrypt messages. After the adversary has chosen two messages m0 and m1 a
message mb, b ∈R {0, 1}, is encrypted using the current bits of r. The encryption
is given to the adversary. Then, the adversary continues to query the encryption
oracle and the decryption oracle. As before, the goal of the adversary is to guess b.
The adversary (T, ε, qenc, qdec)-breaks the encryption scheme EPRG if he queries the
encryption (decryption) oracle at most qenc (qdec) times, runs in time at most T ,
and guesses b with advantage at least ε.

Definition 6.3.3 The composition EPRG of a public key encryption scheme E and
a pseudorandom generator PRG is (T, ε, qenc, qdec)-secure if no adversary (T, ε, qenc,
qdec)-breaks the scheme.

Note that, compared to Definition 6.2.2, the above definition contains an extra
parameter qenc. One may wonder whether it makes sense to let the adversary access
the encryption oracle. The adversary knows the public key so he can compute the
encryptions himself. Note, however, that in our situation the random bits used by
the encryption oracle and the random bits used to encrypt the challenge message
mb are from the same pseudorandom sequence r. Therefore, having access to the
encryption oracle can, in principle, help the adversary to break the scheme.

The following theorem shows that if an encryption scheme and a pseudorandom
generator are secure then their composition is also secure. We omit the proof since
it is similar to the proof of Theorem 6.3.2.

Theorem 6.3.4 If E is (T, εE, qdec)-secure, PRG is (T, εPRG)-secure, and εE+εPRG <
1/2 then EPRG is (T, εE + εPRG, qenc, qdec)-secure.

6.4 Examples

In this section, we discuss a specific digital signature scheme, an encryption
scheme and a pseudorandom generator. We compute parameters of the schemes
and of the pseudorandom generator (the size of the secret key, the seed length) such
that the compositions are secure against adversaries with T = 288 and ε = 0.01.

6.4 Examples 69

6.4.1 Cramer-Shoup signature scheme

Consider the signature scheme proposed by Cramer and Shoup [CS00], which
relies on the strong RSA assumption (see Section 2.3.3).

The scheme is parameterized by two positive integers l and l′ such that l+1 < l′.
A building block of the scheme is a collision-resistant hash function H : {0, 1}∗ 7→
{0, 1}l whose output can be interpreted as a positive integer less than 2l (a hash
function is said to be collision-resistant if it is infeasible to find two different inputs
α, β such that H(α) = H(β)). In the original paper [CS00] it is suggested to use
SHA1.

The scheme includes three algorithms: key generation, signature generation, and
signature verification.

Key generation. Two random l′-bit safe primes p and q are chosen, the modulus
N = pq is computed. Also chosen are a random (l+1)-bit prime e′ and random
h, x ∈ QRN , where QRN denotes the set of quadratic residues modulo N .

The public key is (N,h, x, e′). The private key is (p, q).

Signature generation. To sign an arbitrary bit string m, a random (l + 1)-bit
prime e 6= e′ is chosen, and a random y′ ∈ QRN is chosen. The equation
ye = xhH(x′) mod N is solved for y ∈ Z∗N , where x′ satisfies (y′)e′ = x′hH(m)

mod N . Note that y can be calculated using the factorization of N in the
private key.

The signature is (e, y, y′).

Signature Verification. To verify a signature (e, y, y′) on a message m, it is
first checked that e is an odd (l + 1)-bit number, e 6= e′. Then, x′ =
(y′)e′h−H(m) mod N is computed. Finally, it is checked whether x = yeh−H(x′)

mod N .

Based on the security proof of Cramer and Shoup [CS00], we get the following
proposition.

Proposition 6.4.1 Suppose there exists an adversary that (T, εS, qsig)-breaks the
above scheme. Then either a collision for the hash function H can be found in time
qsigT or the flexible RSA problem with modulus N can be solved in time qsigT with
probability εS.

It follows from Theorem 6.3.2 that a signature scheme SPRG is secure against
adversaries with T = 288 and ε = 0.01 if the original scheme S is secure against
adversaries with T = 288 and εS = 0.005 and the pseudorandom generator PRG is
secure against adversaries with T = 288 and εPRG = 0.005 (the choice εS = εPRG is
made for the sake simplicity). We now use Proposition 6.4.1 to determine parameters
l and n such that the Cramer-Shoup signature scheme is secure against adversaries
with T = 288 and εS = 0.005.

Proposition 6.4.1 implies that under the strong RSA assumption (Assumption
2.3.4) the Cramer-Shoup signature scheme is (T, εS, qsig)-secure if

70 Pseudorandom generator as a building block of a secure scheme

(i) no collision can be found for the hash function H in time qsigT ;

(ii) qsigT/εS ≤ L(n), where n is the bit length of N , L-function is defined by
Equation (2.2).

Let qsig = 230 so the adversary is allowed to query the signing oracle up to one
billion times (the value qsig = 230 is also used, for instance, in [BR96; Cor02]).
Assume that one application of the hash function H takes about 28 time units so
T = 288 time units are approximately equal to 280 applications of H (cf. [SKW+99]).
Then, the block size l that satisfies Condition (i) is l & 2 · (80 + 30) = 220. For
εS = 0.005, Condition (ii) is satisfied for n & 2700.

Since l & 220, the hash function SHA1 suggested by the designers of the scheme
does not fit the above security level. Another hash function with a longer output
has to be used, e.g., SHA224 with 224-bit output. The reason for the somewhat high
requirements for l and n is that the security reduction in Proposition 6.4.1 is not
tight meaning that a T -time adversary for the scheme implies (qsigT)-time solver
for the flexible RSA problem. If it were not for the factor of qsig the requirements
would be l & 160, n & 1500.

6.4.2 Cramer-Shoup encryption scheme

Now, we consider the Cramer-Shoup encryption scheme [CS98]. Security of this
scheme relies on the DDH problem discussed in Section 2.4.2 and in Chapter 4.

Let G be a multiplicative group of order q.
The encryption scheme [CS98] uses a function H : {0, 1}∗ 7→ {0, 1}l, l > 0,

chosen at random from the family of universal one-way hash functions (a family of
hash functions is said to be universal one-way if it is infeasible to choose an input x,
draw a random hash function H, and then find a different y such that H(x) = H(y)).
Similarly to the situation in the previous section, the output of the hash function is
interpreted as a number between 0 and 2l−1. Note that if a family of hash functions
is collision-resistant then it is universal one-way. Therefore, in comparison with the
signature scheme discussed above, in this case the requirement for the hash function
is weaker.

The scheme includes three algorithms: key generation, encryption, and decryp-
tion.

Key generation. Random elements g1, g2 ∈ G, x1, x2, y1, y2, z ∈ Zq are chosen.
The group elements c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz

1 are computed.

The public key is (g1, g2, c, d, h,H), and the private key is (x1, x2, y1, y2, z).

Encryption. To encrypt a message m ∈ G, a random element r ∈ Zq is chosen
and the group elements u1 = gr

1, u2 = gr
2, e = hrm are computed. Then,

α = H(u1, u2, e) and v = crdrα are computed.

The ciphertext is (u1, u2, e, v).

Decryption. To decrypt a ciphertext (u1, u2, e, v), first α = H(u1, u2, e) is com-
puted and the condition ux1+αy1

1 ux2+αy2
2 = v is checked. If this condition does

6.4 Examples 71

not hold, the decryption algorithm outputs “reject”; otherwise, it outputs
m = e/uz

1.

The following proposition is proved in [CS98].

Proposition 6.4.2 Suppose there exists an adversary that (T, εE, qdec)-breaks the
above encryption scheme. Then either the universal one-way function H can be
broken in time T or the decisional Diffie-Hellman problem in group G can be solved
in time T with probability εE.

Note that the running time of the solver for the DDH problem does not depend
on qdec. As opposed to the Cramer-Shoup signature scheme discussed above, the
Cramer-Shoup encryption scheme has a tight security reduction.

Similarly to the situation in the previous section, Theorem 6.3.4 implies that for
an encryption scheme EPRG to be secure against adversaries with T = 288 and ε =
0.01 it suffices to show that the original scheme E and the pseudorandom generator
PRG are both secure against adversaries with T = 288 and εE = εPRG = 0.005.
We now use Proposition 6.4.2 to determine parameters l, m, and n such that the
Cramer-Shoup encryption scheme is secure against adversaries with T = 288 and
εE = 0.005.

Assume, for instance, that G is a subgroup of Z∗p of prime order q. Let m
be the bit length of p and let n be the bit length of q. Then, it follows from
Proposition 6.4.2 that under the DDH assumption (Assumption 2.4.4) the encryp-
tion scheme is (288, 0.005, qdec)-secure for all qdec > 0 if l & 160 and 288/0.005 <
min[L(m), 1.25 · 2n/2m2/24]. The latter condition holds for m & 1500, n & 160.
Thus, the scheme is provably secure for relatively short parameters thanks to the
tight security reduction.

6.4.3 Concrete security of the compositions

Finally, we consider the pseudorandom generator PRG1 described in detail in
Section 4.3.1. We compute the seed length of the generator such that the compo-
sitions of the pseudorandom generator with the two schemes discussed above reach
the desired level of security.

Recall that the generator PRG1 is shown to be (T, ε)-secure if Condition (4.1) is
satisfied.

