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Abstract

This Thesis explores the limits in the application of propagating quantum microwaves
for quantum communication and quantum sensing, as well as the design of new de-
vices and protocols to fight these limitations. We take advantage of Gaussian quan-
tum states for quantum teleportation and quantum illumination, and studies how
these protocols can be improved using entanglement distillation and partial purifica-
tion, respectively. The Thesis is centered around open-air entanglement distribution,
and it follows the steps of state generation inside the cryostat, impedance matching
between the cryostat and the open air with a new generation of coplanar antennae,
and open air propagation, in the limited framework of current microwave technology.
We also address the limitations produced by losses and measurement inefficiencies,
and explore the extension to satellite quantum communications. There, we analyze
the effects of diffraction and turbulence, studying how the latter affects signals in the
optical regime as well. We conclude by studying the teleportation of quantum infor-
mation in a quantum local area network. To sum up, this Thesis contributes to the
development of wireless quantum communications in the microwave regime, study-
ing its technological limitations and how to overcome them. Nevertheless, quantum
technologies working in this frequency range are still emergent and plenty of work
must be accomplished in order to make them competitive.






Resumen

Las leyes de la mecanica cudntica, necesarias para una descripcion precisa de la nat-
uraleza a nivel microscopico, fueron postuladas al comienzo del siglo pasado. En los
inicios, aun asi, habia controversia; de ahi el famoso trabajo de Einstein, Podolsky
vy Rosen en 1935, afirmando que ninguna teoria que cumpliera el realismo local po-
drfa ser completa, y necesitarfa apoyarse en variables (cldsicas) adicionales, lo que se
conoce como el modelo de variables locales ocultas. Este mas bien filoséfico escollo,
conocido como la paradoja EPR, fue solventado por John S. Bell en 1964, cuando
disené una serie de experimentos, los cuales indicaban que las predicciones hechas
en el marco de la mecanica cudntica eran incompatibles con un modelo de variables
ocultas subyacente satisfaciendo requerimientos de localidad. A esto se le llamé el
teorema de Bell, e impone restricciones a los resultados de las medidas hechas lo-
calmente entre dos particulas que estén correlacionadas, dadas unas variables locales
ocultas, mostrando que la mecanica cuantica predice la violacién de estas restric-
ciones. Una de las desigualdades de Bell més famosas es la desigualdad CHSH, la
cual expuso la posiblidad de una realizacién experimental de un test de Bell. tras
algunos experimentos fallidos en los anos 70 lleg6 la propuesta y los experimentos de
Aspect, la primera prueba de la no-separabilidad de la mecénica cuantica. A estos
les sucedieron muchos experimentos, la mayoria de los cuales utilizaron medidas con
dos resultados, en las cuales los fotones son tratados como sistemas de dos niveles,
con dos estados de polarizacién o de nimero de fotones. Estos son conocidos como
estados de qubit, la unidad de informacién codificada en un sistema cuantico, analogo
al bit clasico.

Un qubit estd caracterizado por un vector |¢) en un espacio de Hilbert bidi-
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mensional H, cuyos vectores de la base se suelen indicar por |0) y |1), generalmente
denominados vectores de la base computacional. Mientras que un estado puro clasico
puede estar en “0” o “1”, un estado cudntico puro puede estar en una superposiciéon
de ambos,

|) = al0) +b[1) con {a,b}€C 'y |a|*+b]*=1. (0.1)

Cada elemento de la base todavia corresponde al clasico bit 0 o 1 a través de la
medida, pero al medir el estado [¢), estos valores se distribuirdn de acuerdo con
los pesos a y b, de modo que la probabilidad de medir [1)) en el estado |0) viene
dada por la amplitud |(|0)|> = |a|>. Esta propiedad de superposicién se puede
extender a un escenario de N-qubits, con un espacio de Hilbert 2V-dimensional.
Otra propiedad es el entrelazamiento, la “acciéon espeluznante a distancia” en la
paradoja EPR, y la manifestacién mas comtn de las correlaciones cuanticas que no
se pueden explicar de forma clésica. Surge en un escenario de varios qubits, donde el
estado global del sistema no se puede describir en términos de los estados locales; se
puede cuantificar, por ejemplo, a través de la entropia del sistema reducido. Dado un
estado maximamente entrelazado, como el estado de Bell (|0, 0)+|1,1))/v/2, tomar la
traza parcial sobre el segundo subsistema conduce al estado (|0)(0] + |1)(1])/2. Este
es un estado maximamente mezclado y tiene méaxima entropia, lo que significa que
la informacién contenida en las correlaciones cuanticas se ha perdido y, por lo tanto,
no hay ninguna medida que podamos realizar para extraer la informacién completa
contenida en él. Los estados mixtos, en general, se describen mediante una matriz de
densidad p que es positiva y normalizada, tr p = 1. Ademas, las matrices de densidad
también pueden describir estados puros, que satisfacen tr p?> = 1, mientras que los
estados mixtos siguen tr p? < 1.

En 1984, hubo una propuesta para utilizar la superposiciéon de estados cuanticos
como recurso para transferir informacién de forma remota. En lo que llegd a cono-
cerse como el protocolo BB84, se afirma que dos partes pueden desarrollar una clave
cudntica segura compartiendo estados cuanticos e informacién clasica. El emisor
genera estados ya sea sobre una base computacional o usando una base de super-
posicién, y el receptor mide con la misma elecciéon de base; luego, usan un canal
clasico para comunicar su eleccién de base y mantienen los bits clasicos correspon-
dientes a eventos coincidentes. Ademads, pueden detectar la presencia de un intruso
anunciando publicamente parte de la cadena de bits obtenida; si coincide una canti-
dad suficiente de elementos, entonces pueden conservarlo para desarrollar una clave
segura, y si no, pueden descartarlo y comenzar de nuevo. Aunque no estd directa-
mente relacionado con el teorema de Bell, la seguridad del protocolo BB84 contra
ataques individuales estd relacionada con la desigualdad CHSH. Otra propuesta que
se inspird en el teorema de Bell es el protocolo E91. A su vez, este protocolo tiene
a ambas partes compartiendo estados entrelazados y midiendo con un conjunto de
bases que no coincide completamente. De esta manera, pueden mantener los bits
clasicos que resultan de la medicion en la misma base, siempre que los otros resulta-
dos de la medicién pasen una prueba de realismo local para verificar si hay intrusos.
La seguridad de estos protocolos se basa en los postulados de la mecanica cuantica;
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en virtud del teorema de no clonacién y el colapso del estado de un sistema cudntico
bajo medicién, un espia no puede extraer informacioén sin afectar el proceso y dejar
un rastro. Estas dos propuestas allanaron el camino para lo que hoy se conoce como
distribucién de claves cudnticas. Se han llevado a cabo experimentos, desde la real-
izacion de la primera criptografia cudntica, usando fibras épticas, méas adelante por
el aire, y finalmente en un satélite a larga distancia.

Poco después del BB84, se propuso un avance crucial en la comunicacién cuantica:
la teleportacién cuantica. Este protocolo tiene como objetivo transferir la informa-
cién de un estado cudntico desconocido en poder de una parte, a una segunda en
una ubicacién remota, por medio de un recurso entrelazado previamente compartido,
y comunicacién clasica. También se ha realizado experimentalmente en numerosas
ocasiones: con sistemas foténicos en el laboratorio, a través de fibras Opticas, por el
aire, y en un enlace satelital, asi como en variedad de plataformas cuanticas: con
resonancia magnética nuclear, con iones atrapados, con circuitos superconductores,
e incluso entre objetos macroscépicos. La ventaja que se puede obtener mediante
la teletransportacion cuantica se basa en la existencia de un entrelazamiento previa-
mente compartido entre ambas partes, al igual que para los protocolos de distribu-
cién de claves cudnticas mediados por entrelazamiento. El acto de compartir estados
entrelazados entre las partes de la comunicacién se conoce como distribucion de en-
trelazamiento, y se ha logrado experimentalmente con fibras épticas, asi como por el
aire. Este también es un punto clave para la famosa iniciativa del Internet cuantico.

El entrelazamiento se puede codificar en muchos grados diferentes de libertad
de los sistemas cudnticos; los experimentos que hemos mencionado anteriormente
utilizan el nimero de fotones, la polarizacién y el entrelazamiento de intervalos de
tiempo, entre otros. Aparte de los estados cudnticos de variable discreta, el entrelaza-
miento también se puede definir usando estados bosénicos. Estos estados describen
espacios de Hilbert de dimensién infinita y sus operadores de cuadratura tienen un
espectro continuo. Los sistemas asociados a espacios de Hilbert de dimension infinita
se conocen como sistemas de "variable continua" y tienen una descripcién cuéntica
particularmente complicada.

Los estados cudnticos Gaussianos son una familia de estados de variable con-
tinua que admiten una descripcién simple; pueden describirse mediante distribu-
ciones Gaussianas en su representacion en el espacio de fases. Por lo general, son
faciles de producir experimentalmente y se pueden usar para describir el estado de
los sistemas cuanticos entrelazados. Por lo tanto, sus capacidades de procesamiento
de informacién cuantica han sido ampliamente estudiadas. Ademas, cualquier evolu-
cién cudntica que involucre estados Gaussianos, operaciones Gaussianas y medidas
Gaussianas, admite una representacion compacta conocida como formalismo simpléc-
tico. Esto permite reemplazar vectores de estado de dimension infinita y matrices de
operadores de un sistema de N modos por un vector 2/N-dimensional y una matriz
2N x 2N, el vector de desplazamiento y la matriz de covarianza, respectivamente,
que pueden caracterizar completamente una evolucién cuantica Gaussiana. Con la
matriz de covarianza, también podemos calcular las caracteristicas de estos estados,
como la pureza y el entrelazamiento.



A pesar de las multiples ventajas, el campo de la informacién cudntica Gaussiana
presenta algunas limitaciones; por ejemplo, la imposibilidad de destilar el entrelaza-
miento o de realizar correccién de errores cuantica con operaciones Gaussianas y
medidas Gaussianas. Sin embargo, muchos protocolos de destilacion de entrelaza-
miento con operaciones no Gaussianas se han estudiado en variable continua. De
manera similar, la correccién de errores cuantica con variable continua se ve obligada
a abandonar el ambito de los estados Gaussianos. Ejemplos de estados cuanticos
Gaussianos incluyen estados coherentes, estados térmicos y estados squeezed, entre
otros. El caso paradigmético de estados cudnticos Gaussianos entrelazados bipar-
titos son los estados squeezed de dos modos, que también se pueden usar para la
teleportaciéon cudntica con variable continua.

El formalismo de variable continua se usa frecuentemente para la comunicacién
cudntica, y especialmente para la teleportacion cuantica; de hecho, solo un ano de-
spués de que apareciera el primer articulo sobre teleportacién cuantica, le siguié una
versién en variable continua. Luego fue reemplazado por una propuesta maés realista,
el famoso protocolo de teleportaciéon cuantica de Braunstein-Kimble, seguido de la
primera realizaciéon experimental. Naturalmente, surgieron otros trabajos a partir de
entonces que discutian mejoras en el protocolo y el experimento. También ha habido
avances en la distribucion de entrelazamiento en variable continua, con experimentos,
asi como en la distribucion de claves cudnticas en este formalismo.

La mayoria de los experimentos de comunicacién cuantica utilizan fotones en el
rango 6ptico, principalmente debido a los leves efectos de difraccién y al tenue ruido
térmico. Sin embargo, en este rango hay muchas fuentes de error e ineficiencia:
grandes pérdidas por absorcién en el aire libre y el elevado consumo de energia,
por nombrar algunos. Al mismo tiempo, las plataformas cudnticas actuales mas
prometedoras, los circuitos superconductores, los centros de vacantes de nitrégeno
o los iones atrapados, funcionan en el régimen de microondas o utilizan senales de
microondas. Por lo tanto, para establecer un canal de comunicacién cuantica entre
unidades de procesamiento basadas en estas tecnologias, se requiere convertir fotones
de microondas a éptico o usar senales cuanticas de microondas directamente. El
primer enfoque todavia sufre de enormes ineficiencias cudnticas de conversion del
orden de 107°. En esta Tesis, consideramos el enfoque de comunicaciéon cuintica
puramente de microondas, sus ventajas y limitaciones.

Las limitaciones en la capacidad de transporte de informacién cuantica y la uni-
versalidad de los estados cudnticos Gaussianos se derivan de su descripcion simple
y su facil generacién experimental, y esto limita naturalmente el rendimiento de los
protocolos de comunicacién cudntica. Otro factor limitante es la imposibilidad de
generar estados a temperatura ambiente con microondas cudnticas. Los dispositivos
de microondas que funcionan en frecuencias de 1-100 GHz estan contaminados con
fotones térmicos a temperatura ambiente; este nimero es de 1250 fotones medios
para 5 GHz a temperatura ambiente (7' = 300 K). Esta es una de las principales
limitaciones y crea la necesidad de enfriamiento criogénico en los circuitos supercon-
ductores, para protegerlos del ruido térmico.

Los dispositivos superconductores de microondas de ltima generacién incluyen
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el amplificador paramétrico de Josephson, el transistor de electrones de alta movili-
dad, el conversor paramétrico de Josephson y el circulador, entre otros. Sin embargo,
uno de los dispositivos superconductores de microondas més relevantes, y del cual
se derivan los amplificadores y los convertidores paramétricos de Josephson, es la
unién de Josephson. Este elemento no lineal tiene aplicaciones esenciales en com-
putacién cudntica y en el procesamiento de informacién cuantica, y su desarrollo
ha dado lugar a diferentes experimentos de transferencia de estados cuanticos y de
preparaciéon remota de entrelazamiento entre varios dispositivos superconductores
basados en uniones de Josephson, asi como a andlisis de ruido. Otra aplicacién in-
teresante de este dispositivo es el amplificador paramétrico de Josephson, que puede
generar estados squeezed; estos pueden usarse para producir estados entrelazados
para la comunicacién cuantica de microondas. En criogenia, ha habido varias realiza-
ciones de distribucion de entrelazamiento de microondas y de teleportacion cuantica.
Una propuesta de teleportacién cudntica con microondas cudnticas propagantes fue
seguida por un experimento reciente, realizado dentro de un criostato. En esta Tesis,
intentamos construir un modelo realista para la distribucién de entrelazamiento por
el aire libre y la teleportacién cuantica con microondas para estudiar formalmente los
limites de este protocolo. Este modelo debe tener en cuenta los desafios asociados con
las tecnologias cuanticas de microondas, asi como los que enfrentan la comunicacién
cuantica y los estados cudnticos Gaussianos.

Experimentos recientes en el aire han fallado en la preservacién eficiente del en-
trelazamiento al usar antenas comerciales, en parte porque la amplificacion “clasica”
de las senales cuanticas tinicamente puede perjudicar a las correlaciones cuanticas.
Sin embargo, el aspecto de “matching” de impedancias de las antenas clasicas debe
imitarse para reducir las reflexiones en las sefiales que viajan desde el criostato al
aire libre. A partir de ahi, el mecanismo de pérdida en el entorno consiste en la
absorciéon de fotones de senal, la termalizacion de la senal y su difraccién, y esto
puede superarse mediante técnicas de destilacion de entrelazamiento, alejandose del
entorno Gaussiano. Protocolos como el de intercambio de entrelazamiento también
pueden ser beneficiosos para este tipo de procesos, aunque los avances actuales en
este tema carecen de eficiencia y presentan ciertas barreras tecnolégicas.

En el camino hacia una red de comunicacién cuantica global, la distribuciéon
de entrelazamiento y la teleportacién cudntica entre satélites representa un alivio
de la atenuacién atmosférica y el ruido térmico, donde las comunicaciones a través
de enlaces tierra-satélite descendentes o ascendentes pueden presentar el mayor de-
saffo. Mientras tanto, la mayoria de los avances en este a&mbito se inclinan hacia las
aplicaciones en distribucién de claves cuanticas. Dejando a un lado la sobrecarga
tecnoldgica, las mejoras pasaran por la comprensién de los diferentes mecanismos de
pérdida en el espacio libre, a saber, la difraccién, la atenuaciéon atmosférica e incluso
los efectos de las turbulencias. Derivadas de pequenas variaciones de temperatura
y presion en el interior de la atmoésfera, las turbulencias afectan a las senales en el
rango 6ptico, mientras que las microondas, debido a sus grandes longitudes de onda,
son insensibles a ellas. Estos efectos han sido bien estudiados para senales clasicas
en el régimen Optico. En el mismo rango de frecuencias, algunos trabajos recientes
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han estudiado las turbulencias en los canales de transmisién atmosféricos cuanticos,
estableciendo es posible preservar la no-clasicalidad de las seniales. También se pub-
licaron articulos perspicaces sobre los efectos de la propagacién de senales cuanticas
en el espacio libre. Mientras tanto, otros se centraron en los limites para la gen-
eracién de claves y la distribucién de entrelazamiento entre estaciones terrestres y
entre estaciones terrestres y satélites.

A diferencia de las redes de comunicacion global, las redes de drea local normal-
mente requieren una conexién inaldmbrica entre diferentes unidades. Los avances en
la conexién de estos procesadores con la informacién cuantica no solo son relevantes
para las comunicaciones cudnticas, sino que también pueden encontrar aplicaciones
en la computacién cuantica. Dadas las limitaciones que presentan los procesadores
cudnticos actuales, que caracterizan la era NISQ (siglas en inglés para elementos
cudnticos ruidosos de escala intermedia), el enfoque de la computacién cudntica dis-
tribuida podria reducir el ruido y permitir calculos mas eficientes. Por lo tanto, es
interesante explorar protocolos de teleportacién cuantica para comunicar multiples
estados de qubit entre diferentes procesadores.

Aunque la tecnologia cudntica de microondas esté un par de décadas por detras de
la éptica, tiene un futuro brillante por delante. Seria natural predecir un periodo de
coexistencia entre los dos regimenes; si bien la transduccion de seniales de microondas
al rango Optico aun no es eficiente, las comunicaciones 6pticas han demostrado ser
la opcidén correcta para largas distancias. Por otro lado, un protocolo de microondas
puede funcionar en una red de area local cuantica; una implementacién de distribu-
cién de claves cuanticas en un entorno de este tipo utilizando enlaces criogénicos
representaria un hito importante para la comunicacién cudntica de microondas. Si
bien los avances recientes en el conteo de fotones probablemente conduciran a nuevos
experimentos de iluminacion cuantica en criogenia con microondas, las aplicaciones
al radar cuantico de microondas estan aiin fuera de nuestro alcance.

A corto plazo, el enfoque principal debe estar en los experimentos dentro de un
criostato, porque las realizaciones al aire libre de la comunicacién cuantica y la ilu-
minacién cudntica con microondas aun estdn fuera de nuestro alcance. Una de las
principales razones es la falta de colimadores para reducir la difraccién, pero esto
también se puede mitigar con repetidores cuanticos. El diseno de una antena recep-
tora es otro paso importante a dar, junto con la implementacion de antenas tanto
emisoras como receptoras. Por tltimo, pero no menos importante, es crucial mejo-
rar la generacion de enredos implementando mayores ganancias en los amplificadores
paramétricos, mientras se reduce el ruido. Sin embargo, a medida que los circuitos
superconductores contintien consolidandose y expandiéndose, la comunicacion y de-
teccién cuantica de microondas seguird creciendo; las redes inaldmbricas clasicas de
microondas estaran ahi esperando.

El camino hacia una red de comunicacién cuantica universal pasa por compren-
der las limitaciones de una extensién de los paradigmas de comunicacién clasicos al
ambito cuantico. Mientras que las conexiones por cable se suelen realizar con senales
en rango 6ptico, las microondas se utilizan para enlaces en el aire libre. Por lo tanto,
estudiamos la distribucién de microondas cuanticas a través del aire libre; estudi-
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amos los estados cudnticos Gaussianos, cémo se generan, como se lanzan al aire y
cémo se degradan en este ambiente. A diferencia de las senales clésicas, donde el
principal recurso es la potencia, nos centramos en como se comporta el entrelaza-
miento, su relacién con otras caracteristicas del estado, como la pureza, y en cémo se
puede incrementar para mitigar los efectos del ruido y del entorno. Esta Tesis esta
estructurada en seis capitulos, ademés de esta introduccién y un capitulo final, y esta
dedicada al estudio de las diferentes piezas que deben unirse para la comunicacién
cuantica y la deteccion cuantica por el aire libre.

