6 research outputs found

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Provably minimal energy using coordinated DVS and power gating

    No full text

    Wireless Microwave Quantum Communication

    Get PDF
    228 p.Esta Tesis explora los l铆mites en la aplicaci贸n de microondas cu谩nticas propagantes para comunicaci贸n y sens贸rica cu谩ntica, as铆 como el dise帽o de nuevos aparatos y protocolos para combatir estas limitaciones.Nos servimos de estados cu谩nticos Gaussianos para teleportaci贸n cu谩ntica e iluminaci贸n cu谩ntica, y estudiamos c贸mo mejorar estos protocolos utilizando destilaci贸n de entrelazamiento y purificaci贸n parcial, respectivamente. La Tesis se centra en la distribuci贸n de entrelazamiento por el aire, y sigue los pasos de generaci贸n de estados dentro de un criostato, adaptaci贸n de impedancias entre el criostato y elaire con una nueva generaci贸n de antenas coplanares, y propagaci贸n por el aire, en el marco actual de las tecnolog铆as de microondas. Tambi茅n tratamos las dificultades producidas por p茅rdidas y medidas ineficientes, y exploramos una extensi贸n hacia comunicaci贸n cu谩ntica entre sat茅lites, donde analizamos los efectos de la difracci贸n y las turbulencias, especialmente c贸mo estas 煤ltimas afectan a las se帽ales en el rango 贸ptico. Concluimos con el estudio de la teleportaci贸n de informaci贸n cu谩ntica en una red de 谩rea local cu谩ntica. En resumen, esta Tesis contribuye al desarrollo de la comunicaci贸n inal谩mbrica con microondas en el r茅gimen de microondas, estudiando sus limitaciones y c贸mo vencerlas. Aun as铆, a煤n se trata de una tecnolog铆a emergente, y queda mucho trabajo por hacer para que llegue a ser competitiva

    WICC 2017 : XIX Workshop de Investigadores en Ciencias de la Computaci贸n

    Get PDF
    Actas del XIX Workshop de Investigadores en Ciencias de la Computaci贸n (WICC 2017), realizado en el Instituto Tecnol贸gico de Buenos Aires (ITBA), el 27 y 28 de abril de 2017.Red de Universidades con Carreras en Inform谩tica (RedUNCI
    corecore