Composition of PRG1 and the Cramer-Shoup signature scheme

Note that the Cramer-Shoup signature scheme is probabilistic. Let us count how
many random bits are used by the signature scheme to produce qsig = 230 signatures.
To produce one signature, the scheme generates a random (l + 1)-bit prime and a
random element of QRN (here we use the notation of Section 6.4.1). According to
the prime number theorem, to generate a random (l + 1)-bit prime number one has
to try on average log2(l + 1) random (l + 1)-bit numbers, which costs about l log2 l
random bits. In turn, generation of a random element from QRN costs about n

72 Pseudorandom generator as a building block of a secure scheme

random bits, where n denotes the bit length of N , as before. Thus the total cost of
one signature is about l log2 l + n bits. For l = 220, n = 2700, the total number of
random bits required to produce 230 signatures is of order 242.

Now suppose that the signature scheme uses generator PRG1 to produce the
random bits. For M = 242, T = 288, ε = 0.005, Condition (4.1) implies that the
generator reaches the security level for the seed length at least 2800.

Composition of PRG1 and the Cramer-Shoup encryption scheme

Now, suppose that PRG1 is used for the encryption scheme [CS98] to encrypt
qenc = 230 messages. Each encryption makes use of one random element of Zq

(see the notation of Section 6.4.2) so encrypting qenc messages requires in total
M = qencn random bits. For n = 160, M ' 237.

For M = 237, T = 288, ε = 0.005, Condition (4.1) implies that the generator
reaches the security level for the seed length at least 2600. The secure seed length
is slightly less in this case than the previous case because in this case less random
bits have to be generated.

6.5 Conclusion

This chapter gives the concrete security analysis of probabilistic cryptographic
schemes such as digital signature schemes and public key encryption schemes com-
posed with pseudorandom generators.

The examples discussed in Section 6.4 illustrate how parameters of the compo-
sitions depend on the tightness of the security reductions. A scheme (a signature
schemes or a public key encryption scheme) with a tighter security reduction is
provably secure for smaller parameters so it requires less random bits which in turn
implies that a pseudorandom generator with a shorter seed can be used.

Chapter 7

Generating random numbers from
an interval

Nothing is random, only
uncertain.

Gail Gasram

In this chapter we revisit the problem of generating uniformly random nonneg-
ative integers below a certain bound b, given a source of random bits. We first
consider the problem focussing on the randomness complexity, analyzing how many
random bits are needed beyond the minimum of n = dlog2 be bits. The folklore
solutions require a non-constant number of bits beyond n. We propose a new algo-
rithm with randomness complexity of n+3 bits which is only slightly larger than for
Knuth-Yao’s algorithm with optimal randomness complexity of n+1 bits. We fully
analyze the randomness complexity of our algorithm, giving the expected number
of random bits needed (and also the variance and the probability distribution for
the number of random bits needed).

We then consider the problem in the setting of secure multiparty computation.
Given a protocol for secure multiparty generation of random bits, the task is to
securely generate a random integer in a certain interval. Our new algorithm leads
to protocols for this task of essentially minimal computational complexity. Com-
pared to Knuth-Yao’s algorithm (and also the folkore algorithms), we achieve an
improvement by at least a factor of 4 for the computational complexity. The round
complexity of our protocols is favorable for small values of n, but asymptotically
worse than for the other algorithms.

7.1 Introduction

A wide variety of cryptographic applications of randomness is discussed in Chap-
ter 1. In particular, many cryptographic algorithms such as, for instance, the Diffie-
Hellman key exchange protocol [DH76] and the ElGamal encryption scheme [Gam85]

73

74 Generating random numbers from an interval

assume that the participants generate random numbers uniformly distributed in cer-
tain intervals.

Many public key cryptographic schemes critically depend on random numbers
modulo a prime or an RSA modulus. As convincingly demonstrated by Bleichen-
bacher’s attack on the generation of DSA one-time keys [Ble02], even the slightest
deviation from uniform can be used to break such cryptographic schemes. The
seemingly innocent bias introduced by reducing a random 160-bit string modulo a
prime q of bit length 160 allows an attacker with access to a sufficient number of
DSA signatures to recover the private key. The fix suggested by NIST [DSS00] is to
reduce a random 320-bit string modulo q.

Note that most of the sources of randomness are designed to produce random
bits rather than random numbers. Therefore, converting random bits to random
numbers is an important problem. This problem is somewhat opposite to the one
considered in Section 4.5 where the goal is to extract random bits from random
numbers.

One of the essential characteristics of the algorithms for converting random bits
to random numbers is their randomness complexity , which is the average amount
of random bits used to produce one random number. If the length of the interval
is an integral power of two, say, b = 2n one can simply concatenate n random bits,
and convert these to a number. This simple algorithm has randomness complexity
n. For 2n−1 < b ≤ 2n, the above problem is solved conclusively by Knuth and
Yao [KY76] who propose an algorithm with optimal randomness complexity. For
the worst-case bound b, that is, b = 2n−1 + 1 Knuth-Yao’s algorithm requires on
average less than n + 1 random bits per output number.

In this chapter, we revisit the problem of converting random bits to random
numbers. We summarize the existing algorithms for solving this problem and also
present a new algorithm (see Sections 7.2 and 7.3). The new algorithm is fully
analyzed in Section 7.4.

We remark that randomness complexity is not the only performance measure
that plays a crucial role. In some situations, also other performance measures turn
out to be important. One of such situations arises in the setting of secure mul-
tiparty computation. More precisely, we address the following problem. Several
participants aim to generate a shared random number uniformly distributed in an
interval {0, 1, . . . , b − 1}, b > 0, in such a way that the random number can be
reconstructed only if a certain number of the participants open their shares. The
algorithms that convert random bits to random numbers can be used to design
protocols for solving this problem.

The main performance measures of protocols in the setting of secure multiparty
computation are computational complexity, round complexity, and communication
complexity. Computational complexity is indicated by the size of the circuit to be
computed by the participants while round complexity is indicated by the depth of
the circuit. Communication complexity characterizes the amount of communication
between the participants. Usually, communication complexity is strongly related to
the computational complexity. In Section 7.6, we discuss the protocols for generating

7.2 State of the art 75

shared random numbers and analyze their computational complexity and round
complexity. We show that the protocol induced by our new algorithm has essentially
minimal computational complexity.

7.2 State of the art

In this section, we summarize the existing algorithms for converting random bits
to random numbers from an interval {0, 1, . . . , b− 1}, where 2n−1 < b ≤ 2n, n > 0.

7.2.1 Folklore algorithms

First, we recall two folklore algorithms, which are in widespread use and have
been described in many places (see, e.g., [Sho05] for a recent treatment). For a
nonnegative integer x, `i(x) denotes the i-th least significant bit of x, as before.

Algorithm 7.2.1 Generate-and-compare algorithm
Input: Bound b > 0, source of random bits
Output: Uniformly distributed random number between 0 and b− 1

n← dlog2 be
repeat

select {`1(m), `2(m), . . . , `n(m)} ∈R {0, 1}n
until m < b
return m

Algorithm 7.2.2 Generate-and-reduce algorithm
Input: Bound b > 0, source of random bits, security parameter k > 0
Output: Random number between 0 and b − 1 with statistical distance 2−k from

uniform
n← dlog2 be
{`1(m), `2(m), . . . , `n+k(m)} ∈R {0, 1}n+k

m← m mod b
return m

Algorithm 7.2.1 is a Las Vegas algorithm meaning that its output is perfectly
uniform on {0, 1, . . . , b − 1} but it may run indefinitely. On the other hand, the
running time of Algorithm 7.2.2 is constant but the statistical distance from uniform
is as large as 2−k, where k is the security parameter. An algorithm combining
constant running time and perfect uniform output does not exist if 2n−1 < b ≤ 2n,
see, e.g., [KY76]: suppose the algorithm uses exactly t random bits (using any
unused random bits before terminating), then there are 2t equally likely execution
paths, but it is impossible to partition these paths into b equally large groups.

The folklore algorithms are commonly presented without paying much attention
to the randomness complexity. The number of loop iterations for Algorithm 7.2.1

76 Generating random numbers from an interval

is 2n/b on average, which is almost equal to 2 in the worst case when b = 2n−1 + 1.
Hence, Algorithm 7.2.1 uses about 2n random bits, which means an overhead of n
bits, whereas Algorithm 7.2.2 always uses n + k random bits, for an overhead of k
bits.

Algorithms 7.2.1 and 7.2.2 are online algorithms in the sense that these algo-
rithms generate exactly as many random numbers as required by the application. A
folklore offline algorithm generates a batch of random numbers in {0, 1, . . . , b − 1}
in one go, by searching for a power of b that is only slightly smaller than a power
of 2, say bu . 2v. The disadvantage of such an offline method is that u numbers
have to be generated at the same time (and stored for later use), where u may be
prohibitively large. In this chapter, we focus on online algorithms only.

7.2.2 Knuth-Yao’s algorithm

As mentioned above, the randomness complexity of the folklore algorithms is
far from satisfactory. Knuth and Yao [KY76] propose an algorithm with optimal
randomness complexity, meaning that the average amount of random bits required
to produce a single random number is as small as possible.