Comenzamos explorando las propiedades de los estados Gaussianos, una familia
de estados cuanticos en variable continua que se utilizan habitualmente en la comuni-
cacién cuantica, ya que son faciles de producir experimentalmente. Revisamos difer-
entes caracteristicas de estos estados que son relevantes desde la perspectiva de la in-
formacién cuantica, y caracterizamos los elementos de una evolucién completamente
Gaussiana: los canales cudnticos Gaussianos y las medidas cuanticas Gaussianas.
Después, revisamos el protocolo de teleportacién cuantica de Braunstein-Kimble, un
hito de la comunicacién cuantica Gaussiana, y exploramos las técnicas de destilacién
de entrelazamiento y de intercambio de entrelazamiento para estados Gaussianos bi-
partitos generales, que pueden mejorar la fidelidad de este protocolo. Continuamos
estudiando la purificacién de estados Gaussianos usando operaciones Gaussianas y
encontramos la imposibilidad de purificaciéon completa de un solo modo de un estado
Gaussiano entrelazado de dos modos sin una degradacién completa del entrelaza-
miento. Por lo tanto, nos enfocamos en aumentar la pureza, mientras reducimos el
entrelazamiento, y usamos los estados resultantes para un protocolo de iluminacién
cuantica. Los estados resultantes de las técnicas de purificacion parcial de una sola
copia y de dos copias muestran una mayor informacién cudntica de Fisher que los
originales, y tienen un nimero promedio de fotones mas bajo, lo que se traduce en
una mayor precisiéon para la iluminaciéon cuantica.

Maés adelante, revisamos algunos de los avances recientes en dispositivos cudnticos
superconductores, contextualizando sus implicaciones en la comunicacién cudntica de
microondas. Estudiamos los amplificadores paramétricos de Josephson y el papel que
juegan en la generacion de estados cuanticos entrelazados, esbozando un modelo de
ruido para estados Gaussianos. Luego presentamos el diseno de una antena cuan-
tica para sefiales entrelazadas de microondas que se propagan desde un criostato,
donde se generan estados cuanticos para reducir los efectos térmicos, al aire libre.
Este dispositivo tiene como objetivo reducir las reflexiones implementando el “match-
ing” de impedancias entre los diferentes medios y maximizando la preservacion del
entrelazamiento.

Después de analizar la generacion de estados y la propagacién eficiente fuera del
criostato, presentamos un mecanismo de pérdidas en el aire libre compuesto por pér-
didas por absorcién y termalizacion, y estudiamos los limites de la distribucion del
entrelazamiento por el aire libre, calculando el alcance del mismo. Luego presenta-
mos protocolos de intercambio de entrelazamiento y de destilacién de entrelazamiento
para luchar contra la degradaciéon ambiental, empleando los estados resultantes como
recursos para la teleportacion cuantica. Como estdn involucrados en los protocolos

ix



discutidos en este capitulo, aqui hablamos también del conteo de fotones y de la de-
teccién “homodyne” con microondas, y estudiamos el efecto de errores e ineficiencias
en estas operaciones.

Luego damos el salto a estudiar los limites de la comunicacién cuantica de mi-
croondas entre satélites en el espacio, reemplazando la absorciéon por la difraccion
como el principal mecanismo de pérdidas. Establecemos las condiciones para la
preservacion del entrelazamiento relacionando la distancia y el tamafno de las ante-
nas, similar a la categorizacién del espacio libre. Méas adelante, nos centramos en el
rango 6ptico, en el que se han realizado la mayoria de los avances y experimentos.
Alli, exploramos los efectos de la difraccién, la absorcién atmosférica, las ineficien-
cias del detector y las turbulencias en diferentes escenarios de comunicacién cudntica:
tierra a tierra, tierra a satélite (enlace ascendente), satélite a tierra (enlace descen-
dente) y satélite a satélite. Se proporciona también una comparacién entre ambos
regimenes de frecuencias.

Para concluir, investigamos la transmisién de informaciéon en forma de estados
de qubit entre diferentes procesadores cudnticos, utilizando recursos entrelazados de
variable continua, en un entorno de computacién cuantica distribuida. Investigamos
la ubicacion de los estados cuanticos puros en la esfera de Bloch y calculamos las
fidelidades, promediando sobre qubits uniformemente distribuidos. Comparamos la
teleportacién cudntica de Braunstein-Kimble, usando un estado de variable continua
con un enfoque hibrido, usando el mismo estado, pero aplicando el protocolo de tele-
portacién caracteristico del formalismo de variable discreta. Estudiamos las pérdidas
en el recurso entrelazado para estos dos casos, asi como para un estado de Bell con
teleportacién de variable discreta. Para concluir, investigamos la teleportacion de un
estado de dos qubits arbitrario, utilizando una pareja de estados entrelazados de dos
modos.
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1 Introduction

HE laws of quantum mechanics that are necessary for an accurate microscopic de-
T scription of nature were postulated at the beginning of the last century. Initially,
however, there was still some controversy; hence, the famous statement by Einstein,
Podolsky and Rosen [1] in 1935, that no theory satisfying local realism could ever be
complete, and would need to be supported by additional (classical) variables, know
as the local hidden variable model. This rather philosophical roadblock, known as
the EPR paradox, was cleared by John S. Bell [2] in 1964, when he designed a series
of tests, which indicated that the predictions made in the framework of quantum
mechanics are incompatible with an underlying hidden-variable model satisfying a
natural requirement of locality. This came to be known as Bell’s theorem, and it
imposes constraints on the outcomes of measurements performed locally on particles
that are correlated, given local hidden variables, showing that quantum mechanics
predicts a violation of these constraints. One of the most famous Bell-type inequal-
ities is the CHSH inequality [3], which exposed the possibility of an experimental
realization of a Bell test. After a few failed experiments in the 1970s, came Aspect’s
proposal [4] and experiments [5, 6], the first proof of the non-separability of quantum
mechanics. Many experiments followed [7, 8, 9, 10], most of them using two-outcome
measurements, in which photons are treated as two level systems, with either two
polarization or two photon-number states.
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These are known as qubit states, the unit of information encoded in a quantum
system, analogous to the classical bit.

A qubit is characterized by a vector [¢) in a 2-dimensional Hilbert space H, with
basis vectors generally denoted by |0) and |1), usually referred to as the computational
basis vectors. While a classical pure state can be in either “0” or “1”, a pure quantum
state can be in a superposition of both,

|¢) = al0) +b]1)  with {a,b} €C and |a|* +[b* = 1. (1.1)

Each element of the basis still corresponds to the classical bit 0 or 1 through measure-
ment, but when measuring the state |¢), these values will be distributed according
to the weights a and b, so that the probability of measuring |¢)) in state |0) is given
by the amplitude |(1|0)|> = |a|>. This superposition property can be extended to a
N-qubit scenario, with a 2V-dimensional Hilbert space. Another property is entan-
glement, the spooky action at distance in the EPR paradox, and the most common
manifestation of quantum correlations that cannot be explained classically. It arises
in a multi-qubit scenario, where the global state of the system cannot be described
in terms of the local states; it can be quantified, for example, through the entropy
of the reduced system. Given a maximally entangled state, such as the Bell state
(10,0) + |1,1))/+/2, taking the partial trace over the second subsystem leads to the
state (]0)(0| 4 |1)(1])/2. This is a maximally-mixed state, and it has maximum en-
tropy, meaning that information contained in the quantum correlations has been lost,
and therefore, there is no measurement we can perform to extract the full information
contained in the state. Mixed states, in general, are described by a density matrix
p which is positive and normalized, tr p = 1. Moreover, density matrices can also
describe pure states, which satisfy tr p? = 1, while mixed states follow tr p? < 1.

In 1984, there was a proposal to use the superposition of quantum states as a
resource to transfer information remotely. In what came to be known as the BB84
protocol [11], it is claimed that two parties can develop a secure quantum key by
sharing quantum states and classical information. The sender generates states either
on the computational basis or using a superposition basis, and the receiver measures
with the same choice of basis; then, they use a classical channel to communicate
their choice of basis, and keep the classical bits corresponding to coinciding events.
Furthermore, they can detect the presence of an eavesdropper by publicly announcing
part of the obtained bit string; if a sufficient amount of elements coincide, then they
can keep it to develop a secure key, and if not, they can discard it and start again.
Although not directly related to Bell’s theorem, the security of the BB84 protocol
against individual attacks is related to the CHSH inequality [12].

Another proposal that was inspired by Bell’s theorem is the E91 protocol [13]. In
turn, this protocol has both parties sharing entangled states and measuring with a
basis set that does not coincide completely. This way they can keep the classical bits
that result from measuring in the same basis, provided that the other measurement
results pass a local realism test to check for eavesdroppers.

The security of these protocols relies on the postulates of quantum mechanics; by
virtue of the no-cloning theorem and the collapse of the state of a quantum system
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under measurement, an eavesdropper cannot extract information without affecting
the process and leaving a trace. These two proposals paved the way for what is know
today as quantum key distribution. Experiments have been performed, since the
first quantum cryptography realization [14], using optical fibres [15, 16], then in free
space [17, 18], and finally in a large scale satellite link [19, 20].

Not long after the BB84, a crucial breakthrough in quantum communication was
proposed: quantum teleportation [21]. This protocol aims at transferring information
of an unknown quantum state held by one party, to a second one at a remote location,
by means of a previously-shared entangled resource and classical communication. It
has also been realized experimentally in numerous occasions: with photonic systems
in the laboratory [22, 23, 24, 25, 26], through optical fibers [27, 28, 29|, in free
space [30, 31, 32], and in a satellite link [33], as well as in a variety of quantum
platforms: with nuclear magnetic resonance [34], with trapped ions [35, 36, 37], with
superconducting circuits [38, 39], and even between macroscopic objects [40].

The advantage that can be obtained by quantum teleportation relies on the exis-
tence of previously-shared entanglement between both parties, same as for entanglement-
mediated quantum key distribution protocols. The act of sharing entangled states
between communication parties is known as entanglement distribution [41, 42], and
it has been attained experimentally with optical fibres [43, 44, 45], as well as in free
space [46, 31, 47, 48]. This is also a key point for the famous quantum internet
initiative [49, 50, 51].

Entanglement can be codified in many different degrees of freedom of quantum
systems; the experiments that we have mentioned above use photon number, polar-
ization, and time-bin entanglement, among others. Other than discrete-variable (DV)
quantum states, entanglement can also be defined using bosonic states [52, 53, 54, 55].
These states describe infinite-dimensional Hilbert spaces, and their quadrature op-
erators have a continuum spectrum. Systems associated with infinite-dimensional
Hilbert spaces are referred to as “continuous-variable” (CV) systems, and have a
particularly complicated quantum description [56, 57, 58, 59, 60, 61].

Gaussian quantum states [62, 63] are a family of CV states which admit a simple
description; they can be described by Gaussian distributions in their phase-space
representation. These are generally easy to produce experimentally, and can be
used to describe the state of entangled quantum systems [64, 65]. Therefore, their
quantum-information-processing capabilities have been widely studied [66]. Further-
more, any quantum evolution involving Gaussian states, Gaussian operations and
Gaussian measurements, admits a compact representation known as symplectic for-
malism. This allows one to replace infinite-dimensional state vectors and operator
matrices of an N-mode system by a 2/N-dimensional vector and a 2N x 2N ma-
trix, the displacement vector and the covariance matrix, respectively, which can fully
characterize a Gaussian quantum evolution. Using the covariance matrix, we can
also compute characteristics of these states, such as the purity and the entangle-
ment [67, 68, 69, 70, 64].

Despite the multiple advantages, the field of Gaussian quantum information
presents some limitations; for example, the impossibility to distill entanglement [71]
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or to perform quantum error correction [72, 73] with Gaussian operations and Gaus-
sian measurements. Nevertheless, many entanglement distillation protocols with
non-Gaussian operations have been studied in CVs [74, 75, 76, 77, 78]. Similarly,
CV quantum error correction [79, 80, 81] is forced to abandon the realm of Gaussian
states.

Examples of Gaussian quantum states include coherent states, thermal states,
and squeezed states, among others. The paradigmatic case of bipartite entangled
Gaussian quantum states are two-mode squeezed states [64], which can also be used
for quantum teleportation with CV [82, 83].

The CV formalism is frequently used for quantum communication, and especially
for quantum teleportation; in fact, only a year after the first quantum teleporta-
tion paper appeared, a CV version followed [84]. It was then replaced by a more
realistic proposal [85], the famous Braunstein-Kimble quantum teleportation pro-
tocol, followed by the first experimental realization [86]. Naturally, other works
came thereafter that discussed improvements in the protocol [87, 88, 89, 90] and
the experiment [91, 92, 93]. There have also been advances in CV entanglement
distribution [94, 95, 96], with experiments [97, 98], as well as in CV quantum key
distribution [99, 100, 101].

Most quantum communication experiments use photons in the optical regime,
mainly because of the mild diffraction effects and faint thermal background. Nev-
ertheless, in this range there are many sources of error and inefficiency [102]: large
absorption losses in open air and significant power consumption requirements, to
name a few. At the same time, the current most promising quantum computing
platforms, namely superconducting circuits, nitrogen-vacancy centers, or trapped
ions, either work in the microwave regime or use microwave signals. Therefore, in
order to establish a quantum communication channel between processing units based
on these technologies, one requires either converting microwave photons to the op-
tical domain [103, 104] or using microwave quantum signals directly. The former
approach still suffers from huge conversion quantum inefficiencies of the order of
1075, In this Thesis, we consider the purely microwave quantum communication
approach, its advantages, and limitations.

Limitations to the quantum information bearing capabilities and operational uni-
versality of Gaussian quantum states stems from their simple description and genera-
tion, and this naturally limits the performance of quantum communication protocols.
Another limiting factor is the impossibility for room temperature state generation
with quantum microwaves. Microwave devices working at 1-100 GHz frequencies are
polluted with thermal photons at room temperature; this number is 1250 for 5 GHz
at room temperature (T' = 300 K). This is one of the main limitations, and creates
the need for cryogenic cooling in superconducting circuits, in order to shield them
from thermal noise.

Current state of the art microwave superconducting devices include the Joseph-
son parametric amplifier (JPA) [105, 106], the high electron mobility transistor
(HEMT) [107], the Josephson parametric converter (JPC) [108, 109, 110], and the
circulator [111, 112], among others. However, one of the most relevant microwave
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superconducting devices, and from which Josephson parametric amplifiers and con-
verters stem, is the Josephson junction [113]. This nonlinear element has essential
applications in quantum computation [114, 115, 116], and quantum information pro-
cessing [117, 118], and its development has led to different experiments in quan-
tum state transfer and remote entanglement preparation between various Josephson
junction-based superconducting devices [119, 120, 121, 122, 123, 124, 125, 126], as
well as to sensitive noise analysis [127, 128]. Another interesting application of this
device is the JPA, which can generate squeezed states [129]; these can be used to
produce entangled states [130, 131, 132, 133] for microwave quantum communication.

In cryogenic environments, there have been various realizations of microwave en-
tanglement distribution [121, 126] and quantum teleportation [38, 39]. A proposal
for quantum teleportation with propagating quantum microwaves [134] was followed
by a recent experiment [135], performed inside a cryostat. In this Thesis, we at-
tempt to build a realistic model for open-air entanglement distribution and quantum
teleportation with microwaves to formally study the limits of this protocol. This
model should take into account the challenges associated with microwave quantum
technologies, as well as those encountered by quantum communication and Gaussian
quantum states.

In open air, recent experiments have failed on efficient entanglement preservation
while using commercial antennae [136, 137, 138], partly because “classical” amplifi-
cation of quantum signals is nothing but detrimental to quantum correlations. Nev-
ertheless, the impedance-matching aspect of classical antennae needs to be mimicked
in order to reduce reflections on signals traveling from the cryostat into the open air.
Thereon, the loss mechanism entails absorption of signal photons, thermalization,
and diffraction, and this can be overcome by entanglement distillation techniques,
striving away from the Gaussian realm. Protocols like entanglement swapping [139]
can also be beneficial for this type of process, although the current advances in this
topic lack efficiency and present certain technological barriers.

On the road to a global quantum communication network, entanglement distri-
bution and quantum teleportation between satellites represents a relief from atmo-
spheric attenuation and thermal noise, where downlink or uplink communications
may present the biggest challenge. Meanwhile, most advances in this are are lean-
ing towards QKD applications [140, 141]. Setting aside the technological overhead,
improvements will go through understanding the different loss mechanisms in free
space, namely diffraction, atmospheric attenuation, and even the effects of turbu-
lence. Stemming from small variations of temperature and pressure inside the at-
mosphere, turbulence affects optical signals, whereas microwaves, due to their large
wavelengths, are insensitive to it. These effects have been well studied for classical
signals in the optical regime [142, 143]. In the same frequency range, some recent
works have studied turbulence in quantum atmospheric transmission channels [144],
establishing that non-classicality of signals can be preserved [145]. Insightful pa-
pers into the effects of free space propagation of quantum signals were published in
Refs. [146, 147]. Meanwhile, others focused on the limits for key generation and en-
tanglement distribution between ground stations [148] and between ground stations
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and satellites [149].

As opposed to global communication networks, local area networks normally re-
quire wireless connection between different units. Advances in the connection of
these processors with quantum information is not only relevant for quantum com-
munications, but it also might find applications in quantum computation. Given
the limitations presented by current quantum processors, which characterize the
NISQ (Noisy intermediate-scale quantum) era [150], a distributed quantum com-
puting [151, 152, 153, 154] approach could reduce noise and allow for more efficient
calculations [155]. Therefore, it is interesting to explore quantum teleportation pro-
tocols for communicating multiple qubit states between different processors.

Even though microwave quantum technology is a couple of decades behind quan-
tum optics, it has a bright future ahead. It would be natural to predict a period of
coexistence between the two regimes [156]; while microwave-to-optical transduction is
still not efficient, optical communications have proven to be the correct choice for long
distances. On the other hand, an all-microwave protocol can work in a quantum local
area network; an implementation of QKD on such a setting using cryolinks would
represent an important milestone for microwave quantum communication. While
recent advances in photon counting will probably lead to new quantum illumination
experiments in cryogenia with microwaves, an application to the microwave quantum
radar is still out of reach.

In the near term, the main focus should be on experiments inside a cryostat,
because open-air realizations of microwave quantum communication and quantum
illumination are still out of reach. One of the main reasons is the lack of collimators
to reduce diffraction, but this can also be mitigated by quantum repeaters. The
design of a receiver antenna is another important step to be taken, together with the
implementation of both emitting and receiving antennae. Last but not least, improv-
ing entanglement generation by implementing larger gains in parametric amplifiers,
while reducing the noise. Nevertheless, as superconducting circuits continue to con-
solidate and expand, microwave quantum communication and sensing will carry on
growing; the classical microwave wireless networks will just be there waiting.

1.1 What you will find in this Thesis

The path towards a universal quantum communication network goes through under-
standing the limitations of an extension of the classical communication paradigms to
the quantum realm. While cable connections are usually performed with signals in
the optical regime, microwaves are used for free-space links. Therefore, we study the
distribution of quantum microwaves through free space; we study Gaussian quantum
states, how they are generated, how they are launched into open air, and how they
degrade under the environment. As opposed to classical signals, where the main re-
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source is power, we focus on how entanglement behaves, its relation to other features
of the state, such as the purity, and how it can be increased to mitigate the effects
of noise and the environment. This Thesis is structured in six chapters, plus this
introduction and a concluding chapter, and it is devoted to the study of the different
pieces that need to come together for quantum communication and sensing in open
air.

In chapter 2, we explore the properties of Gaussian states, a family of quantum
states in continuous variables that are routinely used in quantum communication,
as they are easy to produce experimentally. We review different features of such
states that are relevant from a quantum information perspective, and characterize
the elements of an all-Gaussian evolution: Gaussian quantum channels and gaussian
quantum measurements. Then, we review the Braunstein-Kimble quantum telepor-
tation protocol, a milestone of Gaussian quantum communication, and explore en-
tanglement distillation and entanglement swapping techniques for general bipartite
Gaussian states, which can improve the fidelity of this protocol.

In chapter 3, we explore the purification of Gaussian states using Gaussian op-
erations and encounter the impossibility of complete purification of a single mode of
a two-mode entangled Gaussian state without complete entanglement degradation.
Therefore, we focus on increasing the purity, while reducing entanglement, and use
the resulting states for quantum illumination. States resulting from single-copy and
two-copy partial purification techniques show higher quantum Fisher information
that the original ones, and have lower average number of photons, which translates
in higher precision for quantum illumination.

In chapter 4, we review some of the recent advances in superconducting quantum
devices, contextualizing their implications in microwave quantum communication.
We study Josephson parametric amplifiers and the role they play on the generation
of entangled quantum states, sketching a noise model for Gaussian states. We then
present the design of a quantum antenna for microwave entangled signals propagating
from a cryostat, where quantum states are generated to reduce thermal effects, into
open air. This device aims at reducing the reflections by implementing impedance
matching between the different media, and maximizing entanglement preservation.

In chapter 5, we study entanglement distribution of microwave entangled signals
propagating in open air. After discussing state generation and efficient propagation
out of the cryostat, we present a loss mechanism in open air composed of absorption
losses and thermalization, and study the limits of entanglement distribution by com-
puting the reach of entanglement. We then introduce entanglement distillation and
entanglement swapping protocols to fight environmental degradation, employing the
resulting states as resources for quantum teleportation. As they are involved in the
protocols discussed in this chapter, here we discuss photocounting and homodyne
detection with microwaves, and study the effect of errors and inefficiencies in these
operations.