Knuth-Yao’s algorithm can be represented as a binary tree, which is cut as
follows. For i = 1, 2, . . . , if the total number of nodes of depth i is at least b then
the tree is cut in such a way that exactly b nodes become leaf nodes, which can be
indexed by {0, 1, . . . , b − 1}. The initial state of the algorithm is the root node of
the tree. At each step a random bit is generated and the current state is set to be
one of the children nodes depending on the value of the bit. If at some point the
current state is a leaf node, the algorithm halts and outputs the index of the leaf
node.

Figure 7.1 illustrates Knuth-Yao’s algorithm for b = 13. The root node is the
one in the left bottom corner. The squares are the leaf nodes; the values inside
the squares are the outputs of the algorithm. The formal version of Figure 7.1 is
Algorithm 7.2.3.

Knuth and Yao prove that the randomness complexity of Algorithm 7.2.3 is
bν(1/b), where

ν(a) =
∑
m≥0

2ma− b2mac
2m

,

for 0 ≤ a ≤ 1 [KY76]. It can be shown that n < bν(1/b) < n+1, where n = dlog2 be.
For b = 2n−1 + 1, the randomness complexity is very close to n + 1.

Strictly speaking, Knuth and Yao [KY76] propose not one algorithm but a family
of algorithms in the sense that they do not specify the way the leaf nodes are chosen
and indexed. For instance, Figure 7.2 represents another version of Knuth-Yao’s
algorithm. As opposed to the version shown in Figure 7.1, the leaf nodes in Figure
7.2 are indexed from bottom to top and the infinite loop corresponds to all-zeros
input.

7.2 State of the art 77

12

11

10

9

8

7

6

5

4

3

2

1

0

12

11

10

9

8

7

6

5

4

3

2

1

0

12

11

10

9

8

7

6

5

4

3

2

1

0

12

11

10

9

8

7

6

5

4

3

2

1

0

12

11

10

9

8

7

6

5

4

3

2

1

0

12

11

10

9

8

7

6

5

4

3

2

1

0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Figure 7.1: The version of Knuth-Yao’s algorithm that corresponds to Algorithm
7.2.3 for b = 13. The algorithm starts at the left bottom corner and ends with one
of the values between 0 and 12 depending on the random bits.

78 Generating random numbers from an interval

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 7.2: Another version of Knuth-Yao’s algorithm for b = 13. In comparison
with the version shown in Figure 7.1, the leaf nodes are indexed from bottom to top
and the infinite loop corresponds to all-zeros input.

7.3 Bit-by-bit algorithm 79

Algorithm 7.2.3 Knuth-Yao’s algorithm
Input: Bound b such that 2n−1 < b ≤ 2n, source of random bits
Output: Uniformly distributed random number between 0 and b− 1

m← 0
i← 1
loop

s ∈R {0, 1}
m← 2m + s
h← 2i mod 2b
if h ≥ b then

if m ≤ b then
return m

else
m← m− b

end if
end if
i← i + 1

end loop

7.3 Bit-by-bit algorithm

In this section, we present a new algorithm for generating random numbers
uniformly distributed over an interval {0, . . . , b− 1}. The average randomness com-
plexity of the new algorithm is at most n + 3 bits, which is just slightly higher than
the randomness complexity of Algorithm 7.2.3.

Let 2n−1 < b ≤ 2n. Let b′i = `i(b − 1), i = 1, 2, . . . , n. The bit-by-bit algorithm
(Algorithm 7.3.1) generates a random number m from the interval {0, 1, . . . , b− 1}
starting from the most significant bit. For i = n, n−1, . . . , the bit `i(m) is generated
and compared with b′i. Assume that `j(m) = b′j for all j such that i < j ≤ n. Then,
if `i(m) > b′i the algorithm restarts by setting i = n. If `i(m) < b′i then m < b
regardless of the remaining bits of m, so these bits can be chosen at random with
no further checking.

In Algorithm 7.3.1, bit r is used as a flag indicating whether the current bit
`i(m) has to be compared with b′i or not. Whenever r becomes equal to 1 we do not
have to check the remaining bits.

Every time index i is set to n we say that a new run starts. We call a run
successful if it finishes with outputting a value of m, otherwise we call it failing.
The overall process may include a few failing runs and always ends with a successful
run. The length of the run is the number of random bits generated during the run.
The length of a successful run is always n. If b = 2n, there are no failing runs at all.

Similar to Algorithm 7.2.1, the probability that a certain run is successful is
p = b/2n. Moreover, conditioning on the latter event, one sees that m is uniformly
distributed over {0, 1, . . . , b− 1}, as required.

80 Generating random numbers from an interval

Algorithm 7.3.1 Bit-by-bit algorithm
Input: Bound b > 0, source of random bits
Output: Uniformly distributed random number between 0 and b− 1

n← dlog2 be
r ← 0; i← n
while i > 0 do

`i(m) ∈R {0, 1}
if r = 1 then

i← i− 1
else if `i(m) > b′i then

i← n
else if `i(m) < b′i then

r ← 1; i← i− 1
else

i← i− 1
end if

end while
return m

The bit-by-bit algorithm can be implemented recursively, see Algorithm 7.3.2.

Algorithm 7.3.2 The recursive version of the bit-by-bit algorithm
Input: Bound b > 0, source of random bits
Output: Uniformly distributed random number between 0 and b− 1

if b = 1 then
return 0

else
repeat

m← Algorithm 7.3.2 on input (b + (b mod 2))/2
s ∈R {0, 1}
m← 2m + s

until m < b
return m

end if

Algorithm 7.3.2 is indeed the same as Algorithm 7.3.1 since Algorithm 7.3.2
also generates the random number starting from its most significant bit (the least
significant bit is the last to be generated) and restarts as soon as it detects that the
random number exceeds b− 1.

7.4 Analysis of the bit-by-bit algorithm 81

7.4 Analysis of the bit-by-bit algorithm

Throughout the analysis, let s = {s1, s2, . . . } denote the sequence of all random
bits used by Algorithm 7.3.1 to generate a single random number m. We will
condition on the event fi, 1 ≤ i ≤ n, defined as the event that s starts with a failing
run of length i. Then fi happens if and only if s starts with i bits s1, s2, . . . , si

such that s1 = b′n, s2 = b′n−1, . . . , si−1 = b′n−i+2, si = 1 and b′n−i+1 = 0. And
by f0 we denote the event that s does not contain any failing runs and thus the
total length of s is n. The probabilities for these events are: Pr(f0) = p and
Pr(fi) = (1− b′n−i+1)/2i, for 1 ≤ i ≤ n, where

p = 1−
n∑

i=1

1− b′n−i+1

2i
= b/2n. (7.1)

Note that Pr(f1) = 0, since b′n = 1.
Let X denote the length of s so X represents the number of random bits used

by Algorithm 7.3.1 to generate a single random integer uniformly distributed over
an interval {0, 1, . . . , b− 1}, 2n−1 < b ≤ 2n. Our goal is to determine the expected
value, the variance, and the probability distribution of X.

7.4.1 Expected value

Theorem 7.4.1 The expected value of the number of random bits X used by Al-
gorithm 7.3.1 to generate a single integer uniformly distributed over the interval
{0, . . . , b− 1}, 2n−1 < b ≤ 2n, is given by

E(X) = n + p−1
n∑

i=2

(1− b′n−i+1)i
2i

, (7.2)

where p = b/2n, b′i denotes the i-th least significant bit of b− 1, i = 1, 2, . . . , n.

Proof: We evaluate the expected value conditioned on fi:

E(X) =
n∑

i=0

E(X|fi) Pr(fi).

Clearly, E(X|f0) = n. And, E(X|fi) = i + E(X) for 0 < i ≤ n, since after a failing
run the state of the algorithm is the same as its initial state. Thus,

E(X) = np +
n∑

i=2

(i + E(X))
1− b′n−i+1

2i
,

which implies that

E(X)

(
1−

n∑
i=2

1− b′n−i+1

2i

)
= np +

n∑
i=2

(1− b′n−i+1)i
2i

.

Since b′n = 1 and using (7.1), the theorem follows. tu

82 Generating random numbers from an interval

Theorem 7.4.1 implies that the expected value E(X) is maximal if b′i = 0, for
0 < i < n, that is, b = 2n−1 + 1. Indeed, in this case the sum on the right-hand
side in (7.2) is maximal and p is minimal. So, the worst-case bound b of length n is
b = 2n−1 + 1, for which Theorem 7.4.1 gives

Emax(X) = n +
2n

2n−1 + 1

n∑
i=2

i

2i
= n + 3− n + 5

2n−1 + 1
. (7.3)

Corollary 7.4.2 The expected value of the number of random bits X used by Al-
gorithm 7.3.1 to generate a single integer uniformly distributed over an interval
{0, 1, . . . , b − 1} is less than n + 3 for all n and b such that 2n−1 < b ≤ 2n. If
b = 2n−1 + 1, then E(X)→ n + 3 as n→∞.

Further (numerical) analysis shows that show that the typical number of bits x
used by Algorithm 7.3.1 to generate a single random integer is even smaller than
n+3: namely, about n+1.13 bits when averaged over all possible bounds b, 2n−1 <
b ≤ 2n.

Algorithm Randomness
complexity

Generate-and-compare (7.2.1) 2n

Generate-and-reduce (7.2.2) n + k

Knuth-Yao (7.2.3) n + 1

Bit-by-bit (7.3.1) n + 3

Table 7.1: Average randomness complexity of the algorithms that generate random
integers from an interval {0, 1, . . . , b−1} for the worst-case bound b, i.e. b = 2n−1+1.
Here k is the security parameter of Algorithm 7.2.2.

7.4.2 Variance

Theorem 7.4.3 The variance of the number of random bits X used by Algorithm
7.3.1 to generate a single integer uniformly distributed over the interval {0, . . . , b−1},
2n−1 < b ≤ 2n, satisfies the following equation:

Var(X) = (E(X)− n)2 + p−1
n∑

i=2

i2(1− b′n−i+1)
2i

,

where p = b/2n, b′i denotes the i-th least significant bit of b− 1, i = 1, . . . , n, E(X)
is the expected value of X.

Proof: By definition, Var(X) = E((X − µ)2), where µ denotes E(X). Recall that

7.4 Analysis of the bit-by-bit algorithm 83

fi denotes the event that s starts with a failing run of length i, 0 ≤ i ≤ n. Thus,

Var(X) =
n∑

i=0

E((X − µ)2|fi) Pr(fi),

Note that E((X − µ)2|f0) = (µ − n)2, and E((X − µ)2|fi) = E((i + X − µ)2) =
i2 + Var(X), for 1 ≤ i ≤ n. Since Pr(f0) = b/2n, Pr(f1) = 0, and Pr(fi) =
(1− b′n−i+1)/2i, 2 ≤ i ≤ n, we have

Var(X) = (µ− n)2p +
n∑

i=2

(i2 + Var(X))(1− b′n−i+1)
2i

,

which implies, using Equation (7.1),

Var(X) = (µ− n)2 + p−1
n∑

i=2

i2(1− b′n−i+1)
2i

.

tu

As a conclusion, Theorems 7.4.1 and 7.4.3 yield that E(X) = n + p−1a1 and
Var(X) = (E(X)− n)2 + p−1a2, where

at =
n∑

i=2

it(1− b′n−i+1)
2i

, t ≥ 0.

Note that p = 1− a0.
We see that also the variance Var(X) is maximal for b = 2n−1 + 1: the term

(E(X) − n)2 is maximal and the term p−1a2 is also maximal, since a2 is maximal
while p is minimal. Theorem 7.4.3 thus gives

Varmax(X) =
2(5 · 22n+1 − 2nn2 − 5 · 2n+1n− 7 · 2n − 4)

(2n + 2)2
.

Note that Varmax(X)→ 20 as n→∞.

7.4.3 Probability Distribution

Next, we determine the probability distribution of the random variable X that
represents the number of random bits used by Algorithm 7.3.1 to generate a single
random integer. Define pi = Pr[X = i], i ≥ 0.

Theorem 7.4.4 Let 2n−1 < b ≤ 2n and let b′i be the i-th least significant bit of
b− 1, i = 1, . . . , n. Then p0 = . . . = pn−1 = 0, pn = p,

pj =
n∑

i=2

(1− b′n−i+1)pj−i

2i
, j > n,

where p = b/2n.

84 Generating random numbers from an interval

Proof: For 0 ≤ j ≤ n, the result is obvious. Assume that j > n. Recall that fi

denotes the event that s starts with a failing run of length i, 0 ≤ i ≤ n. Then,

pj =
n∑

i=0

Pr[X = j|fi] Pr(fi).

Clearly, Pr[X = j|f0] = 0. Note that Pr[X = j|fi] = pj−i, i = 1, . . . , n. Again using
Pr(f0) = p, Pr(f1) = 0, and Pr(fi) = (1− b′n−i+1)/2i, 2 ≤ i ≤ n, we get

pj =
n∑

i=2

(1− b′n−i+1)pj−i

2i
.

tu

It follows from Theorem 7.4.4 that pj = 2n−jqjp, j ≥ 0, where q0 = . . . = qn−1 =
0, qn = 1, qj = (1 − b′n−1)qj−2 + . . . + (1 − b′1)qj−n, j > n. The following lemma
gives an upper bound for qj , j > n + 1.

Lemma 7.4.5 For j > n + 1, we have qj ≤ Fj−n−1, where Fi denotes the i-th
Fibonacci number. The equality holds if and only if b = 2n−1+1 and n+1 < j ≤ 2n.

Proof: The Fibonacci numbers Fk, k ≥ 1, can be defined as follows. F1 = 1,
F2 = 1,

Fk =
k−2∑
i=1

Fi + 1, k > 2. (7.4)

1. Let n + 1 < j ≤ 2n. Clearly, qn+2 = F1, qn+3 = F2. Observe that for
n + 3 < j ≤ 2n, qj ≤ qj−2 + . . . + qj−n = qj−2 + . . . + qn+3 + qn+2 + 1.
(7.4) implies that qj ≤ Fn−j−1. Note that for b = 2n−1 + 1, we have b′i = 0,
1 ≤ i < n. Thus, qj = qj−2 + . . . + qn+3 + qn+2 + 1, n + 3 < j ≤ 2n, so
qj = Fn−j−1.

2. Now let j > 2n. In this case, qj ≤ qj−2 + . . . + qj−n < qj−2 + . . . + qj−n +
qj−n−1 + . . . + qn+3 + qn+2 + 1 = Fj−n−1.

tu

Lemma 7.4.5 implies that for j > n + 1

pj ≤
1√
5

(
1 +
√

5
4

)j−n−1

,

so the sequence pj decreases exponentially as j increases.
Finally, we determine the tail probabilities rj = Pr[X ≤ j] in a similar way as

the probability distribution pj , j ≥ 0.

7.5 Oblivious algorithms 85

Theorem 7.4.6 Let 2n−1 < b ≤ 2n and let b′i be the i-th least significant bit of
b− 1, i = 1, . . . , n. Then r0 = . . . = rn−1 = 0, rn = p,

rj = p +
n∑

i=2

(1− b′n−i+1)rj−i

2i
, j > n,

where p = b/2n.

Proof: For j ≤ n the result is obvious. Assume that j > n. Recall that fi denotes
the event that s starts with a failing run of length i, 0 ≤ i ≤ n. Then,

rj =
n∑

i=0

Pr[X ≤ j|fi] Pr(fi).

Clearly, Pr[X ≤ j|f0] = 1. Note that Pr[X ≤ j|fi] = rj−i, for 1 ≤ i ≤ n. On the
other hand, Pr(f0) = p, Pr(f1) = 0, Pr(fi) = (1−b′n−i+1)/2i, 2 ≤ i ≤ n, from which
the result follows. tu

Let b = 2n−1 + 1. Then rj = 2n−jsjp, where s0 = . . . = sn−1 = 0, sn = 1,
sj = sj−2 + . . . + sj−n + 2j−n, j > n. Theorem 7.4.6 implies that if, say, n = 1000
the probability that the algorithm needs more than 1020 bits is less than 0.01. In
general, it follows that 1 − rj decreases exponentially as a function of j (with rate
between 1/2 and (1 +

√
5)/4).

7.5 Oblivious algorithms

Note that the execution paths of Algorithms 7.2.1, 7.2.2, and 7.2.3 do not depend
on the value of the output m. In other words, the execution paths of these algorithms
do not reveal any information about m. For instance, the execution path of the
generate-and-compare algorithm only reveals how many n-bit strings have been
used to generate m. In this sense, Algorithms 7.2.1, 7.2.2, and 7.2.3 are oblivious.

On the other hand, Algorithm 7.3.1 is not oblivious since the execution path
of this algorithm reveals some information on m. For example, if the case r = 1
applies in the if-then-else statement it follows that m 6= b− 1.

To construct an oblivious version of Algorithm 7.3.1, it suffices to hide the value
of r. The value of index i need not be hidden as the algorithm will always end in a
successful run, with i starting at i = n and ending at i = 0. What happens during
the failing runs does not matter because after each failing run the algorithm returns
to its initial state (i = n, r = 0).

An oblivious version of Algorithm 7.3.1 is Algorithm 7.5.1. To update the value
of i at the end of each iteration we need to know the value of (1− r)`i(m)(1− b′i).
Since we do not need to hide the value of i, it follows that we do not need to hide
this value either.

86 Generating random numbers from an interval

Algorithm 7.5.1 Oblivious bit-by-bit algorithm
Input: Bound b > 0, source of random bits
Output: Uniformly distributed random number between 0 and b− 1

n← dlog2 be
r ← 0; i← n
while i > 0 do

`i(m) ∈R {0, 1}
r ← r + (1− r)(1− `i(m))b′i
if (1− r)`i(m)(1− b′i) = 1 then

i← n
else

i← i− 1
end if

end while
return m

7.6 Generating shared random numbers

Consider the following problem. Several participants aim to generate a shared
random number uniformly distributed in an interval {0, 1, . . . , b−1}, b > 0. Our goal
is to design protocols for solving this problem and to analyze their computational
complexity and round complexity.