In chapter 6, we study the limits of microwave quantum communication between
satellites in space, replacing absorption with diffraction as the main loss mechanism.
We establish the conditions for entanglement preservation by relating the distance
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and the size of the antennae, similar to the categorization of free space. First, we
focus on the optical regime, in which most advances and experiments have been
performed. There, we explore the effects of diffraction, atmospheric absorption, de-
tector inefficiencies, and turbulence, on different quantum communication scenarios:
ground-to-ground, ground-to-satellite (uplink), satellite-to-ground (downlink), and
satellite-to-satellite. A comparison between both frequency regimes is provided.

In chapter 7, we investigate the transmission of information in the form of qubit
states between different quantum processors, using continuous-variable entangled
resources, in a distributed quantum computing environment. We investigate the
placement of pure quantum states in the Bloch sphere, and compute the average
fidelities for a uniformly-distributed qubits. We compare the Braunstein-Kimble
quantum teleportation, using a CV state with and without photon subtraction, with
a hybrid approach, using the same state, but applying the DV protocol. We study
losses in the distribution of the entangled resource for these two cases, as well as
for a Bell state with DV quantum teleportation. We conclude by investigating the
teleportation of an average two-qubit state using a pair of two-mode entangled states.
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Gaussian States in

Quantum Communication

“continuous variable” (CV) refers to a degree of freedom of a quantum system
that is described by a continuous-spectrum operator.

Bosonic CV states are those whose quadratures (or, equivalently, their creation
and annihilation operators) have a continuous spectrum and, therefore, the complete
description of the Hilbert space requires an infinite-dimensional basis (typically, the
Fock basis). Gaussian states are CV states associated with Hamiltonians that are,
at most, quadratic in the field operators. As such, their full description does not
require the infinite-dimensional density matrix, and can be compressed into a vector
and a matrix, called the displacement vector and the covariance matrix, respectively.
These are related to the first and second moments of a Gaussian distribution; hence
their name “Gaussian states”. For a system with density matrix p describing N
distinguishable modes, or particles, the displacement vector dis a 2N vector and the
covariance matrix X is a 2V x 2N square matrix:

d = tr[pr] (2.1)
=t [p{(r = d), (x — )T} (2.2)
Here r = (&1,p1,%2,P2,...,4n,Pn) defines the so-called “real basis”, for which
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canonical commutation relations read [r,rT] = i€, where Q = @;Vzl Q, is the
quadratic (or symplectic) form, and

Q= (01 (1)) , (2.3)

where we have chosen natural units, ~ = 1. Note that the canonical position and
momentum operators are defined by the choice k = 272 in a; = k(&; + ip;).

The normal mode decomposition theorem [157], which follows from Williamson’s
seminal work [158, 159, 160], can be stated as every positive-definite Hermitian matrix
Y of dimension 2N x 2N can be diagonalized with a symplectic matrix Sp: D =
SpXS], with D = diag (11,11, ...,vn,Vn), Where the v, for a € {1,..., N}, are the
symplectic eigenvalues of 3, defined as the positive eigenvalues of matrix iQ2¥. A
Gaussian state satisfies v, > 1, with equality for all a strictly for the pure state case
(which meets det ¥ = 1). This is a consequence of the uncertainty principle, which
is enforced by ¥ + iQ2 > 0. For a two-mode Gaussian states with covariance matrix

(XA €aB
= (51113 EB) ’ 24
this can be expressed as det X — A+ 1 >0, where A =detX 4 + det X5 + 2deteap

is the symplectic invariant. The latter can also be used to compute the symplectic
eigenvalues,

\/A:I: VA? —4det ™
| — .
2

Williamson’s theorem also guarantees the block diagonalization of the covariance
matrix, and therefore predicts the existence of a symplectic transformation that takes
a two-mode covariance matrix into

(2.5)

a 0 ¢ O
0 0

Snr = o b ol (2.6)
0 C2 0 b

which is often referred to as Simon normal form [61]. Here, we describe a possible
symplectic transformation that can be used to obtain this normal form. Assume we
start with a covariance matrix

aix a2 Ci1 Ci12
a a c c

Y — 12 22 21 22 (2.7)
cir c21 b bio
cl2 ca2 bz ba

where we have already enforced that diagonal blocks are symmetric. We propose the
following symplectic transformation

s S4 0
s=["c 2.8
( 0 S?) < 0 SB) ’ (28)

10
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such that SXST = Y. Here, we have

a aiztaze _ aiztain
Sa = 1 )
a1 + 2a12 + a9

S b blszrbm 7b124brb11 90
v Vw1 ) 29

identifying a = y/aj1a22 — a2y and b = \/by1baa — b?,. Furthermore, we have
1) <\/ 1—0? —v >
SC = 9

v V1—0?
@ _ [(V1I—w? —w
So7 = ( w VI—w?)’ (2.10)
where we have identified

22 = (lfl + 1%2 + l%l + ZSQ)Z — 4([11122 — llglgl)z,
2 o= 1 (1 I 13 + 18, —13) — 152) ’ (2.11)

2 z
W = 1 <1+ 13—l + 13 _132) .

2 z

This last transformation acts after the off-diagonal blocks have been transformed by
S4 and Sp, so we require the following redefinitions

[c11(a12 + az2) — ca1(a11 + a12)](bi2 + ba2)

n Vvab(aiy + 2a12 + azz2)(b11 + 2b12 + baz)
[caz(a11 + a12) — c12(a12 + a22)](b11 + b12)

Vab(ary + 2a12 + az)(bi1 + 2b1a + baa)
ly = b (a12 + az2)(c11 + c12) — (a11 + ai2)(ca1 + 622)7 (2.12)

a V(a1 + 2a12 + az2) (b1 + 2b12 + b2o)
lyy — \/E(blz + b22)(c11 + c21) — (b11 + b12)(c12 + c22)

b \/(Cln + 2a12 + a22)(b11 + 2b12 + ba2)
lyy = ab €11 + €12 + €21 + C22

V(@11 + 2a12 + as2)(b11 + 2b12 + bo2) .

Eventually, we will obtain

1 = (011 + ca2 + \/(011 —c22)? + 4012021) )

C2

| =N =

(011 + Cog — \/(CH — 622)2 + 4612021> . (213)

11
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Furthermore, the symplectic-diagonal form of g is

ve 0 0 0

o v 0 0
P=10o 0o v o]
0 0 0 v

where the symplectic eigenvalues are

vy = 9

\/a2 4+ b2 4+ 2¢1c0 £+ \/(a2 —b2)2 + 4(acy + bes)(acs + bey)

(2.14)

(2.15)

We present here one example of a matrix that achieves symplectic diagonalization,

starting from Xnp. We can write

Ul 0 V1 0
_ 0 (15) 0 V2
SD o w1 0 Z1 0 ’

0 wao 0 Z9

where we have defined

_ bI/_
o= v_\l ab—
vy by_
u =
2 ab—c2 wh,

U1

+

zZ2

b\/:<“’1\/ab:+cl\/i>
2 = _% Z_(wz\/rcg—k@\/i)

(2.16)

(2.17)

where w; and ws are free parameters. For example, if we set wy; = wy = 0, we can

get a simpler expression,

bry 0 vy c

ab—cy b \/ ab—c?

0 alljlfrc2 0 o \/ /
SD = 2 ab 02

12

(2.18)
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For a general, systematic way to obtain the symplectic diagonalization of a covariance
matrix, see for example Ref. [161].

As a measure of bipartite, mixed state entanglement, the negativity is the most
commonly used entanglement monotone, and is defined as 2N (p) = |||, — 1, where

llpll, = tr+/pfp is the trace norm of the partially transposed density operator. In
general, N'(p) = ‘Z ; )\j’ with the A; the negative eigenvalues of 5. For a bipartite

Gaussian state with covariance matrix 3, one defines the two partially transposed
symplectic eigenvalues [64] as

) \/Ai\/AQ—zldetZ
vy = 2 5

(2.19)

where the partially transposed symplectic invariant is A =det Y +det Sp—2deteqp,
and det > = det . The negativity can then be obtained as

1—v_
= 0, —— ;. 2.20
Np) = max {0, 222 (220)
Hence, a bipartite Gaussian state is separable [162, 163] when the smaller partially
transposed symplectic eigenvalue meets the condition 7_ > 1, which can also be
expressed as ~

detT — A +1>0. (2.21)

Notice that this inequality cannot be violated if detesp > 0 [61]. This is because
A < A, which implies that det > — A +1 > det X — A+ 1, and the latter must be
positive due to the uncertainty principle. On the other hand, deteap < 0 is not
sufficient for entanglement; only the violation of the above inequality can indicate it.
Alternatively, the state is entangled when U_ < 1 is met. The former is only valid
for bipartite Gaussian states; a more general separability condition for covariance
matrices is [164, 165]

Y >04Do0p. (2.22)

This means that, if there exists two covariance matrices o4, og, such that the above
condition is satisfied, then ¥ is a covariance matrix describing a separable state.

The most famous case of Gaussian entangled states are two-mode squeezed vac-
uum (TMSV) states, described by the covariance matrix

(2.23)

XTMSV = (sinh 2ro, cosh2rly

cosh2rly sin2ro, )
with 1, = diag(1,1), o, = diag(1l,—1), and where r is the squeezing parameter.
In this Thesis, we will consider a more realistic kind of entangled Gaussian states,
which consider a thermal contribution in each mode of the state. These are two-mode
squeezed thermal (TMST) states, and their covariance matrix is

(2.24)

cosh 2rl sin 2ro,
Yrmst = (14 2n) ( 2 ) ;

sinh 2ro, cosh2rly

13
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where n is not the total number of photons, but the number of thermal photons in
each mode.

A paradigmatic case of Gaussian states are coherent states, yet they cannot be
entangled by Gaussian operations [67]. Nevertheless, their description presents a sim-
ple introduction to the phase-space formalism. Coherent states [166] {|a)}aec are
defined as the eigenstates of the annihilation operator @ with eigenvalue v/2a = x+ip,
where z,p € R are the eigenvalues of the canonical position and momentum oper-
ators, respectively. They play an important role in quantum CVs, as they allow
for a straightforward phase space description of Gaussian states. The displacement
operator D(@) = explia@™Q]r] = D(a) = exp [aa — aa] acts on the vacuum as
D(a)|0) = |a), and satisfies D(a)! = D(—a). In this context, it is common to use,
for a coherent state AT = (x,p) = v2(Rea, Ima). Coherent states are not orthogo-
nal, and their overlap can be computed as (8|a) = exp [—%(a@ —af — |la— 5|2) i
This does not prevent the set of all coherent states from forming a basis, which,
though overcomplete, allows one to find the coherent states resolution of the identity
1 =n"[d*ala)(al, where 2d*a = 2dReadIma = dxdp, enabling the com-
putation of traces of operators in an integral fashion: trO = 7= [d*a (a| O |a).
More generally, an N-mode displacement operator may be defined via ﬁ(o’c’) =
®§V=1 D(aj) =D (@;VZO&j>, where & = (z;,p;), and Q = @;\;1 Q.

A complete representation of states that is closely related to coherent states is
given by the (Wigner) characteristic function, normally referred to simply as the
characteristic function (CF), and for an N-mode state p (not necessarily Gaussian),
is given by

x(@) = tr [pD(@)] (2.25)
with normalization condition given by x(0) = 1. Alternatively, we will write

x(ai,...,an) = tr [pf)(al) ®...0 f)(aN)] , (2.26)

which therefore sets

p= (2711_)]\] /dQN ax(o,. .. 70(]\/)15(—0(1) R...Q f)(—aN). (2.27)

A Gaussian state of first and second moments ((f, ¥) has a CF given by

X(T) _ e—%*TQTEQFe—iFTQJ, (2.28)
where 7= (x1,p1,...,7N,pN) € REY.

Another feature that can characterize quantum states is the purity. The purity
of a Gaussian state with covariance matrix ¥ is given by u = 1/v/det ¥ [68]. Fur-
thermore, the number of elements in the kernel of X + 2 indicates the number of
“noise-free” modes of the state characterized by X, or alternatively, the difference
between the dimension of ¥ + €2 and its rank. A state can be considered pure if

14
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all of the modes it describes are noise-free, and in that case p = 1. The uncertainty
principle is imposed by the condition ¥ 4 €2 > 0, and we know that pure states
saturate this inequality. This means that ¥ + €2 has one null eigenvalue for each
pure mode, which implies that its kernel has one element for each pure (noise-free)
mode.

2.1 Gaussian Quantum Channels

A quantum channel ¢(-) is a completely positive trace-preserving map acting on
quantum states. These are described by density matrices p acting on a Hilbert space
H, such that ¢(p) is also a quantum state. This map can be described as the local
manifestation of a unitary evolution occurring on an enlarged Hilbert space, in which
our system interacts with an environment, and is represented as

6(p) = tr |U(p @ pp)0T] . (2.29)

A quantum channel is a Gaussian channel [167, 168, 169] when, in this represen-
tation, pg is a Gaussian state, and U is a Gaussian unitary operator. The latter

is generated by a quadratic Hamiltonian H, such that U = e? Ek~lrka‘m, where
r = (&1,p1,...,2N,PN) represents the canonical coordinates in a system with N de-
grees of freedom. Unitary matrices of this kind constitute a representation of the
real symplectic group Sp(2N,R), and satisfy SQST = . This means that they gen-
erate a transformation that preserves canonical commutation relations, which can be
expressed by

[rT,r] =iQ (2.30)

where €2 is the symplectic matrix. The relation between this generator and a unitary
matrix in a Hilbert space is S = e

The action of a Gaussian channel in the Schrédinger picture can be observed
directly on the covariance matrix

S = ¢(3) = trp [S(S @ $)ST], (2.31)

where X is the covariance matrix which characterizes the state of the environment,
and S is a symplectic operator. In general, we can write this as

Xa Va O 0
Wa Zg O 0
0 0 Xp V|’
0 0 W Zp

S = (2.32)

15
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and given this form of the symplectic operator, ¥ @ g needs to be expressed as

ZA 0 EAB 0
. 0 Ea 0 Eap
XOXe= 1 0 s 0
0 EAB 0 EB

Here, E 45 does not need to be zero, although the state of the environments coupled
to the subsystems A and B, represented by the covariance matrix Xg, needs to be
separable, which can be enforced by det E4p > 0. This expression can also be written
as

(2.33)

Y =¢(2)=X2XT+Y, (2.34)
and this notation implies that X = X4 & Xp and Y = WAEAW] & WEW].
Here, X describes amplification, attenuation, or rotation in phase space, while Y
represents a noise contribution, and they need to satisfy the positivity condition
Y +iQ —iXQXT > 0.

Notice that we can convert this into

Y4+il=XE+i)XT+Y +iQ—iXQXT, (2.35)
which can also be expressed as
Y 4+iQ =X +iQ)XT + W(Xg +iQ)WT. (2.36)

A typical example of a Gaussian quantum channel is the attenuation channel. As-
sume we have a Gaussian state characterized by a single-mode covariance matrix 3.
Now, consider this state gets mixed with Gaussian environmental noise, described by
covariance matrix ¥, in a beam splitter with transmittivity cos? # = 7. The unitary
operator describing the action of the beam splitter can be written as

U= eo(aTaEfaag) — (i0(@Pr—pip) (2.37)
If we compare this expression with the general expression for a Gaussian unitary,
U = ez Hr e can identify

H=0 (_OQ g) , (2.38)

with © the symplectic matrix. With this, we compute the symplectic operator S =

€HQ
_ \/7i12 —\/1—7'12
o \/ﬁlg \/’7'12 ’

With it, we compute the covariance matrix of the outcoming state,
Y =trg[SEeXg)ST =12+ (1—-17)ZE, (2.40)

from which we can identify the matrices X = /71y and Y = (1 — 7)Zg.

Generally, the interaction with an environment implies a loss of information.
A way to repurpose that information, while maintaining the Gaussian nature of
the state, is by projecting a mode into a Gaussian state, i.e. through Gaussian
measurement.

_ (cos 01, —sin012> (2.39)

sinfly  cosfl,

16
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2.2 Gaussian Quantum Measurements

Imagine that we apply a quantum measurement on mode B of a bipartite quantum
state with density matrix p4ap. We describe the measurement as the projection
of our quantum state into a positive operator valued measure (POVM) II with a
certain outcome i. A POVM is a set of positive operators II; > 0, each associated
with a measurement outcome i € {1,...,n}, for which probability distribution is
set by the Born rule, tr[pll;] = P(i|p), such that >, II; = 1. We can express
the reduced density matrix after the measurement as py = P[l trp [pA BHiB], with

P, =tr [pABHfB].
We assume that p4p describes a Gaussian state, with displacement vector dr =

(JL d_:rg) and covariance matrix

YA €aB
Y = . 2.41
(ELB EB) ( )

We now take a Gaussian POVM, such that II; is associated with a Gaussian projec-
tion, characterized by a displacement vector % and a covariance matrix Y%, such
that (TiB)kl = 3 tr[II; {rx,r;})]. Then, we can write the characteristic functions of
the state and the POVM element as

- o
xap(@,8) = exp| - (T4 + ATQTeap0F + FTOTE] L0

+ ETQTEBQE) 1 ia@TQTd, + iETQTd”B}

; [ 1 ) )
xp(y) = exp —ﬂTQTTZBQVHVTQWB}, (2.42)
respectively. Then, we compute

trp [papllp] = ;/dQOf d? B d* v xap(a, B)X5(7) X

Da(—a) trp [Dp(=)Dn(-)] (2.43)

knowing that tr [f)(—ﬂ)ﬁ(—w)} = 153 (B 4 7). Then, we are left with

trp [paplls] = %/dzaﬁ(—a)/dQBXAB(a,,B)XiB(—ﬁ). (2.44)

17
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The characteristic functions can combine to
; 1, R i o
xas(a,B)xs5(—=0) = exp [— ZaTQTEAQa — ZBTQT (EB + TB) Qp
+ i@TQTdy +ifTQT <;5;BQO7 +dp — 1753) ] . (2.45)

After computing the integral, we can identify the displacement vector and the co-
variance matrix,

dy = da—cap(Sp+7T%) (dquTLB>,
Sa = Sa-—cap(Sp+T%) " ey (2.46)

of the resulting state. Notice also that

= det (223 + 1) P [_ (JB B UE)T (S5 +7T5) " (JB - ULBH - (247)

A general (ideal) Gaussian measurement is described as a projection onto the most
general Gaussian pure state, a displaced squeezed single-mode vacuum state, with
covariance matrix

T _ cosh 2¢ — sinh 2 cos ¢ —sinh 2€ sin ¢ (2.48)
o —sinh 2€ sin @ cosh 2€ + sinh 2£ cos /) ’

With this, we can obtain the covariance matrix associated to homodyne measure-
ments of the x-quadrature

(e 0
T = lim ( 0 625), (2.49)

£—o0

by setting ¢ = 0, or alternatively, of the p-quadrature with ¢ = m,

. e 0
T = élgrolo ( 0 €_2§> . (2.50)
These measurements correspond to projecting onto an eigenstate of either quadra-
ture, described by an infinitely-squeezed state in the corresponding direction of phase
space. If we are measuring two modes simultaneously, projecting onto orthogonal
quadratures in different modes (let’s say, x in one mode and p in the other) cor-
responds to double-homodyne measurements. In this fashion, heterodyne measure-
ments are constructed by measuring one mode with an auxiliary system in a coherent
state. The covariance matrix associated to heterodyne measurements can be obtained
for £ =0, T = 1,. Equivalently, it corresponds to projecting onto a given coherent
state.

18
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Figure 21: Graphical representation of the experimental setup used for measuring
quadratures of quantum states. (a) Homodyne detection: a mode with annihilation
operator @, is combined with a laser mode be in a 50:50 beam splitter. The difference
between the photocurrents of the output modes, I, is proportional to a quadrature of the
target state p. (b) Heterodyne detection: a mode with annihilation operator a, is combined
with an ancillary mode a4 in a 50:50 beam splitter. Homodyne detection is applied on the
two output modes, each with a different laser mode. I; and I2 each contain the information
about one of the quadratures of p, so knowing the quadratures of the ancillary state we can
measure both quadratures simultaneously.