Below, we analyze the protocols for secure multiparty generation of bounded
integers assuming a setting based on verifiable secret sharing (see [GMW87] and
subsequent work). A value (e.g., from a finite field) is said to be in “shared form”
when each participant holds a share of the value (e.g., as in Shamir’s threshold
scheme). Addition of shared values is often for free due to the linearity of the
underlying secret scheme. For multiplication and other more involved operations,
special protocols exist that take one or more shared values as input and produce
one or more (new) shared values as output.

However, our analysis does not critically rely on the use of verifiable secret
sharing. The closely related setting of secure multiparty computation based on
threshold homomorphic cryptosystems (see [FH96; CDN01] for details) may be used
as well. In that case, a value is said to be in “shared form” when the value is
encrypted under the public key of a threshold homomorphic cryptosystem. The
corresponding private key is shared among the parties, of which a certain fraction
needs to cooperate for successful decryption. The homomorphic property of the
cryptosystem ensures that addition of shared values is for free, whereas special
protocols take care of multiplication and further operations on shared values.

7.6.1 The protocols

An obvious way to generate a shared random number is as follows. Each partici-
pant generates a random number between 0 and b−1, then the sum of the numbers is

7.6 Generating shared random numbers 87

computed in shared form, and finally the sum is reduced modulo b. We refer to this
protocol as the naive approach. In Section 7.6.2, we show that the naive approach
is quite inefficient in terms of computational complexity and round complexity.

An alternative to the naive approach is to use the protocols induced by Algo-
rithms 7.2.1, 7.2.2, 7.2.3, and 7.5.1. To transform the above-mentioned oblivious
algorithms into protocols for generating shared random numbers, the random bits
have to be generated securely, in shared form, using a multiparty protocol. Be-
sides that, the value of the output m, its intermediate values, and the value of r in
Algorithm 7.5.1 have to be computed securely, in shared form.

Throughout our analysis, we do not count the complexity of generating shared
random bits. We only count the additional complexity. The shared random bits can
be generated, for instance, using the protocol RAN2 proposed by Damg̊ard et al.
[DFK+06] which uses 2 rounds and 2 secure multiplication gates. However, RAN2

may have limited applicability.

7.6.2 Complexity of the protocols

In this section, we analyze the computational complexity and the round com-
plexity of the protocols for generating shared random numbers. The basic building
blocks of these protocols are protocols for addition, subtraction, comparison, and
modular reduction of bitwise-shared integers (by a bitwise-shared integer we mean
that each bit of the integer is shared).

Without loss of generality, we let b = 2n−1 + 1 for some n > 1. For simplicity, b
is assumed to be publicly known.

Let t be the number of participants who wish to generate a shared random num-
ber. In the naive approach, the sum of t n-bit numbers is computed in shared form
and then the sum is securely reduced modulo an n-bit number. In our complexity
analysis, we assume that the sum is computed using a tree structure of depth log2 t.

The generate-and-compare protocol requires on average about 2 secure compar-
isons of bitwise-shared integers.

The bottleneck of the generate-and-reduce protocol is secure reduction of an
(n + k)-bit integer modulo an n-bit integer.

Knuth and Yao [KY76] prove that before the random number m is generated,
the inner loop of Algorithm 7.2.3 is repeated on average bν(1/b) ' n + 1 times, for
i = 1, 2, . . . , n+1. Observe that for i = 1, . . . , n−1, we have h < b so comparison of
m and b is done on average 2 times (for i = n and i = n+1). Subtraction m← m−b
is done on average only once. Therefore Knuth-Yao’s protocol requires on average
2 comparisons and 1 subtraction of bitwise-shared integers.

Each step of the bit-by-bit protocol requires a secure multiplication of r and
`i(m). Besides that, at each step the bit (1 − r)`i(m)(1 − b′i) has to be revealed.
Since the total number of steps of the protocol is on average n + 3, the protocol
costs n + 3 secure multiplications and n + 3 reveals.

The computational complexity and the round complexity of the above proto-
cols depends on how addition, comparison, and modular reduction of the bitwise-
shared integers are implemented (subtraction is usually implemented in the same

88 Generating random numbers from an interval

way as addition). There exist several protocols for these tasks (e.g., [ST06; GSV07;
DFK+06]). Some of them have relatively low computational complexity but linear
in n round complexity [ST06]. Others have logarithmic or even constant round com-
plexity but relatively high computational complexity [GSV07; DFK+06]. We first
focus on protocols with low computational complexity. Then we consider protocols
with low round complexity.

Computational complexity

Assume that addition and comparison of bitwise-shared integers are implemented
using the protocol described by Schoenmakers and Tuyls [ST06, Section 2.3] which
uses l rounds and 2l secure multiplication gates, where l is the bit length of the
integers. To the best of our knowledge, this protocol is the most efficient in terms
of computational complexity. Assume also that secure modular reduction is imple-
mented using the long division method. Then, the complexity of the naive approach
is about n log2 t+2n log2 t rounds and 2nt+4n log2 t secure multiplication gates. Ta-
ble 7.2 shows that the naive approach along with the generate-and-reduce protocol
have the worst computational complexity.

The bit-by-bit protocol has essentially minimal computational complexity, which
is only about 1 secure multiplication and 1 reveal per bit (at each step of the protocol,
the product of (1−r) and `i(m) is computed and then the value of (1−r)`i(m)(1−b′i)
is revealed).

Protocol Computational complexity Round complexity,
rounds

Naive approach 2n(t + 2 log2 t) mult’s 3n log2 t

Generate-and-compare 4n mult’s 2n

Generate-and-reduce 4nk mult’s 2nk

Knuth-Yao’s 6n mult’s 3n

Bit-by-bit (n+3) mult’s + (n+3) reveals n + 3

Table 7.2: The lowest possible computational complexity and the corresponding
round complexity of the protocols for generating shared random numbers (excluding
the complexity of generating shared random bits). The security parameter of the
generate-and-reduce protocol is denoted by k; the number of participants is denoted
by t.

Round complexity

Constant-round protocols for addition, comparison, and modular reduction of bitwise-
shared integers are proposed by Damg̊ard et al. [DFK+06]. As reported by Nishide

7.6 Generating shared random numbers 89

and Ohta [NO07], the complexity of the addition protocol is 15 rounds and 47l log2 l
secure multiplication gates, where l is the bit length of the integers. The complexity
of the comparison protocol is 7 rounds and 17l secure multiplication gates. Reducing
an l1-bit integer modulo an l2-bit integer implies l1 subtractions and l1 comparisons
of bitwise-shared integers (the subtractions and the comparisons can be done in
parallel, cf. [DFK+06]). Applying these protocols makes the round complexity of
the generate-and-compare protocol, generate-and-reduce protocol, and Knuth-Yao’s
protocol constant (see Table 7.3).

In some cases, logarithmic-round protocols for addition and comparison of bitwise-
shared integers are more efficient than the constant-round protocols. For instance,
Garay et al. [GSV07] propose a comparison protocol that uses log2 l rounds and 3l
secure multiplication gates. A logarithmic-round addition protocol can be derived,
for example, from the Brent-Kung circuit (see, e.g., [Par00, Chapter 6]). The com-
plexity of the latter protocol is about 2 log2 l rounds and 4l secure multiplication
gates.

Note that the bit-by-bit protocol does not imply neither addition nor compar-
isons of bitwise-shared integers. Therefore, the complexity of the bit-by bit protocol
in Table 7.3 is the same as the one in Table 7.2.

Protocol Computational complexity Round complexity,
rounds

Naive approach 47n log2 n(t + n) + 17n2 mult’s 15 log t + 22

n(3t + 7n) mult’s log2 n(2 log2 t + 3)

Generate-and- 34n mult’s 14

compare 6n mult’s 2 log2 n

Generate-and-reduce (47n log2 n + 17n)(n + k) mult’s 22

7n(n + k) mult’s 3 log2 n

Knuth-Yao’s 47n log2 n + 34n mult’s 29

10n mult’s 4 log2 n

Bit-by-bit (n + 3) mult’s + (n + 3) reveals n + 3

Table 7.3: Versions of the protocols for generating shared random numbers with
reduced round complexity (the complexity of generating shared random bits is not
included). As before, the security parameter of the generate-and-reduce protocol is
denoted by k; the number of participants is denoted by t.

90 Generating random numbers from an interval

7.7 Conclusion

The choice of the protocol for generating random numbers in the setting of secure
multiparty computation depends on the designer’s goal. If one aims at minimizing
the round complexity, the generate-and-compare protocol is a good choice. In turn,
the bit-by-bit protocol has essentially minimal computational complexity. Since
communication complexity is usually strongly related to computational complexity
the bit-by-bit protocol is very efficient also in terms of communication complexity.

Glossary

Notation Meaning

Z set of all integers

ZN = {0, 1, . . . , N−1} ring of integers modulo N

[x]N = x mod N the smallest nonnegative residue of x modulo N

Z∗N group of integers from ZN relatively prime to N

QRN set of quadratic residues modulo N

[x]N = x mod N the smallest nonnegative residue of x modulo N

φ Euler’s totient function

Fp finite field with p elements

E(Fp) elliptic curve over Fp

#E(Fp) number of points on the curve E(Fp)

x(P) ∈ Z x-coordinate of P ∈ E(Fp) interpreted as an integer

Pr[X = x] probability that random variable X takes on value x

E(X) expected value of random variable X

Var(X) variance of random variable X, Var(X) = E(X−E(X))2

∆(X, Y) statistical distance between random variables X and Y

s ∈R S element s is chosen uniformly at random from set S

UN random variable uniformly distributed on ZN

`j(x) the j-th least significant bit of x

Lj(x) = x mod 2j integer consisting of j least significant bits of x

L(n) running time of the Number Field Sieve

91

92 Glossary

Abbreviation Meaning

NFS Number Field Sieve

DLNFS discrete logarithm variant of the NFS

DL problem discrete logarithm problem

ECDL problem elliptic curve discrete logarithm problem

CDH problem computational Diffie-Hellman problem

DDH problem decisional Diffie-Hellman problem

DLSE problem discrete logarithm with short exponents problem

DEC generator Dual Elliptic Curve generator

DSA Digital Signature Algorithm

References

[ACGS88] W. Alexi, B. Chor, O. Goldeich, and C. P. Schnorr, RSA and Rabin
functions: Certain parts are as hard as the whole, SIAM Journal on
Computing (1988), 194–209.

[BBS86] L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudo-
random number generator, SIAM Journal on Computing (1986), 364–
383.

[BCP03] E. Bresson, D. Catalano, and D. Pointcheval, A simple public-key cryp-
tosystem with a double trapdoor decryption mechanism and its appli-
cations, 2003, Lecture Notes in Computer Science, vol. 2894, Springer-
Verlag, 2003, pp. 37–54.

[BF01] D. Boneh and M. K. Franklin, Identity-based encryption from the Weil
pairing, Advances in Cryptology—Crypto 01, Lecture Notes in Com-
puter Science, vol. 2139, Springer-Verlag, 2001, pp. 213–229.

[BG07] D. Brown and K. Gjøsteen, A security analysis of the NIST SP 800-90
elliptic curve random number generator, Cryptology ePrint Archive,
Report 2007/048, 2007, http://eprint.iacr.org/. To appear in the
proceedings of Crypto 2007.

[BGP06] C. Berbain, H. Gilbert, and J. Patarin, QUAD: A practical stream ci-
pher with provable security, Advances in Cryptology—Eurocrypt 2006,
Lecture Notes in Computer Science, 2006, pp. 109–128.

[BHHG01] D. Boneh, S. Halevi, and N. Howgrave-Graham, The modular in-
version hidden number problem, Advances in Cryptology—Asiacrypt
2001, Lecture Notes in Computer Science, vol. 2248, Springer-Verlag,
2001, pp. 36–51.

[BK05] E. Barker and J. Kelsey, Recommendation for random number genera-
tion using deterministic random bit generators, December 2005, NIST
Special Publication (SP) 800-90.

[Ble02] D. Bleichenbacher, On the generation of DSA one-time keys, 6th Work-
shop on Elliptic Curve Cryptography, 2002.

[BM82] M. Blum and S. Micali, How to generate cryptographically strong se-
quences of pseudo random bits, Symposium on Foundations of Com-

93

94 REFERENCES

puter Science, 1982, pp. 112–117.

[BOCS83] M. Ben-Or, B. Chor, and A. Shamir, On the cryptographic security
of single RSA bits, ACM Symposium on Theory of Computing, 1983,
pp. 421–430.

[BP97] N. Barić and B. Pfitzmann, Collision-free accumulators and fail-stop
signature schemes without trees, Advances in Cryptology—Eurocrypt
1997, Lecture Notes in Computer Science, vol. 1233, 1997, pp. 480–494.

[BR96] M. Bellare and P. Rogaway, The exact security of digital signatures –
how to sign with RSA and Rabin, Advances in Cryptology—Eurocrypt
1996, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag,
1996, pp. 399–416.

[BR06] M. Bellare and P. Rogaway, The security of triple encryption
and a framework for code-based game-playing proofs, Advances in
Cryptology—Eurocrypt 2006, Lecture Notes in Computer Science, vol.
4004, Springer-Verlag, 2006, pp. 409–426.

[Bro06] D. Brown, Conjectured security of the ANSI-NIST elliptic curve RNG,
Cryptology ePrint Archive, Report 2006/117, 2006, http://eprint.
iacr.org/.

[BV98] D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to
factoring, Advances in Cryptology—Eurocrypt 1998, Lecture Notes in
Computer Science, vol. 1403, Springer-Verlag, 1998, pp. 59–71.

[Cam06] M. Campagna, Security bounds for the NIST codebook-based deter-
ministic random bit generator, Cryptology ePrint Archive, Report
2006/379, 2006, http://eprint.iacr.org/.

[Can01] R. Canetti, Universally composable security: A new paradigm for cryp-
tographic protocols, Symposium on Foundations of Computer Science,
2001, pp. 136–145.

[CDN01] R. Cramer, I. Damg̊ard, and J. Nielsen, Multiparty computation
from threshold homomorphic encryption, Advances in Cryptology—
Eurocrypt 2001, Lecture Notes in Computer Science, vol. 2045,
Springer-Verlag, 2001, pp. 280–300.

[Cor02] J. Coron, Optimal security proofs for PSS and other signature schemes,
Advances in Cryptology—Eurocrypt 2002, Lecture Notes in Computer
Science, vol. 2332, Springer-Verlag, 2002, pp. 272–287.

[CS98] R. Cramer and V. Shoup, A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack, Advances in
Cryptology—Crypto 1998, Lecture Notes in Computer Science, vol.
1462, Springer, 1998, pp. 13–25.

[CS00] R. Cramer and V. Shoup, Signature schemes based on the strong RSA
assumption, ACM Transactions on Information and System Security
3 (2000), no. 3, 161–185.

REFERENCES 95

[CS04] R. Cramer and V. Shoup, Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack,
SIAM Journal on Computing 33 (2004), no. 1, 167–226.

[DFK+06] I. Damgaard, M. Fitzi, E. Kiltz, J. Nielsen, and T. Toft, Uncondi-
tionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation, Third Theory of Cryptography
Conference, TCC 2006 (Berlin), Lecture Notes in Computer Science,
vol. 3876, Springer-Verlag, 2006, pp. 285–304.

[DH76] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory 22 (1976), no. 6, 644–654.

[DSS00] Digital Signature Standard FIPS PUB 186-2, January 2000, Na-
tional Institute of Standards and Technology, http://csrc.nist.
gov/publications/fips/fips186-2/fips186-2-change1.pdf.

[eBA] eBATS: ECRYPT Benchmarking of Asymmetric Systems, http://
www.ecrypt.eu.org/ebats/.

[ECS] D. Eastlake, S. Crocker, and J. Schiller, RFC 1750 –
Randomness recommendations for security, Available from
http://www.ietf.org/rfc/rfc1750.txt.

[FH96] M. Franklin and S. Haber, Joint encryption and message-efficient se-
cure computation, Journal of Cryptology 9 (1996), no. 4, 217–232.

[FPS07] R. R. Farashahi, R. Pellikaan, and A. Sidorenko, Extractors for binary
elliptic curves, 2007, To appear in the proceedings of the International
Workshop on Coding and Cryptography.

[FPSZ06] P. Fouque, D. Pointcheval, J. Stern, and S. Zimmer, Hardness of dis-
tinguishing the MSB or LSB of secret keys in Diffie-Hellman schemes,
International Colloquium on Automata, Languages and Programming,
2006, pp. 240–251.

[FS00] R. Fischlin and C. P. Schnorr, Stronger security proofs for RSA and
Rabin bits, Journal of Cryptology 13 (2000), no. 2, 221–244.

[FS03] N. Ferguson and B. Schneier, Practical cryptography, Wiley Publishing,
USA, 2003.

[FSS07] R. R. Farashahi, B. Schoenmakers, and A. Sidorenko, Efficient pseu-
dorandom generators based on the DDH assumption, Public Key
Cryptography—PKC 07, Lecture Notes in Computer Science, vol.
4450, Springer-Verlag, 2007, pp. 426–441.

[Gam85] T. E. Gamal, A public key cryptosystem and a signature scheme based
on discrete logarithms, IEEE Transactions on Information Theory 31
(1985), no. 4, 469–472.

[Gen05] R. Gennaro, An improved pseudo-random generator based on the dis-
crete logarithm problem, Journal of Cryptology 18 (2005), no. 2, 91–
110.

96 REFERENCES

[Gjø06] K. Gjøsteen, Comments on Dual-EC-DRBG/NIST SP 800-90, Draft
December 2005, March 2006, http://www.math.ntnu.no/~kristiag/
drafts/dual-ec-drbg-comments.pdf.

[GKR04] R. Gennaro, H. Krawczyk, and T. Rabin, Secure hashed Diffie-Hellman
over non-DDH groups, Cryptology ePrint Archive, Report 2004/099,
2004, http://eprint.iacr.org/.

[GM84] S. Goldwasser and S. Micali, Probabilistic encryption, Special issue of
Journal of Computer and Systems Sciences 28 (1984), no. 2, 270–299.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest, A digital signature scheme se-
cure against adaptive chosen-message attacks, SIAM Journal on Com-
puting 17 (1988), no. 2, 281–308.

[GMT82] S. Goldwasser, S. Micali, and P. Tong, Why and how to establish a
private code on a public network, Symposium on Foundations of Com-
puter Science, 1982, pp. 134–144.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental
game or a completeness theorem for protocols with honest majority,
ACM Symposium on Theory of Computing, 1987, pp. 218–229.