In practice, homodyne detection is implemented using a 50:50 beam splitter,
where the state p whose quadrature we want to measure is combined with a laser in
a coherent state |a), with a = |a|e??. This setup can be seen in Fig. 21 (a). At each
output of the beam splitter, the photocurrents are measured, and by subtracting one
from the other, we obtain [61]

I =V2|a|(z,cos  + P, sin @). (2.51)

Then, by setting the phase of the laser, we can measure either of the quadratures.
For heterodyne detection, we require an ancillary state, which is combined with the
target state in a 50:50 beam splitter, as shown in Fig. 21 (b). Then, homodyne
detection is applied on each of the output modes, using two coherent states, |a;) and
|aa); the resulting differences in photocurrents are

I = Joa[((Z, 4+ &a) cos g1 + (Pp + Pa) sin 1), (2.52)
I, = |ag|((Za—2,)cospa + (Pa — Dp)sinpa). (2.53)
By setting ¢1 = 7/2 and ¢y = 7, we obtain
L = |ail{p, +Da) = lail(p+), (2.54)
I = Jazl(@, — &) = orl(@-), (2.55)

such that [£_,p4] = 0. This means that these two quadratures can be measured
simultaneously, and previous knowledge of the quadratures of the ancillary state, we
can infer (Z,) and (p).
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As we have seen, a proper measurement not only can preserve the Gaussian
nature of the evolution, but also preserve the information contained in quantum
entanglement in the remaining state. This trait has been exploited by quantum
teleportation.

2.3 Quantum Teleportation with Gaussian States

Quantum teleportation is a quantum communication protocol that, in principle, al-
lows us to achieve perfect transfer of quantum information between two parties by
means of previously shared entanglement, combined with local operations and clas-
sical communication. The protocol was first proposed in 1993 by Bennett and col-
laborators [21], as a way to take advantage of an entangled resource for the task
of sending an unknown quantum state from one place to another, using discrete-
variable quantum states. The original idea was simple, yet powerful: assuming that
a maximally entangled, bipartite Bell state was shared between two parties (Alice
and Bob) prior to the start of the protocol, Alice, in possession of some unknown state
[¥) = a]0) + e#/1 — |a]2|1) couples her part of the Bell state to [1)) by means of
a Bell measurement, whose 2-bit output she communicates classically to Bob. Upon
receiving the message, Bob performs a conditional unitary on his part of the shared
Bell state, recovering |¢) modulo a global phase in his location.

A year later, Vaidman extended the idea to the transmission of a CV state by
means of a perfectly correlated (singular) position-momentum EPR state shared by
Alice and Bob [84]. In 1998, Braunstein and Kimble [85] made this idea more realistic
by relaxing the correlation condition to more experimentally accessible states, such
as finitely squeezed states. Their protocol, known as the Braunstein-Kimble protocol,
was first realised in 1998 by A. Furusawa et al. in the optical domain [86]. Let us
review the protocol here for convenience.

Kimble and Braunstein derived an expression for fidelity between an unknown
state of a single-mode bosonic field and a teleported copy, when imperfect quantum
entanglement is shared between the two parties. A generalization to a broadband
version, where the modes have finite bandwidths, followed quite directly [58]. In the
Braunstein-Kimble protocol, Alice and Bob share a TMSV state, which enables them
to teleport the complete state of a single mode of the electromagnetic field, where two
orthogonal field quadratures play the role of position and momentum. Shortly after,
quantum teleportation of an unknown coherent state was demonstrated, showing an
average fidelity (see Eq. (2.60) below) F' = 0.5840.02 [86], which beat the maximum
classical fidelity of F = 0.5 for Gaussian states [58, 61, 66]. Other works followed,
where the Bell measurement of two orthogonal quadratures was replaced by the
photon-number difference and phase sum, and the question of an optimal quantum
teleportation protocol depending on the entangled resource was raised [87]. Subtrac-
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tion of single photons from two-mode squeezed states has been shown to enhance
the fidelity of teleportation [88, 89]. We review here the Braunstein-Kimble protocol,
replacing the Wigner function approach with its Fourier transform, the characteristic
function. This approach has also been followed, for example, in Refs. [90, 170].

out

PB
rr +ipa I

S —

&=

Homodyne

(zT,pA) J

(30:50) Alice

i) PR Py

Figure 22: Circuit representation of a CV microwave quantum teleportation pro-
tocol with Gaussian states. The entangled resource is harvested from two single-mode
squeezed thermal states, generated from identical JPAs, which are then combined on a bal-
anced beam splitter. Assuming this state is generated by Alice, one of the modes has to
be sent to Bob, represented here by the presence of antennae, in order for the two parties
to share the entangled resource. Following this, Alice combines the target state to be tele-
ported |[¢in)T with the mode of the entangled state she holds in a balanced beam splitter,
which is then subject to two homodyne detections, xT and pa. The measurement results
& are communicated to Bob, who applies a displacement ﬁ(f) on his part of the entangled

resource, resulting in the state pg™.

The protocol works as follows:
1. Alice uses a 50:50 beam splitter to couple her part of the resource state pap

with an incoming unknown state pif. The output Hilbert spaces of this beam
splitter are labeled A and T
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2. Alice performs two homodyne detections, where each of the local oscillator
phases are set in order to measure photocurrents, whose differences are inte-
grated over some time, and proportional to quadratures & = (&1 + &)/v/2
and pa = (P1 —Pin)/V/2. She sends the outcomes (x7,p4) to Bob via a classical
communication channel.

3. Bob, upon reception of the signal (x1,pa), performs a displacement ﬁ(f) to
his part of pap, with € = (z7 + ipa)/Vv/2. The state at Bob’s location is now,
in average, closer to pi, than what it would be if no entanglement was present
in pap.

This protocol is depicted in Fig. 22, where we also sketch the sequence that leads
to an entangled resource shared through open air by Alice and Bob, which is then
consumed in the teleportation process. For simplicity, we define (z7,pa) = (z,p).
The conditional state that Bob has after knowing the outcomes of Alice’s homodyne
measurements is

pB(x,p) = (II(z,p)|pF @ pap Iz, p))ra, (2.56)

PB(va)

with PB(va) = TrB<H(I7p)|pin & pAB|H(‘T7p)>TA and

M)y = <= [ dve™ fa+u)p i) (2:57)

which is an element of the maximally entangled basis corresponding to Alice’s Bell-
like measurement [170]. Now, this expectation value over the teleported (7) and the
senders (A) modes is computed as

1o -
<H($;p)|pm®pAB|H<.’L‘,p)>TA = g\/ / dydy/ezp(y_y) «
(@ +y'lpmlz + y)r (¥ lpasly)a.  (2.58)

Once we have computed pgp(x,p), we need to compute the outcoming state after
the receiver applies the displacements, and average over all possible measurement
outcomes

o= [ aw [ apPatep)Da(© palen)D) ©). (2.59)

As a measure of the quality of the protocol, one typically uses an overlap fidelity
F(pin, Pout) = tr[pinpout], which represents a simplified version of the Uhlmann fi-

2
delity (tr[ v/PinPoutr/Pin ) in the case when p;, is pure.
The figure of merit in quantum teleportation is the average fidelity, which refers
to the fact that we have averaged over all possible measurement outcomes,

F = tr[p}pR"]. (2.60)
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Sometimes it can be useful to have it written in terms of the CF [90]:

F— [ @00, (261)

with the average over (z,p) having already been performed in p%*. Find the step-
by-step derivation in Appendix B.

If the resource state pap is a Gaussian state with the covariance matrix given in
Eq. (2.4), and the teleported state is a coherent state |ag){aygl|, the average fidelity

can be written as
1

\Jdet[1, + 1]

with I' = 0,240, + X — 0.4 — ELBUZ, and o, = diag(1,—1). Coherent states
are typically those chosen to be teleported due to the ease of their experimental
generation. In theory, the result of the average fidelity does not depend on the
displacement «y; therefore, it will suffice to use an unknown coherent state for a
demonstration of quantum teleportation. In experiments, however, the teleportation
fidelity may depend on «y.

F= (2.62)

It is also interesting to see the average fidelity of a process in which k teleportation
protocols are concatenated, i.e.,

F(k) _ 1
Vdet[1o + (k= ) 1))

assuming that, in each step, an entangled Gaussian resource with the covariance
matrix that characterizes I' is used.

, (2.63)

Consider a symmetric covariance matrix with X4 = g = aly and eap = ~o,.
Then, we have ' = 2(a — 7)1 and U_ = « — ~, which leads to

1

F = .
1+0_

(2.64)

It is easy to check the two following limits for the average teleportation fidelity of
an arbitrary coherent state: limy _, F =1 /2 and limy; _,0F = 1. The first limit
corresponds to using no entanglement (7_ > 1), and is interpreted as the ‘classical
teleportation’ threshold, meaning that any approach giving an average fidelity of 0.5
or less does not demonstrate quantum teleportation. The second limit corresponds
to an idealized case of an infinite two-mode squeezing level (7_ = 0), i.e., an EPR
state, which realizes perfect quantum teleportation.

As we can see, the quantum teleportation fidelity is closely related with entan-
glement; therefore, the fidelity should increase with it, what is known as entangle-
ment distillation. Let us discuss different protocols for entanglement distillation with
Gaussian resources.
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2.4 Entanglement Distillation of Gaussian States

Entanglement distillation is a technique that aims at increasing entanglement in
quantum states by means of local operations and classical communication. Normally,
the goal is to convert many copies of a noisy entangled state into as many copies as
possible of a pure state with higher entanglement. This particular approach is often
referred to as entanglement purification, and in discrete-variable systems, the goal
is to obtain a certain form of a maximally-entangled state, or Bell state. In CV
systems, this is generally out of reach, since infinite entanglement requires infinite
energy for state generation.

Distillation of Gaussian entanglement is not possible with Gaussian operations [71,
171]. This implies that any Gaussian state, after entanglement distillation, will be-
come non Gaussian. This no-go theorem is partly a consequence of the fact that,
among all quantum states that share the same covariance matrix, the negativity
is minimized by Gaussian states [172]. On the other hand, it also may be a con-
sequence of the CV extension of the Gottesman-Knill theorem, which claims that
the application of Gaussian quantum operations on Gaussian quantum states, with
quadrature measurements is a process that can be simulated efficiently on a classi-
cal computer [173]. The latter has many implications; for example, it leads to the
unattainability of Gaussian quantum error correction [72].

Let us briefly review different techniques to distill entanglement. One of them is
noiseless linear amplification, a nondeterministic operation [174, 175] that requires
nonincreasing distinguishability of amplified states, as well as efficient photon count-
ing, which is where the nondeterministic part comes into play. The latter has recently
been achieved in the microwave regime [176]. At the core of noiseless linear amplifi-
cation lies a process based on the quantum scissors [177]; the gain of this procedure is
inversely proportional to the success probability, which also decreases as the number
of resources increases, making it very costly.

Another widely known protocol is Gaussian distillation, which is also nondeter-
ministic, but it requires only two initial copies of a state, as well as efficient photode-
tection. If the incoming entangled state is Gaussian then it is initially de-Gaussified
by combining two copies of said state with balanced beam splitters and keeping
the transmitted mode when any number of photons has been detected at the re-
flected modes [74]. Another possible de-Gaussification protocol applies an operation
V = (1 —w)ata+waa’ [178] on a quantum state without requiring a copy. Gaussian
distillation begins when two copies of the resulting state are mixed by 50 : 50 beam
splitters and, if no photons are reflected, the operation is applied again [74, 75]. Pro-
vided that the initial states were entangled, this process leads to a non-Gaussian state
with higher entanglement. However, it is also costly in terms of the number of re-
sources, and it only produces a state that is Gaussian (and with higher entanglement)
in an infinite-application limit of the Gaussification channel.

We focus on another nondeterministic protocol, which does not require the stor-
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Figure 23: Photon subtraction scheme with beam splitters and photocounters,
applied to TMST states, which are generated from single-mode thermal states that are
squeezed by a Josephson parametric amplifier (JPA), subsequently combined in a balanced
beam splitter. Each mode of the resulting state is then combined with an ancillary vacuum
state in high-transmissivity (we consider 7 = 0.95) beam splitters, with photocounters
placed at each reflected path. The resulting state shows higher entanglement for low values
of the squeezing parameter, where the limit for enhancement will vary depending on the
number of photons detected.

age or production of simultaneous copies of a quantum state, and whose gain is
also inversely proportional to the success probability. This protocol is called photon
subtraction [88, 179], and it utilizes non-Gaussian operations in order to distill en-
tanglement, as we have seen in the previous protocols. However, in this situation,
we do not look to re-Gaussify the state afterwards. We distinguish between heuristic
and probabilistic photon subtraction. The former, a more theoretical approach, con-
siders the application of annihilation operators to each mode of the state, whereas
the latter uses high-transmissivity beam splitter to non-deterministically subtract
photons from each mode of the state, by mixing each mode with a vacuum state, as
performed in Ref. [180]. In the following, we will study both for completeness.

2.4.1 Photon subtraction for two-mode squeezed vacuum states

We first study probabilistic photon subtraction applied on a two-mode squeezed vac-
uum state, as done in Ref. [170], which is an easy to generate an entangled Gaussian
state in CV. It can be produced by two single-mode squeezed states with squeezing
parameter r, which are combined by a 50 : 50 beam splitter, as shown in Fig. 23,
resulting in a TMSV state,

VI=22Y An,n)ap (2.65)
n=0
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with A = tanh(r). The next step of the protocol is to mix each mode with an
ancillary vacuum state at two highly transmitting, identical beam splitters. The
output photon-subtracted (PS) state is postselected depending on the outcome of the
photocounts performed at each beam splitter. Here, we focus on PS TMSV states
where the same number of photons is subtracted from each mode. The resulting 2k
PS TMSYV state is then

W) ap = PRl Y~ 0l nyn) 4 (2.66)
n=0
2
with a%k) = /1 = \2)\ntk <n _]1: k> (1—7)*k7", and Py, = Yo a%k) , which can be

interpreted as the probability of successfully subtracting k photons from each mode of
a TMSYV state. The sum converges to Py, = (1 — )\2) (A=) o Fy (k +1,k+1;1; )\3)
where 2F (a,b; ¢; z) is the Gaussian hypergeometric function and A, = 7.

Let us now focus on the cases k = 1,2, which correspond to two-photon subtrac-
tion (2PS) and four-photon subtraction (4PS), respectively, and whose corresponding
success probabilities are

(1+27)
(1—22)3

P, = 4 (1 — )\2) /\4(1 — 7-)4%.
(1-22)°

P, = (1-=X)\(1—1)?
(2.67)

If photon subtraction is successful for any (nonzero) number of photons, the
resulting state shows increased entanglement with respect to the TMSV state in a
certain interval. This can be seen by computing the negativity NV'(p(?*)) of the family
of states (2.66). We find that, for p(?%) = |(20)) (k)| the negativity is

Ap—1
N (p(%)) =&, (2.68)
where )
(Zm—o aslk))
A = ”;T. (2.69)

Performing the sum, we obtain

1 (1 Y )72(k+1)
@m) = L r _
N(p ) 2 (2F1 CESWESHC (2.70)

which describes the negativity of the heuristic photon-subtraction protocol (see be-
low) in the limit 7 — 1, while reproducing the negativity of the TMSV state,
Nrmsy = A/(1 — M), in the case 7 — 1 and k = 0.

In Fig. 24 (a), we represent negativity differences as a function of the initial
squeezing r. We subtract the negativity of the TMSV state from those of the two-
photon (blue) and four-photon (red), heuristic (solid) and probabilistic (dashed),
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Figure 24: Negativity and success probability of photon subtraction on TMSV
states: (a) Negativity difference between PS and bare TMSV states, represented against
the initial squeezing parameter. The blue and red curves represent two- and four- photon
subtraction, respectively, whereas the green curve represents the no-gain line, above which
any point represents an improvement in negativity. Curves associated with probabilistic
photon subtraction appear dashed, whereas the solid ones are associated with heuristic
photon subtraction. We have considered the transmissivity of the beam splitters involved
in probabilistic photon subtraction to be 7 = 0.95. In the inset, we represent the negativity
curve for the TMSYV state versus the initial squeezing parameter. (b) Success probability of
symmetric photon-subtraction schemes: two-photon subtraction (2PS) is represented with
a blue dashed line, and four-photon subtraction (4PS) is represented with a red dashed line.

subtraction with a beam splitter transmissivity 7 = 0.95. Note that probabilistic
photon subtraction works for lower squeezing, while heuristic photon subtraction is
always advantageous. In Fig. 24 (b), we display the success probability of two-photon
(blue, dashed line) and four-photon (red, dashed line) subtraction. Observe that 2PS
shows higher probability than 4PS, whereas the latter shows higher improvement than
the former. As the squeezing parameter increases, both probabilities grow closer, as
probabilistic PS loses its advantage.

The rate of two-mode squeezed state generation is defined by the effective band-
width of JPAs. In the case of conventional resonator-based JPAs, these bandwidths
are typically of the order of about 10 MHz [181]. By exploiting more advanced
designs based on traveling-wave Josephson parametric amplifiers, one can hope to
increase these bandwidth to aboutl GHz. However, the price for this increase is
typically lower squeezing levels and higher noise photon numbers.
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2.4.2 Photon subtraction for bipartite Gaussian states

We explore an heuristic photon-subtraction protocol performed on a general bipartite
Gaussian state. The application of the single-photon annihilation operators on both
modes of a bipartite quantum state p modifies its characteristic function [61] as

©405x(a, 8) = x(a, 8) 7Y, (2.71)
with
0, =0;, + 05, + T 0 Pl + 1, (2.72)

for i = {A, B}. Given that p = & [d*a [ d® fx(a, B)Da(—a)Dp(—f), and assum-
ing that p is a Gaussian state with covariance matrix

h))
s= (5 97, (2.73)
5AB EB
then we can write
e*%[O_ZTQTZAQ5+ETQTEBQE+25TQT€ABQB]

(=1,-1) _ X 2.74
x(@,5) Tt (274)

{ (mB + BT MpfB +a Mpcf + &TMC&) (mA + ATMad + @ Macf + ETMCE>
+me — ATMacQTeT, ;00 + 26T Me (1, — QTE50)
+aT [MAC (12— QTXE0) — QQTEABQMc] ﬁ],

where we have defined

1
my = 1—§t1"EA,
1
mp = 1—5131‘23,
1 T
mo = §tr(EAB€AB)a
1
My = O (1o — 284 +3%) @, (2.75)
1
Mp = 0T (1. —2¥5 +23) Q,
1
MC = EQT‘gLBeABQ?
1
Mac = §QT(2A_12)5AB97
1
MBC = §QTEAB(23712)Q.

Keep in mind that we have assumed that the submatrices ¥ 4, X5, and €4p of the
covariance matrix are symmetric.
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This is a theoretic approach to photon subtraction; we also present a more ap-
plied approach, in which photon subtraction is performed non-deterministically by
combining each of our modes with an ancillary mode in a vacuum state, using a
low-reflectivity beam splitter. We refer to this as “probabilistic” photon subtraction.
We consider again single-photon subtraction in each mode of a bipartite Gaussian
state, assuming that > 4, X5, and e4p are symmetric. The characteristic function
of the resulting state becomes

e [d‘TQTiAQd+ETQTfJBQ§+2dTQTéABQB]

(=1L,=1) (g, - «
X (e, ) mimeo + ms

Bl

{ (m1 +dTPd+ TR+ 07TP125> (mQ +aATQA+ ATQuf + 52TQ125)

g+ GTR G + TR + aTRuE} . (2.76)

The submatrices of the covariance matrix of the resulting state transform into

Y4 = TEA—F(l—T)lZ_2(J1X21J1T+K1Yi1K1T)’
Yp = TZB—F(I—T)lz_2(J2XZIJ2T+K2Y71K2T)7 (2.77)
Eap = 7eap—2(hX;+ K\Y K],

where 7 is the transmissivity of the beam splitters involved, and the success proba-
bility of the protocol is given by

P— w (2.78)
vdet X4detY

Here, we have defined

X4 = %QT [(1—=7)Z4+ (1+7)15]Q,
Xp %QT (1-7)Ep+ (1+7)12]Q,
H = _%(1 C)TeaBD, (2.79)
Y = Xp-HX,'H,
together with
mp = 1-— %trYﬁl,
my = 1-— %ux;l — %tr (Y'HWx, 1,H), (2.80)
msg = %tr Wy, HWx , 1, H),
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as well as

1
Ky = VT =7) [ean + (24 - L)QTXH],
1
Ky = 5v/r(1=7) [(Sp—12)Q7 +eapQ7 X H] |
1
ho= /A= n(Ea - 1), (281)

1
Jo = 5\/7(1 —T)eapm.

We used these, together with

to define

Q =
Q2 =
Q2 =

Ry

Ry

30

QTMQ
%% =X "ter(X M) - 2.82
X.M r( ) dex (2.82)
1
P = —iﬂklwy,lzf(mn
1
P, = —iﬂKQWy,hK;QT, (2.83)
Py = —QK ,Wy1,KJQT,

1
50 (AW ] + 20 W, 1, HY K] + KWy, nKT) €7,

1
—59 (JQWXA,lz JI +2Wx, 1, HY K] + KQWY,HWXA_leKgT) Qr,
—Q(lexA,12 JI 4+ AWy, HY K] + K Y H Wy 1, 0] (2.84)

T
K1WY,HWXA,12HK2 ) QT’

o
= SO NWx, 1 HWya, KT + K (WmQ tr (Y HWx, 1,H)

QHWx , 1, HQT

Y—l)KT QT
det Y tr 1

+ Y e Wy, HWx, 1,H) —

Lt
= 59 JQWXAJQHWYJZK;+K2(Wy,12tr(y—1HWXA,12H) (2.85)

QHWx , 1, HQT

YT (Wya, W, 0, H) = —— 2

trY’l)KQT ar,
1
= 2Q|:J1WXA712HWY712KJ—|—K1WY,12HWXA,12J2T

2Ky (W, tr (VT HW 0, H) + Yt (W, H W 1, H)

QHWx , 1, HQT

Aty )KQ]Q .
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2.4.3 Photon subtraction for quantum teleportation

One interesting application of entanglement distillation techniques is the improve-
ment of quantum teleportation. By using distilled resources, we are able to increase
the fidelity of teleporting an unknown coherent state.