[GNU] GNU Open Source Community, Gnu mp, the gnu multiple precision
arithmetic library, http://gmplib.org/.

[Gol95] O. Goldreich, Three XOR-lemmas – an exposition, Electronic Collo-
quium on Computational Complexity 2 (1995), no. 56.

[Gol01] O. Goldreich, Foundations of cryptography, Cambridge University
Press, Cambridge, UK, 2001.

[GPR06] Z. Gutterman, B. Pinkas, and T. Reinman, Analysis of the Linux ran-
dom number generator, Cryptology ePrint Archive, Report 2006/086,
2006, http://eprint.iacr.org/.

[GSV07] J. Garay, B. Schoenmakers, and J. Villegas, Practical and secure solu-
tions for integer comparison, Public Key Cryptography—PKC 2007
(Berlin), Lecture Notes in Computer Science, vol. 4450, Springer-
Verlag, 2007, pp. 330–342.

[GW96] I. Goldberg and E. Wagner, Randomness and the Netscape browser,
Dr. Dobb’s Journal (1996), 66–70.

[HHR06] I. Haitner, D. Harnik, and O. Reingold, On the power of the random-
ized iterate, Advances in Cryptology—Crypto 2006, Lecture Notes in
Computer Science, vol. 4117, Springer-Verlag, 2006, pp. 22–40.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby, Construction of
a pseudo-random generator from any one-way function, SIAM Journal
on Computing 28 (1999), 1364–1396.

[HN99] J. H̊astad and M. Näslund, The security of all RSA and discrete log
bits, Electronic Colloquium on Computational Complexity (ECCC) 6
(1999), no. 37.

REFERENCES 97

[Hoe63] W. Hoeffding, Probability in equations for sums of bounded random
variables, Journal of the American Statistical Association 56 (1963),
13–30.

[IN89] R. Impagliazzo and M. Naor, Efficient cryptographic schemes prov-
ably as secure as subset sum, Symposium on Foundations of Computer
Science, 1989, pp. 236–241.

[Jia06] S. Jiang, Efficient primitives from exponentiation in Zp, Australasian
Conference on Information Security and Privacy, Lecture Notes in
Computer Science, vol. 4058, Springer-Verlag, 2006, pp. 259–270.

[JJSH00] A. Juels, M. Jakobsson, E. Shriver, and B. K. Hillyer, How to turn
loaded dice into fair coins, IEEE Transactions on Information Theory
46 (2000), no. 3, 911–921.

[JN03] A. Joux and K. Nguyen, Separating decision Diffie-Hellman from com-
putational Diffie-Hellman in cryptographic groups, Journal of Cryptol-
ogy 16 (2003), no. 4, 239–247.

[Kal88] B. S. Kaliski, Elliptic curves and cryptography: A pseudorandom bit
generator and other tools, Ph.D. thesis, MIT, Cambridge, MA, USA,
1988.

[KM06] N. Koblitz and A. Menezes, Another look at “provable security”. II,
Progress in Cryptology—Indocrypt 2006, vol. 4329, Springer-Verlag,
2006, pp. 148–175.

[KSF99] J. Kelsey, B. Schneier, and N. Ferguson, Yarrow-160: Notes on the
design and analysis of the Yarrow cryptographic pseudorandom number
generator, Selected Areas in Cryptography, 1999, pp. 13–33.

[KW03] J. Katz and N. Wang, Efficiency improvements for signature schemes
with tight security reductions, ACM Conference on Computer and
Communications Security, 2003, pp. 155–164.

[KY76] D. Knuth and A. Yao, The complexity of nonuniform random number
generation, Algorithms and Complexity: New Directions and Recent
Results (1976), 357–428.

[Len04] A. K. Lenstra, Key lengths, Contribution to The Handbook of In-
formation Security, 2004, http://cm.bell-labs.com/who/akl/key_
lengths.pdf.

[Lub94] M. Luby, Pseudorandomness and cryptographic applications, Princeton
University Press, Princeton, NJ, USA, 1994.

[LV00] A. K. Lenstra and E. R. Verheul, The XTR public key system, Ad-
vances in Cryptology—Crypto 2000, Lecture Notes in Computer Sci-
ence, vol. 1880, Springer-Verlag, 2000, pp. 1–19.

[LV01] A. K. Lenstra and E. R. Verheul, Selecting cryptographic key sizes,
Journal of Cryptology 14 (2001), no. 4, 255–293.

98 REFERENCES

[LW83] D. L. Long and A. Wigderson, How discreet is the discrete log, ACM
Symposium on Theory of Computing, 1983, pp. 413–420.

[Mar95] G. Marsaglia, The Marsaglia random number CDROM including the
Diehard battery of tests of randomness, 1995, http://stat.fsu.edu/
pub/diehard/.

[Mau94] U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman
protocol and computing discrete algorithms, Advances in Cryptology—
Crypto 1994, Lecture Notes in Computer Science, vol. 839, Springer-
Verlag, 1994, pp. 271–281.

[MOV93] A. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve
logarithms to logarithms in a finite field, IEEE Transactions on Infor-
mation Theory 39 (1993), no. 5, 1639–1646.

[MvOV00] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography, CRC Press series on discrete mathematics and
its applications, 2000.

[MW96] U. M. Maurer and S. Wolf, Diffie-Hellman oracles, Advances in
Cryptology—Crypto 1996, Lecture Notes in Computer Science, vol.
1109, Springer-Verlag, 1996, pp. 268–282.

[Nao89] M. Naor, Bit commitment using pseudo-randomness, Advances in
Cryptology—Crypto 1989, Lecture Notes in Computer Science, vol.
435, Springer-Verlag, 1989, pp. 128–136.

[NO07] T. Nishide and K. Ohta, Multiparty computation for interval, equal-
ity, and comparison without bit-decomposition protocol, Public Key
Cryptography—PKC 2007, Lecture Notes in Computer Science, vol.
4450, Springer-Verlag, 2007, pp. 343–360.

[NR04] M. Naor and O. Reingold, Number-theoretic constructions of efficient
pseudo-random functions, Journal of the ACM 51 (2004), no. 2, 231–
262.

[NY90] M. Naor and M. Yung, Public-key cryptosystems provably secure
against chosen ciphertext attacks, ACM Symposium on Theory of
Computing, 1990, pp. 427–437.

[Par00] B. Parhami, Computer arithmetic. Algorithms and hardware designs,
Oxford University Peters, 2000.

[Per92] R. Peralta, On the distribution of quadratic residues and non-residues
modulo a prime number, Mathematics of Computation 58 (1992).

[Pol00] J. M. Pollard, Kangaroos, monopoly and discrete logarithms, Journal
of Cryptology 13 (2000), no. 4, 437–447.

[Pre01] P. Preuss, Are the digits of Pi random? Lab researchers may hold
the key, 2001, http://www.lbl.gov/Science-Articles/Archive/
pi-random.html.

REFERENCES 99

[PS98] S. Patel and G. Sundaram, An efficient discrete log pseudo random
generator, Advances in Cryptology—Crypto 1998, Lecture Notes in
Computer Science, vol. 1462, Springer-Verlag, 1998, pp. 304–317.

[PW00] B. Pfitzmann and M. Waidner, Composition and integrity preserva-
tion of secure reactive systems, ACM Conference on Computer and
Communications Security, 2000, pp. 245–254.

[RS92] C. Rackoff and D. Simon, Noninteractive zero-knowledge proof of
knowledge and chosen ciphertext attack, Advances in Cryptology—
Crypto 1991, Lecture Notes in Computer Science, vol. 576, Springer-
Verlag, 1992, pp. 433–444.

[RSA78] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM
21 (1978), no. 2, 120–126.

[Sha02] R. Shaltiel, Recent developments in explicit constructions of extractors,
Bulletin of the EATCS 77 (2002), 67–95.

[Sho05] V. Shoup, A computational introduction to number theory and algebra,
Cambridge University Press, Cambridge, UK, 2005.

[SKW+99] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Fer-
guson, Performance comparison of the AES submissions, 1999, http:
//www.schneier.com/paper-aes-performance.pdf.

[SPW06] R. Steinfeld, J. Pieprzyk, and H. Wang, On the provable secu-
rity of an efficient RSA-based pseudorandom generator, Advances in
Cryptology—Asiacrypt 2006, vol. 4284, 2006, pp. 194–209.

[SS05] A. Sidorenko and B. Schoenmakers, Concrete security of the Blum-
Blum-Shub pseudorandom generator, 10th IMA International Confer-
ence on Cryptography and Coding, Lecture Notes in Computer Sci-
ence, vol. 3796, Springer-Verlag, 2005, pp. 355–375.

[SS06] B. Schoenmakers and A. Sidorenko, Cryptanalysis of the Dual Elliptic
Curve pseudorandom generator, Cryptology ePrint Archive, Report
2006/190, 2006, http://eprint.iacr.org/.

[ST06] B. Schoenmakers and P. Tuyls, Efficient binary conversion for Paillier
encrypted values, Advances in Cryptology—Eurocrypt 2006, Lecture
Notes in Computer Science, vol. 4004, Springer-Verlag, 2006, pp. 522–
537.