For heuristic photon subtraction, the average quantum teleportation fidelity is

— 1+h
o e (2.86)
\/det [12 + 3T
with I' = 0,¥ 40, + Xp — 0,64 — €ly50.. Here, we have defined h as
1 1.\! 2
h = —tr|Q7 1o+ =) QB |- ——F——tr(QF{QES
Eo{rl (2 2) @ B )
1.\! 1\!
+ 3tr QT <12 + 2r> QFE3 | tr [QT (12 + 2r> QFP } (2.87)
together with
Ey = mamp+mg,
Ei = ma(Mp+o.Mco.+0.Mpc)+mp(0.:Mao., + Mc +0.Mac)
=+ (2M0+UzMAC)Q(12+UZEAB _ZB) T (288)
E = Mc+0.Mac+ o, Mao,
EP = Mp+o.Mpc+o.Mco..

We can identify h as the non-Gaussian corrections to the fidelity. In turn, probabilis-
tic photon subtraction leads to the teleportation fidelity

_ 1
Fo— -9 (2.89)

det [13 + 1T
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with ' = 0,X 40, +Xp — 0,64 — £y 50, and

1\!
Qr (12 + 2F> Q(0.Q10. + Q2+ ZQ12)

1
= —— |my tr
g m1m2+m3[ !

1
1=~
+ motr QT (12+2F> Q(UZP10z+P2+ZP12)

+tr X

1\ !
QT (12+2F) Q(UZP102+P2+ZP12)

1. —1
tr | QT (12 + 2F> Q (Uleaz +Q2+ ZQ12)

1\
+tr |QT (12 + QF) 9] (O’ZRl(TZ + Ry + Zng)

+ 2tr {WQT(12+%f)9702P102+P2+ZP12 (0.Q10, + Q2 + ZQ12)} ] ;o (2.90)

where the non-Gaussian corrections are collected in g.

A step-by-step derivation of the quantum teleportation fidelities for general Gaus-
sian states with both heuristic and probabilistic photon subtraction can be found in
Appendix B. For completeness, let us present the results for (heuristic) photon ad-
dition applied to general Gaussian states.

2.4.4 Photon addition for bipartite Gaussian states

Similar to photon subtraction, photon addition represents another non-deterministic
entanglement distillation protocol that only requires one copy of the state. In analogy
to photon subtraction, we briefly discuss heuristic photon-addition performed on a
general bipartite Gaussian. The characteristic function of a bipartite quantum state
after the application of single-photon creation operators on each mode is [182]

0,0px(a, 8) = x(a, B)*Y, (2.91)

with

2 2
P 0, — pidy, — 1, (2.92)

/I _ 92 2 i
O =05 + 05+ +7
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for i = {A, B}. The two-photon-added characteristic function for a general bipartite

Gaussian state can be written as

e

x(a, B)Y) =

—1[@TQTEAQE+BTQTE QA +23TQTe A5 Qf]

X

mamp +mc
[ (mB + 6TMpB + a Mpef + &TMC&) (mA + @TMAG + A" MacS + ETMCB)
+me — ATMacQTe], ;00 — 28T Mo (1, + QT8p0Q) §
—&T [Mac (1y + QTS5Q) — 207 45QMc] E] ,

where we have defined

Mac =

Mpc =

1
—1—=trX
9 rla,

1
—1- 51}1‘23,

5 tr (511-436143) )

— N =

QT (1, 4254 +3%) Q,

—

—O7 (1, 4+ 255 + 53) Q,

—

*QT{:‘I‘BSABQ,

—

QT (X4 +12)eapQ,

— N

§QTEAB (ZB + 12) Q.

(2.93)

(2.94)

Photon subtraction and photon addition, as well as other entanglement distillation
techniques, can be the focal point of a quantum repeater strategy. This can also be
the case of entanglement swapping.

2.5 Entanglement Swapping

In this section, we contemplate the CV version of entanglement swapping [139], a
procedure characteristic of quantum repeaters that attempt to reduce the distance
that states have to travel through the environment, and hence attenuate the effects
of entanglement degradation. We consider the case in which there are two entangled
states, shared by three parties pairwisely. That is, between Alice and Charlie, and
between Charlie and Bob. Entanglement swapping is a technique that allows for
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the conversion of two bipartite entangled states into a single one shared by initially
unconnected parties. By performing measurements in a maximally entangled basis,
Charlie is able to transform the entangled resources he shares with Alice and with Bob
into a single entangled state shared only by Alice and Bob. In the CV formalism,
these measurements are described by homodyne detection, and their effect on the
state is computed as we have seen in the CV teleportation protocol. Consider that
these states are Gaussian, with covariance matrices

_ YA €aB
o= <5,T43 ZB>7
5 = (ETC ECD>, (2.95)
ECD ED

and null displacement vectors. Then, the covariance matrix of the entanglement-
swapped (ES) state is

$a €
o555 %0), (2.96)

conditioned by the measurement results is characterized by

neend = Ya—ehp (ZBJrUZZCUZ)_leAB,
ZCDOnd = ED — EgD (ZC + O'ZZBO-z>_1 ECD;, (297)
Efde = 523 (EB(TZ +O'ZEC)71 ECD-

In Appendix C, we present a step-by-step derivation of these identities. Please, see
that these formulas appear incorrectly in Eqgs. 38 a-c in Ref. [183]. There, we used
the identity for 2 x 2 symmetric matrices A=! = QTAQ/ det A, but the symplectic
matrices are missing. This does not modify any of the results represented.

We observe that, in the setup we are considering, the only protocol that presents
an improvement in negativity with respect to the bare states is that in which Alice
and Bob generate the two-mode entangled states, and each send one of the modes
to Charlie. This setup is represented in Fig. 25. Then, the two modes used for en-
tanglement swapping are those that have become mixed with environmental noise.
Nevertheless, this enhancement occurs for large distances, which implies low nega-
tivities, and works significantly better in low-temperature environments, where Ny
is reduced. Considering ¥4 = Xp = als, X = Yo = 1y, and eap = ecp = Y02,
then we can characterize the covariance matrix of the ES state by

2
E?nd = (Oé - ;B) 127
d v
2
BB = 550
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Figure 25: Sketch of the optimal Gaussian entanglement swapping scheme involv-
ing three parties, and three key steps. First, Alice and Bob generate two-mode squeezed
thermal states and, while keeping one of the modes each, send the others through open air,
where they are subject to photon loss and get mixed with thermal noise. Second, Charlie
receives and processes both modes, and third, he uses them to perform homodyne detection.
In the end, Charlie is able to transform the pairwisely entangled states he shares with Alice
and with Bob independently into an entangled state held solely between Alice and Bob.

The condition for this characterization to be appropriate is given by

‘\/det - i‘ > 0. (2.99)

As shown in Appendix C, if we average over all possible measurement results, we
obtain

Y4 = Ya+Xp+0.Y00. + 245,
ED = Yp+X¥X¥p+o.Xc0, —20,.60p, (2100)
€ap = Xp+o0.Xc0.+éEaB — 0.6CD.

If the initial states are Gaussian, and we replace again X4 = Xp = als, X = X =
Bls, and e4p = ecp = Yo, we find that the resulting state is separable. This is
shown by det £4ap = 46(8 — ) > 0. Therefore, in order to preserve entanglement in
this protocol, we must retain the information about the measurement results.

2.5.1 Entanglement swapping for quantum teleportation

Taking ¥4 = ¥p, ¥ = Y¢, and eap = ecp, and knowing that entanglement
swapping is Gaussian-preserving, the quantum teleportation fidelity using an ES

resource is given by

— 1
F = : (2.101)

det [12 + %FES]
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Here, we have defined

I'es = X4 _EIAB(ZB —i—UZEBJZ)_lEAB + o0, [ZA —ELB(ZB —I—O'ZEBUZ)_lEAB] (o

— O'ZELB(EBJZ + O’ZZB)_IEAB — ELB(ZBO’Z =+ O'ZZB)_lé'ABO'z. (2102)

Gaussian states are the paradigmatic example of the state of a bosonic CV sys-
tem, partly due to their compact description in phase space using the symplectic
formalism. They also embrace some of the most well-known CV quantum states, and
are easy to prepare experimentally. We have then introduced an all-Gaussian toolbox
of operations and protocols: Gaussian quantum channels, Gaussian measurements,
Gaussian quantum illumination, and Gaussian quantum teleportation. We have also
seen that all these perks do not come without disadvantages; for example, the fact
that entanglement cannot be distilled with local Gaussian operations. Therefore,
we introduced photon subtraction, and followed the same formalism, now dealing
with non Gaussian resources. Finally, we discussed another protocol that can also
be crucial for quantum repeaters; entanglement swapping.
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Partial Purification for

Gaussian Quantum [llumination

aussian states are very versatile resources for quantum communication tasks,

that also present a very convenient description using the symplectic formalism.
Despite presenting a classical Gaussian profile in their phase space distributions, they
can exhibit quantum entanglement in a bipartite setting. For that matter, there exist
Gaussian-preserving (symplectic) transformations that can generate entanglement,
the most famous one being the beam splitter transformation. Nevertheless, as we
have discussed in the previous chapter, distillation of Gaussian entanglement using
local Gaussian operations is not possible [71], a statement that can also be said about
error correction [72, 73]. Despite this, many entanglement distillation protocols have
been studied in CVs [74, 75, 76, 77, 78], that use non-Gaussian operations. One
of them is photon subtraction, which we discussed in chapter 2. The same thing
happens to CV quantum error correction [85, 80, 81], also forced to abandon the
realm of Gaussian states.

All these results are focusing on entanglement as a resource, but we want to
investigate the purity as well, its relation with entanglement, and to develop a toolbox
of operations that allow us to increase the purity. Naturally, increasing the purity
of an entangled state leads to entanglement degradation; gaining local information
about two systems implies losing non-local information. Given this statement, we
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3. PARTIAL PURIFICATION FOR GAUSSIAN QUANTUM ILLUMINATION

want to investigate what are the limitations for the purification of Gaussian states
under Gaussian local operations.

First, we formulate a no-go theorem for the purification of two-mode Gaussian
states. We study the generic problem of purifying, using local operations, at least one
mode of a noisy Gaussian state that is entangled. Imagine that we apply a Gaussian
channel on our initial state, characterized by a covariance matrix %, such that the
outcome is

¥ =XYXT+Y. (3.1)

Now, the purification has been successful if the rank of ¥/ + i has been reduced,
and this can only happen if:

1. X is not full rank.
2. Both X(X +iQ)XT and Y 4 iQ2 — iXQXT have a common kernel.

In the case in which X is not full rank, we see that the resulting state cannot be
entangled. Since X describes the action of a local channel, X = X4 & Xp, and then,
for it to be rank-reduced, either X 4 or X5 must have a kernel. This implies either
det X4 = 0 or det Xp = 0. Since we can write

S (XAEAXL +Ya XAgABXlg )

XBELBXA XBEBX]B +YB (32)

the off-diagonal block matrices will satisfy det(XacapX]) = 0, which implies the
state described by Y’ is separable. Therefore, we conclude that purification of a mode
of a Gaussian state cannot happen by means of local operations without the loss of
entanglement, i.e. the projection onto a separable state.

3.1 Partial Purification

Now that we know that, by means of local operations, we cannot purify a mode on
a mixed state without completely degrading entanglement, we want to address the
question of whether we can reduce the thermal noise of a given Gaussian state. That
is, we want to reduce the smallest eigenvalue of ¥ + i€, or alternatively, increase the
purity = 1/v/det 3. Assuming we start from a TMST state with

Y= (Cl? SUZ) , (3.3)

so, clg
where we have defined ¢ = (14 2n) cosh 2r and s = (1 + 2n) sinh 2r, we can obtain a

final Gaussian state . .
dly Sso,
Y= (S/O'Z C’lg) ) (3'4)
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with n’ < n and ' < r. This is done by applying a local Gaussian channel charac-
terized by ¥/ = X2 XT, with X = /714 and Y = 0. This represents an attenuation
channel, since 7 = s’/s = ¢//c, and then 0 < 7 < 1. However, notice that with this
transformation, the symplectic eigenvalue is reduced, 7_ — 720_, which results in
higher entanglement, while the purity is increased, u — u/72.

Of course, this type of operation is not a Gaussian channel, since X alone does
not represent a symplectic transformation. Having set Y = 0, we need W = 0, since
Y = WXgWT and ¥g cannot be zero. Then, the symplectic condition XQXT +
WQWT = Q is only met in the case of 7 = 1, in which the application of X represents
the evolution of an isolated system.

If we consider a general Gaussian quantum channel, with Y # 0, taking into
account that det X +det W = 1, and imposing that both X and W must be invertible,
we end up with an attenuation channel. This is imposed by X = /714 and Y =
(1 — 7)ml,, where we have set W = /1 — 714 and Xg = m1,. Here, m = 1 + 2ng,
and ng is the number of thermal photons in the environment. Then, the resulting
state is characterized by

; (lre+ (1 —71)m]ly TS0,
X = ( TSO, [re+ (1 - T)m]12> ’ (3.5)

If we impose a form for this state, as we had done in the previous case, such that

/ /
Y — (C I, s "Z) , (3.6)

s'o, 1,

the first condition we find is that 7 = s’/s. This leads to a condition on the state of
the environment,
sc’ — s’
m=2"% 3.7
— (3.7)
and since we know that ng > 0, and thus m > 1, we have that s¢’ — cs’ > s — .
This can be reduced to (¢/ —1)/(c—1) > s'/s, which is

(14 2n")cosh2r’ —1 < (14 2n') sinh 27/

. 3.8
(1+2n)cosh2r —1 — (14 2n)sinh2r (38)

The symplectic eigenvalue of the partially-transposed covariance matrix is
- =1(c—s)+1—r)m=15"+ (1758, (3.9)

with the partially-transposed symplectic eigenvalues of a TMST state and a thermal
state are given by 17(70) = (1+2n)e~?" and 7® = m, respectively. The resulting state

is entangled if 7_ < 1, which imposes the condition

IS (m—l)s

oy Pt (3.10)
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3. PARTIAL PURIFICATION FOR GAUSSIAN QUANTUM ILLUMINATION

If we connect this with the previous one, we can get

—1)(c—1
¢s14 MoVl (3.11)
m— (c—s)
Furthermore, the purity of this state is given by
2 2.2\ 7"
u:{[70+(1—7)m] —T7°s } , (3.12)
which is reduced if ¢2 — s2 > [r¢+ (1 — 7)m]> — 7252, If we rearrange this, we can
obtain
& —s*—m?>1(s—c+m)(s+c—m), (3.13)

and using 7(s — c+m) > m — 1 from the partially-transposed symplectic eigenvalue,
we arrive at

c—s+1 9 1+2n+ e
— ) =(1+2 . .14
m<(c+s)<c+s+1> (1+2n)e <1+2n+€_2r> (3.14)

Writing m = 1 4 2ng, this can be rearranged into

2n(1+mn)

< T oo
"ES T (14 2n)e?r

(3.15)

which imposes a more restrictive condition than just ng < m. This implies that
purification can only happen if the purity of the environment is higher than that of
the initial TMST state.

3.1.1 Partial purification with ideal measurements

We now consider that we have access to making measurements on the environment,
and attempt to obtain information from them. Our Gaussian measurement is de-
scribed by a positive operator II; taken from a POVM, with covariance matrix Y.
If we project this onto mode B of a bipartite Gaussian state with covariance matrix

YA €aB
5= , 3.16
(5113 EB) ( )

the covariance matrix of the resulting state of mode A is
EAZZA—EAB(EB—ﬁ-Ti)ilELB. (3.17)

Recall that homodyne measurements of the x-quadrature are characterized by

Y, = lim (60 e&), (3.18)
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by setting ¢ = 0, or alternatively, of the p-quadrature with ¢ = 7,

2¢
T, = lim (60 6025). (3.19)

£—o0

Another way to describe the action of homodyne measurements on the covariance
matrix of the remaining state is to write

MP
= 1 0 1 0
Ya=%4a—¢aB KO 0) ¥p (0 0)} ehp (3.20)

for the x-quadrature, where MP indicates the pseudo inverse operation [66], since the
resulting matrix is singular. For the p-quadrature, we just compute

MP
& 0 0 0 0
ZAZZA—EAB |:<0 1) EB (0 1):| 623. (3.21)

For x-quadrature homodyne measurements on the environment, we obtain the purity
of the remaining state

u1\/ (1—7)(c+s)+mr X\/( (-ne—s)+mr o

m\ (c+3s)(r(c+s)+m(l—1)) c—8)(t(c—s)+m(l—17))

For the partially-transposed symplectic eigenvalue, we get

o T(c—s)+m(l—7)
v_ = \/m(c ) a (3.23)

—7)(c—8)+mT’

Alternatively, if we measure orthogonal quadratures in different modes of the envi-
ronment through homodyne detection (let’s say, x in the first and p in the second),

we obtain a )
—T)c+mT
= .24
# m[m(l — 7)c+ 7(c — s2)]’ (3.24)

and for the partially-transposed symplectic eigenvalue

_ Vme((m = )2 = s?)(1 = 7)7 + mc] — m7s
(1—=7)c+mt )

(3.25)

This kind of measurements are often referred to as “double-homodyne”. Heterodyne
detection is constructed through double-homodyne measurements with an auxiliary
system in a coherent state. The covariance matrix associated to heterodyne measure-
ments can be obtained for £ = 0, T; = 1,. Equivalently, it corresponds to projecting
onto a given coherent state. We compute the purity of the remaining state after this
type of measurements,

_ <1_T)<c+s)+1+m7]x[(1_T)(C_S)+1+W L (3.20)

(m+7)(c+s)+m(l—r1) (m+7)(c—s)+m(l—r1)
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3. PARTIAL PURIFICATION FOR GAUSSIAN QUANTUM ILLUMINATION

as well as the symplectic eigenvalue of the partial transposition,

. (m+1)(c—8)+m(l—1)
v-= (I1-7)c—8)+1+mr (3.27)

We observe in all cases that the purity of the resulting state is larger than that of the
initial state, provided that m? < ¢? — s2, meaning that the purity of the environment
has to be larger than that of the initial state, as we saw earlier. We also see that the
remaining state is entangled if

. (1 - Hm(c_s)) . (3.28)

2 m-—c+s

Naturally, however, the negativity of the state after measuring the environment can
never be larger than that of the initial state.

The improvement shown by the application of ideal measurements is caused by
the fact that these represent a projection of the state of the environment onto a pure
Gaussian state, which naturally purifies the corresponding system coupled to it.

3.1.2 Quantum Fisher information

In order to test the efficiency of these purification schemes, we need to use a metric;
we need to find a function that characterizes how useful the resulting states are for a
given protocol. In the following, we will use the quantum Fisher information (QFT)
to test how the partially-purified states perform in a typical quantum illumination
problem.

Quantum illumination (QI) [184] is a quantum sensing protocol in which we at-
tempt to detect a low-reflectivity object using two entangled quantum modes. One
mode is sent at the object, and it is either reflected or lost. The other mode is kept
in the laboratory, and measured jointly with the part of the signal that arrives after
being reflected. Naturally, this can be attained using Gaussian quantum states [185].
The performance of this protocol is generally evaluated using the Fisher information.

The classical Fisher information (CFI) is a distinguishability measure between
two probability distributions, related to the maximum knowledge that can be ob-
tained about a given parameter that characterizes a random probability distribution.
It’s quantum correspondent, the quantum Fisher information (QFI) [186, 187], is for-
mulated similarly, in the context of density matrices and observables, and is related
to the quantum Cramér-Rao bound [188, 189], var(O.) > 1/MH(e). This bounds
the error in estimating a parameter €, given the QFI H(e), an optimal observable 0,
and a number of repetitions M.

We will use it to estimate the performance of our states to be used to detect a
low-reflectivity object. Starting with a bipartite entangled state, one of the modes is
sent into open-air to detect the presence of a highly-transparent object, with which
it interacts. The reflected photons are detected, and a combined measurement with
the mode kept in the laboratory is performed. Our guess is that, in certain regimes,
the partially-purified states will present higher QFI than the bare states. This is true
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in the case of TMST states, for which the QFI (in this type of problems) increases
monotonically with the purity.

For Gaussian quantum states, the QFI can be computed using only the displace-
ment vector and the covariance matrix. The QFI for a bipartite Gaussian quantum
state with covariance matrix X, related to a parameter e, is given by [190]

H(e) = 2(detlE1){ (det E) tr {(E*E)Q} A2 —12) (— V;i ot yf 1)
+ Vet (11 BNt [((1+E2)1E’)1 }+2d;'fz—1ci§ (3.29)

where J: F indicate the element-wise derivatives of J, FE with respect to €, respectively.
Here, v4 are the symplectic eigenvalues of 3, which can also be obtained as 2v4 =

\/trE2 + /(tr E2)2 — 16 det E. We have also defined E = iTQYTT, with

o O O

(3.30)

oo o
— o oo
|
—_

0
0
1
0

oo o
SO = O
o
oo o

-1

Here, d indicates the displacement vector. Provided that we are in the context of QI,
€ plays the role of the reflectivity of the object.

In order to provide a fair comparison between the initial and the partially-purified
states, we need to equate the amount of resources used. In a quantum illumination
context, this means setting the same number of photons. For the task of detecting
low-reflectivity objects, we can claim that one scheme is better than another if we
make sure they are using the same number of photons. More specifically, if we are
shining the object with a single mode, we need to fix the quantity corresponding
to the number of photons in that mode times the number of repetitions, for a fair
comparison.

To claim a quantum advantage in QI, we compute the ratio of the QFI and the
CFI. The typical case studied in CVs is a TMSV state versus a single-mode coherent
state, which plays the role of a classical signal. The number of signal photons,
corresponding to the mode of the TMSV state that is sent at the object, is given by
N, = sinh? r, and we define Ny, as the average number of thermal photons in the
environment through which the signal mode propagates. Then, we obtain

o Hg(e) _ Nin
e—0 Hc(é) 1—|—]\/vs‘|']Vth"’2]\/v.s]\/vtl'17

(3.31)

in the limit of low reflectivity. This quantity is always greater than 1, and it indicates
a higher advantage of the quantum strategy in the range of low signal-to-noise ratio.

We can compute the same metric for a general two-mode Gaussian quantum state,
characterized by a null displacement vector and a covariance matrix given in normal
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form, as in Eq. (2.6). Then, the ratio between the quantum and the classical Fisher
information, in the limit of low reflectivity, considering that we are probing the object
with mode A, is given by

. Hg(e)  (1+2Nuw)[2¢1¢0 + b(1 + 2Ng)(cf + ¢3)]
I (o) 102[02(1 + 2Ny )2 — 1] ' (3:32)

Here, we have considered a coherent state with o € R, therefore, o? indicates the
number of photons in the coherent state. If we wanted to use the same number of
photons, then we could replace o by (a — 1)/2 = N,, which corresponds to the
number of signal photons from the Gaussian quantum state that arrive at the object.

Nevertheless, in our case, we want to compare the performance of the states before
and after partial purification. We will take into account the number of repetitions,
and equate Ms(ng) = Mi(ni). Then, we want to look at the ratio

. MyHy(e) .. (ni)Ha(e)
N A XY AL (3:33)

A

which we want to identify as the efficiency. This is chosen because var(O.) >
1/M H (¢), which is known as the Cramér-Rao bound, bounds the error in estimating
€ with our choice of states, given a an optimal observable O and a number of repe-
titions M. If the ratio given before is larger than 1, the we would have reduced the
bound with the partially-purified states, meaning that a lower estimation error could
be achieved.

In Fig. 31, we represent the purity versus the negativity for the output state of an
attenuation channel, for 7 € [0,1]. We have considered an initial TMST state with
n = 1072 thermal photons and squeezing parameter r = 1, and an environment in
the vacuum state (m = 1). The blue, orange, and green curves correspond to per-
forming homodyne, double homodyne, and heterodyne measurements, respectively.
In Fig. 31 (a), we represent the purity versus the negativity of the output state,
normalized by dividing it by the negativity of the initial state. We can observe how
there an almost straight line that delimits the region of allowed partial purification
with the available entanglement. Fig. 31 (b) shows the efficiency of the purification
scheme, given by the ratio in Eq. (3.33). All three instances here have equal amount
of resources. We can observe that double homodyne and heterodyne measurements
perform better than homodyne ones, reaching a maximum efficiency of 1.5. This
means that, with the resulting partially-purified states, the error for estimating a
given observable using quantum illumination is reduced by 2/3.
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Figure 31: Partial purification of a TMST state in a pure-loss channel with meaa-
surement. We take a TMST state with n = 1072 and r = 1, assuming the environment is
in a vacuum state (m = 1). The blue, orange and green curves correspond to the result of
homodyne, double homodyne, and heterodyne ideal measurements, respectively, performed
on the environment. (a) Purity versus negativity of the output state, represented for attenu-
ation coefficients 7 between 0 and 1. We notice that, while the negativity of the output state
cannot be increased with respect to that of the initial state, the purity can be improved by
homodyne and heterodyne measurements. (b) Efficiency of the purification scheme versus
7. We can observe a region of small 7 were there is no advantage, but in the remaining
region partial purification with measurements can reduce the estimation error, compared
with the initial TMST states.

3.2 Partial Purification with Two Copies

Let us now investigate the case in which two copies of the same state are used to
increase the purity of the output state, by means of local Gaussian operations. We
will consider states that are initially entangled, and will require that the output state
is not completely separable.

3.2.1 Swapping-like protocol

We consider a protocol in which one mode of each copy of the state is combined in
a beam splitter with transmissivity 7, by a party that is located between Alice and
Bob. These two modes are taken as the environment, and a Gaussian measurement
is applied to each one. The corresponding scheme is depicted in Fig. 32 (a). We
will choose measurements that have an orthogonal representation in phase space by
setting wo = w1 + ™ = ¢ + 7, while we will set & = £ = £. If measurements are not
taken as orthogonal in phase space, the resulting state will be separable.
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(a)

Figure 32: Partial-purification schemes that use two copies of a TMST state.
(a) We represent a swapping-like protocol, in which two uncorrelated modes, one held by
Alice and the other by Bob, are combined in a 50:50 beam splitter. Then, both modes
are subject to Gaussian measurements. (b) We illustrate a distillation-inspired protocol,
where Alice and Bob apply locally two-mode Gaussian operations (U, ') that resemble the
CV-equivalent of CNOT gates. Then, each party measures one of their modes.

By considering 7 = 1/2, we obtain

1
= > 2 s2(c2—s2—1) (334)
=5 = 1+c2+2c cosh 2€

and

2.2 _ 2

T m. (3.35)

1+ ce%
In the case £ — oo, these represent the result of double-homodyne measurements, and
we reproduce the results of an entanglement-swapping operation. In this scenario,
the purity remains the same, but entanglement is reduced. Notice that we need a
finite £ to reduce the purity of the output state. This protocol effectively teleports
entanglement to the remaining, also previously-uncorrelated modes, held by Alice
and Bob.

In Fig. 33, we represent the efficiency for different values of the squeezing of the
initial TMST state, and for different squeezing parameters of the Gaussian projective
measurement. We observe that the maximum efficiency happens for small £, and it
increases for larger squeezing, which is natural, since we are fixing the initial number
of thermal photons. For r = 1, the maximum efficiency is 1.40, which is smaller
than the maximum values obtained in the single-copy case, represented in Fig. 31.
Nevertheless, in that case we were assuming that the environment was in a pure
state, while now we are considering two mixed states.
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Figure 33: Efficiency of a two-copy purification scheme, based on entanglement
swapping, of an initial TMST state with n = 10™2, represented against the squeezing
parameter of the initial state and the squeezing associated to the Gaussian projective mea-
surements. The latter are taken orthogonal in their phase-space representation, as double
homodyne with finite squeezing. We have also considered 7 = 1/2, and ¢ = 0.

3.2.2 Distillation-inspired protocol

We envision the case in which Alice and Bob share two copies of an entangled state,
and each decide to combine their modes of such states by applying some unitary oper-
ation. In the discrete-variable formalism, by choosing this operation to be the CNOT
gate, bit-flip errors could be corrected [191, 192]. Here, we will apply the continuous-
variable equivalent [193] of such gate, which effectively copies the information of one
quadrature into another,

Ulzr,z2) = |71 F T2, 22),
Ulp,p2) = |p1,p2£p1). (3.36)

Switching to the symplectic convention, we will identify

T 1 0 —w 0 T T — WTo

ylrr| = (0L 0 0pgpf_ p1
T 00 1 0]a T ’
D2 0 w 0 1/ \p2 wp1 + P2
1 1 0 0 0 T Iy

/ 1 0 1 0 —w 1 1 — Wp2

u 52 - w 0 1 0 52 - f}.’l?l + ig ’ (337)

D2 0 00 1 D2 D2
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Below, we give the explicit combination of operations that give rise to the CNOT-like
gate we use in this section. This gate is actually known as the quantum nondemolition
gate [194, 195], and we can identify several variations of it through the operators

1 0 —w 0 1 00 0
01 0 0 0 1 0 w

— T —

U=lo o 1 o Y= |w o1 0]
0w 0 1 0 00 1
100 0 1 0 w0

;o 10 —w (01 00

U=1o 01 o “"=lo o 10 (3.38)
000 1 0 —w 0 1

The essence of this transformation lies in two beam splitter transformations, inter-
rupted by a squeezing operation. Consider the beam splitter operator

500 = (_ i ) (3:39)

where we have defined the phase-shifter operator

R(¢) = <C.OS ¢ —sin d)) , (3.40)

sing coso

and the single-mode squeezing operator

_ (cosh& —sinh £ cos —sinh &sinp
S(& ) = ( —sinh &sin cosh € 4 sinh € cos (3.41)
By identifying w = 2sinh £, we can express
&0) 0 T — 7 o
U; = B(Ti, ¢i) ( S(e. ) BT(1 — i, ¢), (3.42)
and characterize each gate by the parameters
U S =
— T= 1+62£,¢—7r,
1
T —
L{ — T = 1 T 6_25 ) ¢) =T,
1
/
U — T = 1 Te _25 5 ¢
1
T — —
uTs — T—1+62§,¢—0. (3.43)

With this toolbox at hand, we can devise a distillation-inspired purification scheme
for thermal states. These operations generate entanglement, and by making use
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of that resource, together with heterodyne measurements, we will be able to distill
purity in the outcome states. Starting from thermal states with covariance matrix
Ytn = mls, we can apply these operations onto two copies, such that

1+w? 0 —w 0
th O T T 0 1 0 w
U( 0 Eth) UT =mUUT =m w0 1 0 (3.44)
0 w 0 1+w?

By considering heterodyne measurements on one of the modes of the resulting state,
we get the covariance matrix for the remaining state

2

14w

o Do, (3.45)
14+m(14+w?)

The purity is given by

1 /1 1 2

- = M’ (3.46)

m 1+m+w?
and this is larger that the initial purity of 1/m for w € R. If we take the limit of
diverging w, we find

. 1

a significative improvement in the purity of the thermal state. If we perform k rounds
of purification and use 2* copies of the same thermal state, in the limit w — oo, we
end up with the purity

:\/k(l-l—m)—m:\/l_ m—1 7 (3.48)
E(1+m)—1 E(1+m)—1
which tends to 1 as k goes to infinity.

Let us move on to the case of partial purification of entangled states. We assume
that Alice applies U on modes 1 and 3, and Bob applies &’ on modes 2 and 4. Then,
we consider that Alice projects onto a Gaussian state with squeezing £ in the x

direction, whereas Bob does the same in the p direction. The purity of the resulting
state is

1
n= 2 2 w2 (c2—s2—1) : (3.49)
¢ s 1+c2—s2+2c cosh 26+cw? (c+e—2¢)

Given that the second term in the denominator is positive, the purity can increase.
The symplectic eigenvalue of the partial transposition is given by

eyulu+ w?(u+ cw?e=2€ — 2csinh 26)] — 5 (u + cw’e %)
B u+ cw? (c+e2)

(3.50)

v_
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with u = 14 ¢? — 52 + 2ccosh 2¢. Through this operation and measurement, the first
moments (x1,p1) and (x2,p2) of the initial state, corresponding to Alice and to Bob,
respectively, transform as follows:

w
T (1 - 1+cez§>

_ aw(l4w)
2 I R (3.51)
T2 1 _cw(ltw) ’ ’
T2 c(14w?)+e2¢
b2

w
p2 (1- 1+ce?8

showing that the information of the quadratures of one party is not used by the other.
Furthermore, notice that

1
lim g = —F5—-—, (3.52)
wTeo 1+ SG5oe

which means that we can completely purify the state with perfect homodyne mea-
surements (£ — oo). Naturally, this will come at the cost of negativity. See that, in
this limit, the symplectic eigenvalue of the partial transposition goes to

) es\/c(1+ c2 — 52 + 2ccosh 2€) — s
lim v_ =
w00 14 ce2¢

, (3.53)

which goes to 1 with £ — oo, yielding a separable state.

The efficiency of this scheme is represented in Fig. 34 (b), for different values of
w and £. This is actually the instance that yields a maximum efficiency of 1.5, in the
range of parameters represented here. In Fig. 34, we show that the same maximum
efficiency can be obtained with other measurement configurations: (a) Both Alice
and Bob project onto a Gaussian state with squeezing & in the x direction; (b) Alice
projects onto a Gaussian state with squeezing ¢ in the x direction, whereas Bob does
the same in the p direction; (c¢) Alice projects onto a Gaussian state with squeezing
¢ in the p direction, whereas Bob does the same in the x direction; (d) Both Alice
and Bob project onto a Gaussian state with squeezing £ in the p direction. We see
that the common measurement scheme that can lead to a maximum efficiency is
heterodyne detection (£ = 0), which is independent of the phase space direction of
the projection.

We have investigated using two copies of the already purified states (with lower
squeezing), which resource-wise would amount to using four copies of the initial state.
We found that the maximum efficiency that can be obtained increases barely in cases
any of the four cases. Then, we believe that it is not interesting to investigate this
protocol assuming that we have infinite copies available. Nonetheless, if our goal
is simply to purify states, consuming entanglement as the resource, a multi-copy
scenario can lead to interesting results, as we have seen with thermal states. There,
we have shown that we can completely purify thermal states in an infinite-copy case,
with w — oo. In this same regime, we observe that just two copies lead to a purity
that increases from 1/m to 1/y/m, with m > 1.
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Figure 34: Efficiency of a two-copy distillation-inspired purification scheme of an
initial TMST state with n = 1072 and r = 1, represented against w and against £. We
consider measurements with specific directions in phase space: (a) Both in the x-direction;
(b) First in the x-direction, second in the p-direction; (¢) First in the p-direction, second in

the x-direction; (d) Both in the p-direction.
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Superconducting Devices for

Microwave Quantum Communication

UPERCONDUCTING quantum devices working in the microwave regime have be-
S come extremely relevant due to the advances in the field of circuit quantum elec-
trodynamics. These are very valuable for quantum computing, as superconducting
circuits have been established as the running quantum platform. But these advances
not only pertain to quantum computation, but also to entanglement generation, state
reconstruction, squeezing, and quantum teleportation, to name a few.

The main drawback for the use of propagating microwave photons is the difficulty
to detect them, due to their low energy. Therefore, amplification of signals has been
one of the most studied subjects in this topic. In classical microwave communication,
especially in free space, amplification plays a crucial role, as increasing the number
of photons improves the chances the receiver has of detecting that signal. On the
other hand, in the quantum regime, the photons introduced by the amplifier are a
threat to the quantumness of the signal [196]. For example, let us examine the case
of cryogenic high electron mobility transistor (HEMT) amplifiers. These devices are
able to greatly enhance signals in a large frequency spectrum, while introducing a
significant amount of thermal photons. This noise is reflected in the input-output
relation

Gout = \/9HOin + /97 — 1hy, (4.1)
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with aj,, @out, and hy the annihilation operators of the input field, output field,
and noise added by the amplifier, respectively. From this formula, we can see that
amplification is a procedure that acts individually on the modes of a quantum state,
which means that we can increase the number of photons of that mode, but they will
not be entangled with the others. Therefore, amplification cannot increase quantum
correlations. In fact, the introduction of thermal noise can almost certainly lead to
entanglement degradation.

HEMTs normally work at 4 K temperatures, which implies that the number of
thermal photons they introduce is around ngy ~ 10 — 20, for 5 GHz frequencies. It is
the number of thermal photons that determines the thermally-radiated power [197],
P = hwN B, meaning that the excess output noise produces a flux of NV photons per
second in a bandwidth of B Hz. The gain is given by the ratio between output and
input powers, and for a constant bandwidth, it is just g = ng/n, the ratio between
the number of thermal photons introduced by the HEMT and the number of photons
in the input state. A HEMT of these characteristics produces a gain of gz = 2 x 103
when acting on a TMST state with n ~ 1072, which completely destroys entangle-
ment. In order for entanglement to survive this amplification process, the HEMT
must be placed at temperatures below 100 mK. However, it has been shown that
placing a HEMT at cryogenic temperatures does not suffice to reduce thermal noise
originated from self heating, and more sophisticated techniques are required [107].

Nevertheless, it has been proven that HEMTs actually can still be used for quan-
tum state reconstruction [198], for the detection of two-mode squeezing [130], and
even for path entanglement [199]. This is understandable, given that these amplifiers
preserve the phase and do not introduce correlated noise that would otherwise most
likely destroy photon-number entanglement. Furthermore, for certain tasks, it has
been proven an advantage by using a HEMT combined with a Josephson parametric
amplifier, or JPA [200]. The latter is a phase-sensitive amplifier, so in this case, one
of the quadratures of a quantum state can be squeezed below the quantum limit set
by vacuum fluctuations. Then, by placing a HEMT after the JPA in the detection
process, the effects of the noise introduce by the former are mitigated. This can also
be achieved with two JPAs placed sequentially [201].

Architectures based on Josephson junctions [113] have been proven to be very ver-
satile, as they can be used to build various devices with many different applications.
Arguably the most popular of them is the JPA [105, 106], which is nothing but a
Josephson-junction-based architecture working as a phase-sensitive parametric ampli-
fier. Some implementations of the JPA rely on superconducting quantum interference
devices (SQUIDs), which are two Josephson junctions with identical critical currents
placed in a loop. Normally, the magnetic flux threading the SQUID is controlled to
change the system’s resonance frequency; this system can be a coplanar-waveguide
resonator either with SQUIDs along the inner conductor [202, 203], or short-circuited
to ground by the SQUID [117]. The latter is known as a flux-driven JPA.

Other implementations of a parametric amplifier are based on the Josephson
ring modulator [204, 205, 206], a ring of four identical Josephson junctions threaded
by a magnetic flux which induces coupling between three modes. These devices are
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known as Josephson parametric converters (JPCs) [108, 109, 110], and they can work
as phase-preserving amplifiers and frequency upconverters. They can also generate
two mode squeezing, as proven in Refs. [207, 208], and by combining two JPCs with
different pump tones, one can implement a three-port non-reciprocal device called the
circulator [209, 210]. It is used to shield other devices in the cryostat from thermal
radiation [211], and is a key component in the readout of qubits in superconducting
platforms; therefore, many experimental implementations have followed [111, 112].

In most cases, the amplifiers described here were developed for measuring in su-
perconducting quantum platforms; the design of efficient photocounters has probably
been the most relevant milestone for propagating quantum microwaves. Although
many theoretical proposals for photodetectors [212, 213, 214, 215, 216, 217, 218] and
photocounters [219, 220, 221] have been made based on circuit QED, and many pho-
todetection experiments have been realized [222, 223, 224, 225, 226], it was not until
recently that the first experimental realization of a (number-resolved) photocounter
with propagating quantum microwaves was achieved [176, 227], employing Josephson
ring modulators.

These are a key component in quantum communications, and their development
for quantum microwave signals paves the way for more advances in quantum devices
working in this frequency regime. Given that one of the main sources of imperfection
for microwaves, due to the large wavelengths, is diffraction, the development of proper
collimators is also due.

Here, we have illustrated how important Josephson junctions are to quantum
information processing devices working in the microwave regime. Arguably the most
famous application of Josephson junctions is the Josephson parametric amplifier;
particularly, we are interested in its squeezing capability for state generation.

4.1 Josephson Parametric Amplifiers

One of the most important applications of JPAs is the generation of squeezed states.
Squeezing is an operation in which one of the variances of the electromagnetic field
quadratures of a quantum state is reduced below the level of vacuum fluctuations,
while the conjugate quadrature is amplified, satisfying the uncertainty principle.
This can be achieved by sending the vacuum state to a JPA, a coplanar waveg-
uide resonator line terminated by a direct-current superconducting interference de-
vice (de SQUID). The dc SQUID provides magnetic flux tunability to the resonator
and enables parametric phase-sensitive amplification, which is the key for generating
squeezed microwave states [228, 181]. By combining two single-mode squeezed states,
with squeezing in orthogonal directions in phase space, in a balance beam splitter,
we can generate two-mode squeezed states. These are Gaussian bipartite entangled
states, and the most common resource used for CV quantum communication.
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The relation between the frequency of the external magnetic flux, 2, and the
fundamental frequency of the JPA, w., determines whether the JPA operates in the
phase-insensitive or phase-sensitive regime. The latter is achieved in the so-called
degenerate regime, = 2w.. A corresponding three-wave mixing process, when one
pump photon splits into two signal photons, is described by the Hamiltonian

H — g (Ba* - pa?). (12)

It can be shown that the aforementioned Hamiltonian corresponds to a single-mode
squeezing operator

() = exp | 56" - €0 (1.3

with the squeezing parameter given by |£] o< 2¢|8t.