[vOW96] P. van Oorschot and M. Wiener, On Diffie-Hellman key agreement with
short exponents, Advances in Cryptology—Eurocrypt 1996, Lecture
Notes in Computer Science, vol. 1070, Springer-Verlag, 1996, pp. 332–
343.

[VV84] U. V. Vazirani and V. V. Vazirani, Efficient and secure pseudo-random
number generation, Symposium on Foundations of Computer Science,
1984, pp. 458–463.

100 REFERENCES

[Wol99] S. Wolf, Information-theoretically and computationally secure key
agreement in cryptography, Ph.D. thesis, ETH Zurich, 1999.

[Yao82] A. C. Yao, Theory and application of trapdoor functions, Symposium
on Foundations of Computer Science, 1982, pp. 80–91.

[YCBC07] B. Yang, O. Chen, D. Bernstein, and J. Chen, Analysis of QUAD, To
appear in the proceedings of Fast Software Encryption 2007, 2007.

[YY04] A. Young and M. Yung, Malicious cryptography: Exposing cryptovirol-
ogy, Wiley, 2004.

Index

x-logarithm problem, 19, 26

advantage, 12

binary division, 46

challenger, 64, 65
Chebyshev’s inequality, 56
computational

complexity, 74
indistinguishability, 4
XOR Proposition, 44

Diffie-Hellman problem
computational, 15
decisional, 14, 26, 28

discrete logarithm problem, 14, 25
elliptic curve discrete logarithm

problem, 14, 17
with short exponents, 15, 35

distinguisher, 12

Golumb’s randomness postulates, 4

hardware sources of randomness, 3
lava lamp, 3
thermal noise, 3

hash function
collision-resistant, 69
SHA1, 20, 70
universal, 34
universal one-way, 70

Hasse’s theorem, 18
Hoeffding’s bound, 46
hybrid technique, 28

IND-CCA2, 65
integer factorization, 12

Knuth-Yao algorithm, 76
Kolmogorov complexity, 5

majority decision, 45
subsample, 56

Number Field Sieve, 12, 14, 15

Pollard’s lambda method, 15
Pollard’s rho method, 14
probability distribution

binomial, 21
Poisson, 21, 22
uniform, 3, 12

pseudorandom generator, 4, 12
Blum-Blum-Shub, 7, 61
Blum-Micali, 6, 25
DDH, 28
Dual Elliptic Curve, 18, 105
Gennaro, 6, 34
RSA, 7, 42

pseudorandom sequence, 4
public key encryption scheme, 65

Cramer-Shoup, 70

quadratic residue, 31, 39, 69

randomness complexity, 74
randomness extractor, 27, 33
reduction, 8, 43, 105

not tight, 8, 42, 70
polynomial-time, 8, 42
tight, 8, 71

101

102 INDEX

round complexity, 74
RSA problem, 13, 41

flexible, 13, 69

safe prime, 31, 39
security

asymptotic, 8, 42
concrete, 8, 41, 64
provable, 6

seed, 4, 5
signature scheme, 64

Cramer-Shoup, 69
DSA, 34, 74

statistical distance, 11, 30
statistical test, 4

Diehard battery, 4
FIPS 140-1 standard, 4

time unit, 11

universal composability, 63

Acknowledgements

First of all, I would like to express my sincere appreciation to my supervisors Henk
van Tilborg and Berry Schoenmakers. I am very grateful to Henk for inviting me
to do my Ph.D. in Eindhoven and also for his support during these years. Berry
was always ready to discuss various issues concerning my research and to answer
my questions. I owe him a great deal for his continuous guidance, advice, and
encouragement.

Some results included in this thesis are obtained in collaboration with Reza
Rezaeian Farashahi and David Galindo. I thank them for their creative ideas and
critical insight.

I am grateful to my reading committee of Henk van Tilborg, Berry Schoenmak-
ers, Arjen Lenstra, Claus-Peter Schnorr, Tanja Lange, and David Galindo. Their
comments and suggestions helped to improve the thesis significantly.

I thank Arjen Lenstra, Alfred Menezes, and Benne de Weger for interesting
discussions and insightful comments. Mehmet Kiraz and José Villegas gave me a
lot of feedback on individual chapters. I appreciate it a lot.

Furthermore, I would like to express my deep gratitude to my former supervisor
Ernst M. Gabidulin for introducing me to the field of cryptography. Without his
initial support, this thesis would not have been started.

I am indebted to all members of the Coding Theory and Cryptography group as
well as the members of the Discrete Algebra and Geometry group for the friendly
and creative atmosphere, which made my stay at TU Eindhoven enjoyable and
unforgettable. In particular, I thank Tim Mussche, who I had the pleasure to share
the office with.

I thank my father Vladimir, my brother Yury, and my grandmother Genrietta
Andreevna, for their support, understanding, and encouragement. Last but not
least, I thank my wife Natasha for her love.

103

104 Acknowledgements

Summary: Design and analysis of

provably secure pseudorandom generators

Random numbers are used in a lot of applications. In particular, random numbers
are essential for most of the cryptographic systems. The security of a cryptographic
system may depend on the “quality” of the random numbers utilized by the system.
Therefore, the random numbers used for cryptographic purposes should be generated
with utmost care.

Pseudorandom generator is a mechanism for producing random numbers on a
deterministic computer. A pseudorandom generator is said to be cryptographi-
cally secure if its output cannot be distinguished from uniformly random by any
computationally bounded adversary. In some cases, it is possible to prove that a
pseudorandom generator is cryptographically secure under a computational assump-
tion, e.g., the intractability of the RSA problem. Such pseudorandom generators
are called provably secure.

In this thesis we pursue several goals. First, we analyze the security of several
existing pseudorandom generators such as the classical RSA generator and the re-
cently developed Dual Elliptic Curve generator. Second, we design a new family of
provably secure pseudorandom generators. Third, we analyse the concrete security
of complex cryptographic systems that use a pseudorandom generator as a build-
ing block. Finally, we consider the problem of converting random bits into random
numbers.

Chapter 3 is devoted to the analysis of the Dual Elliptic Curve generator pro-
posed in NIST SP800-90. The authors claim that the security of the generator
relies on the intractability of the elliptic curve discrete logarithm problem but they
provide no reduction. We show that in fact the generator is insecure. A simple
and efficient distinguisher is presented. Our attack demonstrates that schemes with
heuristic security analysis are unreliable, in contrast with provably secure schemes.

The Dual Elliptic Curve generator is modified and generalized in Chapter 4.
Although the original Dual Elliptic Curve generator is shown to be insecure, the
modified version is provably secure under the decisional Diffie-Hellman assumption.
Besides that, the new construction is very efficient. Two specific instances of the
new construction are proposed. The techniques used to design the specific instances,
for example, a new randomness extractor, are of independent interest for other
applications.

105

106 Summary

Chapter 5 is about the RSA generator. Combining techniques of Fischlin and
Schnorr with ideas of Vazirani and Vazirani we construct a new reduction for this
generator in the case that more than one bit is output on each iteration. The new
reduction is more efficient than all previously known reductions. As a result, it
guarantees security of the generator for relatively low seed lengths.

In Chapter 6, we consider a pseudorandom generator as a component of a com-
plex cryptographic system. In particular, we analyze the concrete security of prob-
abilistic digital signature schemes and public key encryption schemes that use a
pseudorandom generator as a source of randomness.

Chapter 7 concerns the problem of converting random bits to random numbers.
We revisit this problem in the setting of secure multiparty computation. We pro-
pose a new algorithm for solving this problem and show that the computational
complexity of this algorithm is less than the computational complexity of the exist-
ing methods.

Curriculum Vitae

Andrey Sidorenko was born on December 26, 1980 in Moscow, Russia. Between
1987 and 1997, he was a high school student. In 1995, Andrey won the third place
in the mathematics olympiad of the Krasnoyarsk region.

In 1997, he entered Moscow Institute of Physics and Technology, where he took
a wide variety of courses in mathematics, physics, and computer science. After
attending very interesting lectures on cryptography held by prof. dr. Ernst M.
Gabidulin, Andrey decided to study this discipline in more detail. Under the super-
vision of this professor, Andrey wrote his Master’s thesis on analysis of the Hidden
Field Equations public key cryptosystem.

During the Master’s program, Andrey worked as an assistant at the Department
of Radio Engineering. At that time, Andrey also worked as a software engineer at
the Institute for Information Transmission Problems. He implemented list decoding
algorithms for the Reed-Solomon codes.

In 2003, Andrey received his Master’s degree with honors. At the same year,
he joined the Coding Theory and Cryptography group at Technische Universiteit
Eindhoven. Until 2007, he was a Ph.D. student under the supervision of prof. dr.
Henk van Tilborg and dr. Berry Schoenmakers.

107

108 Curriculum Vitae

	Contents
	1. Introduction
	2. Preliminaries
	3. Cryptanalysis of the dual elleptic curve pseudorandom generator
	4. Efficient pseudorandom generators based on the DDH assumption
	5. Concrete security of the RSA generator
	6. Pseudorandom generator as a building block of a secure scheme
	7. Generating random numbers from an interval
	Glossary
	References
	Index
	Acknowledgments
	Summary
	Curriculum Vitae