A pair of states with the same squeezing levels, but squeezed in perpendicular
directions in phase space, can be combined in a 50:50 beam splitter to produce two-
mode squeezed states [67]. In the microwave regime, the action of the symmetric
50:50 beam splitter is carried out by a hybrid ring [229], and squeezed states are
produced by JPAs. Due to the bright thermal background at microwave frequencies,
which is not negligible even at cryogenic temperatures, these devices are subject
to various sources of imperfections and noise. Therefore, the output states can be
effectively modelled as TMST states [64], whose second moments differ from those
of ideal two-mode squeezed vacuum states by a factor of 1 4+ 2n, where n is the
average number of thermal photons. This is equivalent to considering ideal JPAs
with identical n-photon thermal state inputs, instead of vacuum states.

Nevertheless, thermal photons in squeezed states may have various physical ori-
gins. One of the most trivial reasons for noise in the two-mode squeezed states is
finite temperatures of the input JPA modes, which lead to the fact that one applies a
squeezing operator to a thermal state rather than to a vacuum. Another important
source of noise in squeezed states produced by flux-driven JPAs arises from Poisson
photon-number fluctuations in the pump mode, which lead to extra quasithermal
photons in the output squeezed states [230]. Last but not least, higher-order nonlin-
ear effects also contribute to additional effective noise under the Gaussian approx-
imation [231]. More experimental details on the microwave squeezing and related
imperfections can be found elsewhere [132].

The action of a JPA on the quadratures of an input state, as presented in the
suplementary material in Ref. [132], can be modelled by

2 - 2,/K
& — f<X+”7>+QWA(7>,

2x—Kk—7 2x—Kk—7

. 2y — K+ . 2\/KY

po— p( 2T pea ) (4.4)
2x + K+ 2x + K+

Here, « is the coupling rate of the input field to the resonator,  is the internal rate of
loss into the thermal bath, and y is the three-wave-mixing strength. We can interpret
this transformation as z-squeezing for y < 0, and p-squeezing for x > 0. We have
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obtained estimations of the order of these parameters in JPAs from Ref [232], such
that v/k < 107* and |x|/k € [0,1/2]. We will define Yy = —2x/x and ¥ = v/k, so
that y € [0,1] and 7 < 10~*. Now, we have z squeezing for positive y. With this,
we can rewrite

1-X—7% 2\/7

T — Z —# + Zypa —¢ )
I+x+7 I+x+7

. o T+x—7 . 2/

b () e (20, s
l-x+7 1-x+7

Given that this device, acting on a single-mode Gaussian state, also couples to
a thermal bath, we use the quantum channel formalism to describe the operation of
squeezing a general Gaussian quantum state using a JPA. The symplectic transfor-
mation that achieves this can be written as

a1 0 (%) 0
0 B 0 —pB
S = 4.6
JPA 042% 0 042% 0 ) ( )

0 =B+ 0  PBagt

where we have defined

P Eeb Gk
1+x+7
27
a2 - - — )
1+x+7
1+x—%
= 4 1 4.7
b P (47)
_ 27
ﬁ? - — —
l—x+7

whereas [, is related to the coupling of the bath to the system, which is not for us
to determine. Here, y and 7 are related to the three-wave-mixing strength and to
the loss rate, as we have seen.

In the symplectic formalism, the single-mode squeezing operator is expressed as

_ (cosh& —cospsinh & —sin@sinh €
S(Ep) = ( —sin psinh & cosh & + cospsinh & ) - (4.8)
Applying single-mode squeezing on a thermal state, produces
T _ cosh 2€ — cos ¢ sinh 2¢ — sin ¢ sinh 2¢€
S(&)m1aST(E, @) = m ( — sin @ sinh 2¢€ cosh 26 + cos psinh 2€ | ° (4.9)
Connecting to this “noiseless” ideal JPA, we can identify the squeezing gain by
_ 1-v\° 1
26 _ — 2 _
e X =——2) =a?. == 4.10
<1 +X ) Hr=0 tl5=0 (410)
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in the case in which ¥ = 0, which implies as = 2 = 0. In reality, however, we will
have that

1+ af2
oy = ——F,

A

in the case 4 # 0, in order for the transformation to be symplectic. Notice that,
when we change Y — —Y, we obtain p squeezing instead of x squeezing, and this
amounts to changing a; < 51 and as < —fs.

We assume that our state and the state of the bath have covariance matrices
> = mls and Xjypp = mypals respectively. The action of this transformation on
both states is

(4.11)

by 0 T
Sypa (0 EJPA) Sipas (4.12)
and by tracing out the contribution from the bath, the covariance matrix of the state
is
2 2
+ asmjypa 0

5= (T : 413
( 0 Bim + B3mjpa (4.13)

If we write this state as the outcome of a quantum channel, ¥’ = XX XT +Y, we

can identify
a1 0
X = ,
< 0 51)

ai 0
Y = mipA <O ﬁ%) . (414)
Keep in mind that this characterizes the action of the JPA channel onto a ther-
mal state, but it can also hold for a more general Gaussian state, whose covari-
ance matrix, by virtue of Williamson’s theorem, can be brought into diagonal form,
¥ = diag(mi,m2). In any case, however, we are considering the bath to be in a
thermal state.

We impose that the quantum state resulting from this channel is a squeezed
thermal state, and from the result of it acting on a Gaussian state with covariance
matrix 3 = diag(mi, ms), we read its number of thermal photons and squeezing

m' = \/(Oé%ml + agmgpa) (Bfma + B3mypa),
o’ a%ml + Oé%meA
e = N e (4.15)
Bima + Bymjpa

Furthermore, for an initial thermal state (m; = mg = m) we can express

/0= XA T Amean] (L X = 3)2 + dmapad)
(I=x+7)1+x+7) ’
6727‘, _ (1 X+7> m(l *)7(7:)/)24’47)’1{]1)1;5/ (4 16)
I+x+7v m(1+x — %)% + 4mpay’ '
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The reason for cryogenia is to shield the superconducting devices and quantum
signals from the bright microwave thermal background at room temperature. This
is a relevant source of decoherence for quantum microwaves, as it contributes to the
classicalization of signals. The impedance associated to propagation of signals inside
a cryostat is 50 €2, whereas in open air it is 377 €2; therefore, a signal travelling
between both media is susceptible to enduring reflections due to an impedance mis-
match. An antenna is then needed for impedance matching, while avoiding any kind
of amplification of the signal. Given that classical antennae perform signal ampli-
fication, adding thermal photons that can compromise quantum correlations, as we
discussed earlier in this chapter, we have to design a quantum antenna that performs
impedance matching, but that can also preserve entanglement.

4.2 Coplanar Antenna Design for Microwave Signals

We address this problem by considering the quantum antenna as a coplanar waveg-
uide with a position-dependent impedance. We observe that the shape of the antenna
defines its reflectivity, and this affects entanglement. Therefore, our goal is to op-
timize the impedance function in order to minimize the reflectivity of the antenna.
As a paradigmatic case, we study the transmission of two-mode squeezed states into
open air, since they are easy to generate and robust to photon losses. We employ a
numerical optimization method through interpolation, which repurposes each solu-
tion, as well as an ansatz for the impedance, qualitatively-based on the solution from
the numerical case. We find that the reflectivity can be reduced below 10~9, while en-
tanglement preservation with real-life experimental parameters would require values
below 10~%. To conclude, we investigate how errors in the optimal impedance affect
the output entanglement to illustrate the impact that small fabrication imperfections
could have on the performance of the antenna.

4.2.1 Antenna model

We attempt to design an antenna for an open-air microwave quantum communication
protocol, in which an entangled state is produced by a source A, keeping one mode
and sending another through a waveguide into open air, to be received at a remote
location B, while preserving the entanglement between both modes. This scenario
is represented in Fig. 41. For this, we propose to use a transmission line (TL) as a
waveguide that sends out the state, then a finite inhomogeneous TL as the antenna,
and then another TL to represent propagation in open air [102]. This circuit is
sketched in Fig. 42. The TL on the left has an impedance of 50 €2, whereas that on
the right has an impedance of 377 €2. Then, the antenna serves as an inhomogeneous
medium that achieves a smooth transition from two very different impedances. The
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Figure 41: Sketch describing an open-air microwave quantum communication
protocol, in which a party A generates a two-mode entangled quantum state and sends
one of the modes to a second party, B, through an environment dominated by thermal noise,
keeping the other mode. The effect of the antennae, as well as the transmission in open air,
are modeled by beam splitters, which allow for the description of the deterioration of the
state due to thermal noise. These have reflectivities |rr|*> and |7r|* for the antennae, and
|rg|? for the imperfect open-air transmission.

Lagrangian describing this circuit is

-1

Loy [A (bg_wiﬂ—@v%i{m?(m gr_ (B —0))?

P T =~ Y NN S
N
Az Cout ;9 (¢k+1 - ¢k:)2
—_— — — 4.1

where we have defined [y, ¢, as the inductance and capacitance densities of the
transmission line inside the cryostat, lo(z), co(z) as the inductance and capacitance
densities of the antenna, and oy, cour as the inductance and capacitance densities of
the second transmission line. See that, inside the antenna, the inductances and capac-
itances depend on the position. This is necessary for a smooth change of impedance.
The reflectivity of the antenna entirely depends on the impedance between the dif-
ferent media. As the impedance is defined by the densities of inductance and ca-
pacitance, Z = \/Z/>0, which can be independently manipulated in nano fabrication,
we can choose without a loss of generality the propagation velocity through the an-
tenna, v =1/ Ve, to be constant. Consequently, the dependence on the position falls
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Figure 42: Circuit graph representation of a quantum antenna as an inhomoge-
neous cavity, in red, connecting a cryostat (black) with the open air (blue), both repre-
sented by transmission lines.

entirely onto the inductance, and we can express the impedance in the antenna as

Zo(z) = 222((?) = Iy(z)0. (4.18)

Taking N — oo in order to consider semi-infinite transmission lines, amounts to
taking the continuum limit Az — 0. Then, we rewrite the Lagrangian,

1 2
L P(, ; 4.1
= [~ ar [0t - 5 @i(e0) (419)
defining the capacitances and inductances as

lin ifz <O
l(x) =1<1l(z) f0<z<d (4.20)
lout ifx>d

and
Cin ifx <0
c(r) =< ca(z) f0<z<d (4.21)
Cout fax>d

From the minimal action principle, we obtain the Euler-Lagrange equations for this
Lagrangian,

c(2)02p(x,t) = 0, <83¢;;5((;C),t)> . (4.22)

For the left and right transmission lines, I(x) and ¢(z) are constant, and Eq. (4.22)
is just the wave equation. This means that for the left and right TLs, the solutions
to the equations of motion are plane waves. However, the solution for the antenna
is not as straightforwardly obtained. To do so, we employ the variable separation
method; we then propose the solution ¢(x,t) =" ¢n(t)u,(z) and expand

() () (&) = ot (l (m)“x(x)pz xl) (x)“@(x)) , (4.23)
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which leads to the expression

On both sides of the equation, the solutions are constants,
Pn(t) = —€v%pn(t), (4.25)
(o) = i @) = €, (1.26)
where we have used c(z)l(z) = 1/v? and Z(z) = I(z)v. From this, we see that

¢ = k2 = (w,/v)? is the wavenumber. Then, the equation that we need to solve is
that for u,(z), which can be written as the Sturm-Liouville problem. In order to
solve this equation for the antenna, we need to fix Z(z).

4.2.1.1 Linear antenna
For a simple case of study, we consider that Z(z) for 0 < x < d is a linear function
of the position,

T T
Z(I) = (1 - 8) Zin + gZouty (427)

which implies that the inductance in the antenna is also linear. From now on, we will
focus on a single mode of the wavefunction, and we will drop the subscript notation
by changing w,(z) — u(z). Now, the equation we want to solve is

7@
Z()

u' (x) o' (x) + kK*u(z) = 0. (4.28)

First, we multiply by (Z(z)/Z’'(x))?, which results in

Z(z) ? " _ Z(xz) , 5 [ Z(x) 2 B
(Z/(@) u” () Z,(x)u(a:)+k (Z’(x)) u(x) = 0. (4.29)
For the linear impedance in Eq. (4.27), we have
5/((?) =rt dzoutz%zi~ (4.30)

Let us define y = kZ(x)/Z'(z), such that v/(z) = ku'(y), u”(x) = k?u”(y). With

this, we can rewrite it as
y*u" (y) — yu'(y) + y’u(y) = 0. (4.31)
If we introduce yp(y) = u(y), with v’ (y) = ¢(y)+y¢'(y) and v (y) = 2¢'(y)+ye" (y),

we obtain
v (y) + e’ (y) + (¥ — De(y) =0, (4.32)
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which is the first order Bessel differential equation. The solution to this equation is

e(y) = b1 (y) + b2Y1(y), (4.33)

where Ji(+), Y1(+) are the Bessel functions of the first and second kind, respectively,
and by, by are arbitrary constants. If we undo all the variable changes, we find

Zin Zin
u(r) = k <a:—|—dZOUt ~ 7 ) {lel (lm—l— kdizout ~ 7 )

7
Y; I — . 4.34
+ by 1(kl‘+deOUtZi >:| ( 3 )

Finally, we redefine b;k/(Zout — Zin) = ¢;, with ¢ = {1, 2}, to write the solution as

u(z) = (Zin(d—2z)+ Zouws) {C1J1 (k:r + dem>
Zout — Zi
+ Yi | kx + de (4.35)
e v Zout - Zi . ’

Then, our problem can be translated into a scattering problem,

up(z) = Ae?F® 4 Beih® for z < 0,
uz(x) = u(x) for 0 <z <d,
uz(r) = Fe'l® 4 Ge " for = > d, (4.36)

where k = w/(¢/3) is the wavenumber inside the cryostat and the antenna, consider-
ing that the propagation velocity is v = ¢/3 inside these two circuits and that ¢ = w/c
is the wavenumber in open air, with v = ¢. Imposing the continuity of voltage

é(x)t)’z— = (é(l‘,t)‘ﬂ (4'37)

o (o) = o ()

is equivalent to imposing the continuity of these functions and their derivatives.
Boundary conditions are imposed at frontier points x = 0 and = = d, such that

and current

7 (4.38)

xt

lim w(z) = wu1(0), lim w(x) = ua(d),
z—0~ c—d~
zlg(r)l+ u(z) = wu2(0), m£r3+ u(z) = us(d),

considering that the impedance is constant across the boundaries, lim,_,o- Z(x) =
lim, o+ Z(z) = Zin, and lim,_,4- Z(z) = lim,_,4+ Z(x) = Zou. Notice that, since
we have imposed that the velocity is constant throughout the antenna, it will jump
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from v, = ¢/3 t0 Vout = ¢ when moving from the antenna to open air. Therefore,
the continuity of the current at x = d will be expressed as

Ug(x) Vout
e - v —a+ - 4.
Vin O, <Z(x)> T Zom Opuz ()], _ v (4.39)
If we do this, we find
A+B = dZy|end (K20 ) ey (ka2 (4.40)
= in |C1J1 Zout — Zin CoYq Zout — Zi , ]
Z; 7.
- = —idZ; ! 7m0 ’ ~ Zin
Y o [ClJl <de0ut - Z > el (deout - Z >} ’

and also

Zout Zout
Zon _ fout Y, —fout )1 (4.41
d ¢ |:61J1 (kdzout - Zi ) teh (deout - Zi ):l ( )

Zou ZOU
—idZout [clJ{ (kdztz> + e} (kdztzﬂ ,
out T 4i out T 4i

Fe'd 4 Ge~iad

Felad _ Ge—tad

where it will be useful to know that

R@Y{ (@)~ Vi) @) = = (1.42)

The transfer matrix T is defined as

)-r(3)

and it can be used to construct the scattering matrix S, defined as

F _ A\ (S Si2) (A
<B) out B S <G> in - <521 SZQ) (G) in’ (444)

which will not be normalized (SST # 1). For that, we can redefine S as

5 ) D ) e
and find the parameters 61, 62, with which the matrix S’ satisfies unitarity conditions.
First of all, the determinant must be equal to one (in modulus). This implies that

det S = 0702det S = €. (4.46)
Also, the rows of the matrix must represent orthonormal vectors,

010252,

(02511 6162512) ( e > = 0105 [07 511551 + 03 512552] (4.47)
02822
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and, from these two conditions, we can obtain the parameters

iy Q
gi = _ ¢ SuSm (4.48)
det S S1159
4 e 811521
= — == 4.4
€ det S §1555, (4.49)

For this scattering problem, we find that the unitary scattering matrix is given by

! Zin
S/ _ 62’7/2 — ./ quout Sll 512 (450)

Vdet S So [ By, )

where + is a free parameter of the system, and thus can be set to zero. Also we have
that, for this problem, |det S| = 1. In the entries of this matrix, we can identify the
transmission and reflection coefficients,

S = (f,i ;g) . (4.51)

In the case in which there is no antenna, we recover the usual formulas in optics
when there is an abrupt change in the impedance,

2
2\/Zinzou
tL)? = [tr|* — (Z_ 7 :) : (4.52)
Zin = Zow \~
el = e (252 ) (4.59

Notice that, when both impedances are equal, there are no reflections. In the opposite
limit, having an infinitely-long antenna, we find that

ltol® = [tr> — 1, (4.54)
Irel? = [rel* — 0. (4.55)
This limit corresponds to an infinitesimally-slow (adiabatic) change of impedance,
generating no reflections in a wave propagating through it into another medium.

Now, we want to apply the scattering matrix to a given state propagating through
the antenna, and study the entanglement of the output state.

4.2.2 Entanglement through the antenna

We study the performance of the antenna for two-mode squeezed states, which are the
best candidate for Gaussian entangled quantum states with CVs due to the stability
and simplicity with which they are generated.

65



4. SUPERCONDUCTING DEVICES FOR MICROWAVE QUANTUM
COMMUNICATION

Consider a TMST state and a thermal state with Ny, photons coming from the
environment. The covariance matrix describing these three modes is

ols 0 0
Sthin = (1+2n) [ 0  cosh2rly sinh2ro, |, (4.56)
0 sinh2ro, cosh2rl,

where we have defined o = (1 4 2Ny,)/(1 + 2n). This is the state prepared in the
cryostat. Now, we want to send one of the modes of the TMST state through the
antenna to another party, and optimize the entanglement between the remaining
mode and the transmitted one. The latter goes through the antenna while mixing
with the thermal noise coming from the environment, a process characterized by the
scattering matrix, while the former remains untouched. This process is described by

the action of the operator
T (4.57)
“\0 1 ’

on the matrix above. We then trace out the reflected part coming from the scattering
matrix, and obtain the covariance matrix of the output state,

Sout = trp [TSuheinT] - (4.58)

Given the order in which we have written the states in the covariance matrix, the
scattering matrix S’ is just a reshuffling of the one in Eq. (4.51),

, (rrly trl
S = (tR12 Tle). (4.59)

This way, we find the covariance matrix of the output state

(4.60)

Yout = (14 2n) ((9|7’R|2_+ |tz|? cosh 2r) 1, tpsinh 2raz> .

tr, sinh 2ro, cosh 2rly

As a measure of entanglement, we use the negativity, computed through the smallest
symplectic eigenvalue of the partially-transposed covariance matrix. For the initial
TMST state, this is

7 = (14 2n)e ™", (4.61)

and the condition for entanglement, 7" < 1, is expressed as r > % log(1 + 2n). Notice
that this condition is r > 0 for two-mode squeezed vacuum states (n = 0).

The outgoing state will also be a TMST state, up to unitary transformations.
Thus, its symplectic eigenvalue will have the same form as that of the initial state. If
we set the initial squeezing to zero, no squeezing can be generated through the beam
splitter, and we have 7™ = 1 4 2n for the initial state, and 7°"* = 1 + 2n’ for the
final state. Comparing this formula with the symplectic eigenvalue obtained from
Eq. (4.60), we find that n/ = n. Then, 7°" = (1 + 2n)e~2", and

1 Dout
=21 — . 4.62
" 20g<1—|—2n> (4.62)
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If we write out explicitly the symplectic eigenvalue of the output state, we obtain

1 \/~ ~
7o = — A/ A(Zout) — \/ A2(Zout) — 4det Doy
= oA ASa) VA (So) t
where we have identified
A(Zout) = (14 2n)? [(olrr|? + |to|? cosh 2r)? 4 cosh? 2r + 2|t |* sinh® 2r] , (4.63)

together with

VA2 (Sou) — 4det Sou = (1420 [olraf? + (1 + |tz ) cosh2r] x

\/(g7COShQT)2|TR|4+4|tL|2Sinh2 2r.  (4.64)
The number of thermal photons is estimated from the Bose-Einstein distribution
1
n(f) o< —7—. (4.65)

eFsT —1

The number of thermal photons of frequency f = w/27 = 5 GHz is 8 x 1072 at
temperature T ~ 50 mK, whereas at room temperature (T ~ 300 K), the number
of thermal photons is approximately 1250, which implies o ~ 2500. Now, we can
approximate 7°"" depending on the relation between g|rr|? and |t |?, and obtain a
simplified form in the different regimes. The first case we study is o|rp|? > 1 with
|rr| # 0. Here, we find that

tp|2(1 + [t1|?) sinh? 2
2¢|rg|? cosh 2r

7o = I 4 (1 + 2n) sinh 27 |1 (4.66)
Total reflection by the antenna is achieved by taking |rr| — 1, then 7°% = (1 +
2n) cosh 2r, which is always greater or equal to 1. This means that there cannot
be entanglement, because we are neglecting the reflected mode, and the transmitted
one only has thermal noise from the environment. Then, we just have two thermal
states. Total transmission, |rg| — 0, breaks the approximation we have made here.
Furthermore, see that we recover the result 1+ 2n as » — 0. In this case, 7°" is
smaller for larger |ty |, only showing entanglement for |rr| < 0.1. We will focus on
this regime in the following case.

The second case describes the scenario in which g|rg|?> < 1 with [t7| ~ 1. This
regime is more restrictive and it is close to total transmission, because we need
|rr| < 1072 in order to have g|rg|? < 1. Here, we find

~out ~in Q|TR|2 2r ~in 1 2
pot =g 1+Te =v" 4 §+Nth IrRr|. (4.67)

When r — 0, the approximation breaks down and we would have to substitute before
the approximation. For total transmission, |rg| = 0, we recover the initial state, since
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no thermal noise from the environment is mixed with the mode transferred through
the antenna. The condition for entanglement on the initial state is

1
r>g log(1 + 2n) (4.68)
and, in this case, for the output state we find

1 1 1
> 3 log(1 + 2n) — 3 log [1 - <2 + Nm) |7”R|2] )

which is, of course, more restrictive. The first inequality imposes (% + Nth) lrr|? < 1.
If we approximate log(l + x) ~ £z for x <« 1, then we can write the condition for

entanglement on the input state’s squeezing parameter as r > n for the initial state,
and r > n + 3 Ny|rg|? for the output state.

‘We have found that it is not possible to achieve values of the reflection coefficient
lower than |rp| ~ 0.08 with a linear antenna. For the squeezing of the initial state
around r = 1, we need |rgr| < 0.026 in order for the output state to be entangled.
An antenna in which the impedance grows linearly with the position is not sufficient,
and for this we explore the stepwise antenna.

Antenna

Cryostat [T [P [B]» 9|V Open Air

|

Figure 43: Circuit connecting the cryostat and the open air through a stepwise
antenna. It is divided in N slices of length ¢, inside which the impedance changes linearly,
corresponding to a beam splitter with reflectivity n;, = \rg)|2, setting N + 1 scattering
problems. Globally, it allows one to implement a general function of the impedance.

4.2.3 Stepwise antenna

We propose a different approach to study the circuit: consider the division of the
antenna in N infinitesimally small slices, in which the impedance changes linearly
with the position. All these slices together yield an impedance that changes with
the position. This setup can be seen in Fig. 43. The difference with the previous
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approach is that now we have N — 1 new parameters, i.e. the impedances of the
intermediate slices, which we can use to optimize step by step the transfer of the
quantum state in the antenna, together with the size of the TL. This is a similar
derivation to the one leading to Eq. 4.35. In this case, we have an impedance

Z(z) = (m 1 g) L + (g - m) Tt (4.69)

at a slice m in the TL. Then, parameter y will be defined as

Z(x)
Z'(z)

Zm
Hence, the arbitrary parameters of the solution need to be redefined as bgm)k: /(Zmg1—

Zm) = cgm), for i = {1,2}. Then, the spatial component of the wavefunction for slice
m in the antenna is given by

U () = [€Zm+ (x —me)(Zmt1 — Zm)] X
{é’"l}l (k(x —me) + kstmZ) (4.71)
m—+1 — m

Z,
+ C(Qm)yl (k<x_m5)+kEZ_H7TLZ>:|,

where € = d/N indicates the size of each slice, z € [em,e(m+1)] and m € {0, ..., N —
1}. See that, for N = 1, we recover the result of the linear antenna studied above.
This system allows us to construct a transfer matrix for each of the N scattering
problems, such that the global transfer matrix will be the result of an ordered product
of these IV matrices. In this problem,

(N) (N-1)
Fy\ S _ S _ _ A
(G) =TyN <c§N)> =TNTn_1 (céN_1)> =...=Tyn... Ty <B) , (4.72)

and the global transfer matrix is 7' = TnTn_1 ... Tp. From this global transfer ma-
trix, we can obtain the global scattering matrix, and make it unitary in the same
way as we did for the linear antenna. This technique allows us to implement differ-
ent continuous piecewise functions for the impedance, and provides more freedom in
the optimization process. Eventually, the design of this circuit is oriented towards
optimizing the resource that is shared between two parties. Thus, the optimiza-
tion process will involve the minimization of the reflection coefficient |rg|, in order
to maximize the entanglement in the output state. We are facing a global opti-
mization problem that we will perform locally, step by step. Starting from random
impedance arrays as initial guesses, we optimize the reflectivity with respect to the
first impedance before Z,,; = 377 (), while keeping the rest of the impedances fixed.
Once the optimal impedance value for the first point has been found, we update its
value and optimize with respect to the previous point. We repeat the process until
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Numerically-optimized impedance

—— N=10 (|ral =1.77e-08)
350 N=20 (lrg|=4.37€-09)
—— N=40 (|ra| = 1.49e-09)
— N=80 =1.49¢-09
300 4 (Iral e-09)
—— N=160 (|rg| =4.39e-10)
c
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Figure 44: Numerically-optimized impedance curves against the position inside
an antenna of length d = 5 cm, for different values of the number of subdivisions in
the antenna, N. Starting with the optimal solution for N = 10, we compute the successive
solutions through interpolation. All of the impedances appear overlapped, and for each one,
the optimal value of the reflectivity |rz| is shown.

the point before Z;, = 50 is reached. Of course, Z;, and Z,,; must remain fixed.
As a criterion for the stability of the solutions, we consider that the optimization
process is successful when the difference between the reflectivities computed with the
impedance solutions after two consecutive optimization sweeps is smaller than 10710,

Even with just one subdivision (N = 2), we are able to find small enough values of
the reflection coefficient to have an entangled output state. In the solutions presented
in Fig. 44, we start from a small number of subdivisions (N = 10) and optimize the
reflectivity. We then interpolate the optimal impedance by doubling the number of
slices, adding the average impedance value of every pair of points in the original array
in between said points. This means splitting each slice in half, while keeping the same
linear impedance function. Because of this, the new impedance array, for N = 20,
gives the same reflectivity as the optimal impedance array we found for N = 10.
Now, taking the interpolated array as the initial guess, we optimize the reflectivity
for N = 20, and continue in the same fashion until we reach N = 160. In Fig. 44,
we can observe how the optimal impedance curves are shaped for different values of
N, starting at N = 10, and doubling it through interpolation, until N = 160. For
each value, we also give the value of the reflection coefficient that such an antenna
could achieve. Notice that these values decrease as N becomes larger, while the
interpolation method leads to very small changes in the impedances, such that the
curves overlap and cannot be distinguished.
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Figure 45: Reflection coefficient computed with the impedance function ansatz
proposed in Eq. (4.73), represented for different values of the number of subdivisions inside
the antenna, for an antenna of size d = 5 cm. As an inset, we show log,, |rr| to illustrate
how this impedance function reduces the reflection coefficient down to 10~2.

To speed up the optimization process and try to better recognize the behavior of
the optimal impedance, we propose an ansatz to describe it,

z\B out —“in
Z(x) = Zin + « el8) log(1+ Zetrtn) 1} (4.73)

where d is the size of the antenna, x indicates the position inside it, and «, 3 are free
parameters that we can optimize. This ansatz is inspired by the qualitative behavior
of the curves in Fig. 44, and does not correspond to an actual fit of the numerical
data. Our goal is to rewrite N — 1 local numerical optimization problems as a
global optimization problem with just two parameters, o and (3, in order to improve
convergence and stability of the solutions. Notice that the results that we will find
using this function will differ from those obtained with numerical optimization. In
fact, since this is only an approximation of the optimal solution, the reflectivities we
compute with this exponential impedance will be larger than those we can obtain
with numerical optimization. We have found the optimal values to be a ~ 10.31 and
B ~ 0.69, for d =5 cm. See that, for &« — oo, we recover the linear antenna.

This function approximates the behavior of the optimal impedance inside the
antenna, but the values of the reflection coefficient obtained are not sufficiently small.
However, they improve as we increase N, as can be seen in Fig. 45, oscillating around
|rr| ~ 1078 for N approaching 160. We observe that minimal values of |rg| are
achieved for N > 30, which must represent a regime where e = d/N < A, approaching
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Figure 46: Reflection coefficient computed with a linear impedance versus the
impedance in the ansatz, against the size of the antenna. In blue, the reflection
coefficient is obtained with a linear function of the impedance, whereas in orange, we repre-
sent the reflection coefficient computed with the impedance ansatz proposed in Eq. (4.73),
for N = 160. Notice that the reflectivity decreases further as we increase the size of the
antenna, continuously for a linear impedance, and jumping between minimum values for
the ansatz.

the continuum limit. This promising result suggests that we could employ the same
treatment of the antenna as we did for a linear impedance, but solving the Sturm-
Liouville problem with the impedance given by Eq. (4.73), in the limit N = 1.

Taking N = 160, we represent the reflection coefficient versus the antenna size
in Fig. 46. In blue, we plot the reflectivity of the antenna with a linear impedance
function and, in orange, the result of the reflectivity corresponding to the impedance
function proposed in Eq. (4.73), with optimized parameters. We observe that minimal
values of |rg| are achieved for particular values of the antenna size, which approxi-
mately coincide with multiples of half the wavelength inside the antenna. Also, we
observe that, in order to find optimal values of the reflectivity, we require d > A\/2.

Finally, we investigate the squeezing of the output state, in terms of the initial
squeezing and the size of the antenna. In Fig. 47, we represent the quotient between
the squeezing parameters of output and input states, showing that it is possible to
preserve squeezing in the multiples of the half-wavelength of the signal, the same
spots for the size of the antenna observed in Fig. 46, for which the reflectivity is
minimal.

Furthermore, in order to illustrate the sensitivity of the reflection coefficient to the
shape of the antenna, we introduce errors to the numerically-optimized impedance.
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Figure 47: Ratio between the squeezing of the output state and the squeezing
of the input state, represented in terms of r and the size of the antenna for N = 160
subdivisions. This shows that at least 90 % of the initial squeezing can be recovered with
an antenna of size equal to a multiple of half a wavelength, with initial squeezing r > 0.

We do this by drawing random values from a normal distribution, where the vari-
ance is a percentage of the value of the function at each point. Using the modified
impedance, we compute the reflection coefficient, and then calculate the ratio between
the negativity of the output state and the negativity of the input state, Nous/Ni-
This study indicates a limit on manufacturing errors oriented towards the fabrication
of such a device.

We also compute the n-average values of the mean negativity ratio, a function
towards which the mean should tend to in an infinite-trial scenario. This function
is computed as follows: take a discrete function fj, evaluated over a grid of points
labelled by zj, for k € [0,L]. This function results from an average over many
trials, given that it has a stochastic component based on a normal distribution. The
function still presents traces of stochastic behavior, since the number of trials we can
perform is finite. Our goal is to find the value towards which the infinite average
of the function tends. For that, we propose the computation of the average of the
function on a given point, such that

Jo(zr1) +2fo(zx) + folrr—1)

| , (4.74)

filzy) =
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where f; is the 1-averaged function. Then, the n-averaged function is

2n

_ 60—2n 2n N
Fulwr) =2 Z:O (m fol@kin—m)0(k +n—m), (4.75)
with 6(0) = 1 and (3:;) = % Here, n indicates the number of times the

average has been performed, k represents a point where the function is evaluated, and
m is a dummy index of the sum that goes through all the values that contributed to
the n-average of the function at a point xy. If n > k, then m € [0,n+k], and if n < k,
m € [0,2n]. From our definition of average we have taken f,(xo) = ... = fi(zg) =

fo(xo) and fr(xp) = ... = fi(xr) = fo(xr). The largest binomial coefficient, :1 )

occurs at m = n/2, and then the largest contribution to the weighted sum that
represents the n-average is

folag) = 272" (2:) fo(zk). (4.76)

This process exemplifies a discrete, binomial convolution, which in the continuum
limit becomes a Gaussian convolution.

In Fig. 48, we represent the average ratio of negativities for different values of the
error percentage (blue), and we observe that it decreases as the error increases, for
an initial squeezing r = 1, N = 160 subdivisions and antenna size d = 5 cm. As an
inset, we represent the logarithm of the ratio of negativities (green), which we fit by
a quadratic function (orange), as the function seems to follow a Gaussian. In red,
we represent the n-average of the mean negativity ratio. Here, each error percentage
step is averaged 102 times, and we have taken n = 50 for the n-average. The results
show that the negativity ratio goes to zero for errors over 3% of the impedance values,
and from the quadratic fit of the logarithm, we can extract a function axz? 4 bz + ¢
with a ~ —0.51, b ~ —0.14, and ¢ ~ 0.04, and with variance ~ 0.01.

4.2.4 Antenna design

In this chapter, we have proposed an antenna based on a coplanar waveguide, and the
characteristics of this waveguide will depend on the impedance we want to implement.
Consider a coplanar waveguide, whose central conducting plate has a width of 2a and
a height much smaller than the total depth of the film, and in which the distance
between the middle of the conducting plate and the start of the grounded plates is
b. By defining p = a/b, we can write the density of inductance and the density of
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Figure 48: Assessment of the sensibility of the antenna to impedance fabrication
errors through the ratio between negativity of the output state AVout and negativity of the
input state MVin, averaged over many iterations in which the impedance function is modified
with a random error proportional to a percentage of the value of the impedance at each point.
In blue, we represent the mean value of the negativity ratio over different error percentages,
and in red we display the smoothing of the mean by applying a n-average technique, for
n = 50. In green, the inset shows the logarithm of the ratio between negativities and,
in orange, we show a quadratic fit of the logarithm of the negativity ratio. The latter
corresponds to a function az? + bz + ¢ with a ~ —0.51, b ~ —0.14, and ¢ ~ 0.04, and with
variance ~ 0.01.

capacitance for such a waveguide as [233, 234]

#OK(Vl_pz)

] = BN/ (4.77)

— dene K(p)
c = deg 637[(( 1_p2), (4.78)

where po and €¢ are the magnetic permeability and the electric permittivity of the
vacuum, respectively, and g is the effective dielectric constant; it is a function of
the geometry of the waveguide, but also of the permittivities of the substrate and
the oxide layers. Here, we have defined K(y) as the complete elliptic integral of the
first kind with modulus y, such that

w/2
K(y) = /0 R — (4.79)

V1= y2sin?6
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From Egs. (4.77), (4.78), the characteristic impedance of the waveguide is straight-
forwardly obtained,

K (Vi=7)

7=z K(p)

(4.80)

with z = 1, /&
E0€eff

= 107. For the cryostat impedance Z;, = 502, this requires that
pin = 0.32, and for the impedance of open air, Zoy, = 377, pous = 2.60 - 1078,

In order to implement the kind of antenna proposed here, a coplanar waveguide
has to be designed with a varying ratio p. One way to do this is to solve the equation
above for each value of Z. The dependence of p on the position inside the antenna
could be inferred by substituting the values of Z by those given in the ansatz proposed
in Eq. (4.73). Alternatively, we could directly propose an ansatz for p, targeting a
function of the position in the antenna that leads to a technologically-feasible design.
Similarly, some parameters in this ansatz can remain free, such that an optimization
over them allows us to obtain the ideal impedance. A simple example would be to
consider

p(w) = pun -+ [ol ) 1B ] (4.51)

Usual values of a and b are 5 pm and 7 pm, respectively. Fixing the value of ay,
to 5 pm, we would need by, = 15.63 um in order to obtain py,. To get pout at the
termination of the antenna, we could for example set aou = 10 nm and by, = 38.46
cm. In principle, this may be achieved, given that the electron-beam lithography can
achieve a precision below 10 nm for the fabrication of coplanar waveguides. However,
the London depth of the material will impose a lower bound on the value of a we
would ideally want to set. Different realizations of such a device could be based on
carbon-nanotube ink deposits on the gap of the coplanar waveguide, as described
in Ref. [235], or on coplanar waveguides with width-varying superconducting plate,
studied in Ref. [236].

Throughout this chapter, we have assumed that the antenna is implemented in a
superconducting TL, meaning that the temperature inside it is in the range of mK
(or at least below 4 K). However, this would be very difficult to implement, since the
end of this line is connected to the open air, whose temperature is 300 K. In order to
maintain a low temperature in the antenna, with a constant propagation velocity of
vin = ¢/3, and still be able to connect it to the open air, we could study the addition
of a subsequent waveguide. It would have the impedance of open air, 377 2, while
presenting a temperature gradient, as well as a velocity gradient, from ¢/3 to c.

We consider modelling absorption losses due to loss of superconductivity in a
transmission line of length L that connects the antenna, at cryogenic temperatures,
with the open air at 300 K, by an infinite array of beam splitters. Each beam splitter
has a reflectivity n; that represents absorption probability, and incorporates thermal
noise at a given temperature T; inside the TL, characterized by a number of thermal
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photons n(T;). The output mode of a N-beam splitter array of this kind is given by

2

H Z hin i ]:[ V1= (4.82)

k=1 i=k+1

for an input signal mode a;, where the number of thermal photons incorporated by
beam splitter k£ is given by ny = (ﬁ}f%}f) We aim at representing the action of
this infinite array of beam splitters as a single beam splitter with effective reflectivity
and effective number of thermal photons. In this expression, we can identify effective
reflection and transmission coefficients,

an = a1y/1 = 1est + hi%/Totr- (4.83)

Consider the reflectivity of a beam splitter as n; = uL/N, where p is the reflectivity
per unit length. For very large N, assume L/N = Az. Then, we could write
1n; = p;Ax, and then the effective reflectivity is simplified by

N-1
log(1 — nest) Z log(l —n;) = Z log(1 — p;Az). (4.84)

i=1

For Az < 1, we can expand this as log(1 — p;Az) = —p; Az, and taking the contin-
uum limit,

N—-1 L
- Z wiAx — —/ dxp(z). (4.85)
i=1 0
_ fL d
Then, we write 7eg = 1 — e~ Jo @) Let us now compute the effective number of

thermal photons,

N—-1 N—-1
Nettnett = ((v/Metihets) | (\/Tethest)) = > 1knk [ IT a- m)] , (4.86)

which can be expressed as

Nil L d ’ ’ L L d ’ ’
NeffMeff = Z prArnge J. @it _ / dep(z)n(x)e Jo dnt, (4.87)
k=1 0

Then, the effective number of thermal photons that this beam splitter incorporates
to the system is

fo dzp(z f S
1—e fo dzp(z)

This expression is general and can be applied to any case in which we know the
profile of temperatures. Let us now choose a simple but useful profile which allows

Neff =

(4.88)
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us to find a closed expression. Indeed, if we consider that the TL can be kept at
temperatures below the critical one for a length Ly < L, then we can choose

n(z) = n(Ti) + [n(Tow) — n(Tin)l0(z — Lo),
/J(I) = Min + (,uout - Mm)9<x - L0)7

where pu;, describes absorption losses at cryogenic temperatures and pio,.t describes
absorption losses of the material at room temperature. Then, the effective number
of thermal photons becomes

e_uout(L_LO) (1 — e_/"‘inLD)

neff = n(Tln) 1 _ e*ﬂinL(]e*Hout(LfLO)

1 — e Hout(L—Lo)

+ n(Tou) (4.89)

1 — e—#inLoe—ttout (L—Lo)
Notice that, when Ly = 0, then neg = n(Tout) and, when Ly = L, then neg =
n(Tin). Consequently, for To,y = 300 K and w/27 = 5 GHz, and by using the Bose-
Einstein distribution, we obtain that n(To.) =~ Ny ~ 1250, which is considered
as the input thermal noise into the antenna. The number of thermal photons at
cryogenic temperatures is n ~ 8 - 10_37 corresponding to Tj, = 50 mK and the same
frequency. Given that n/Ny, ~ 107 we have

1 — e Hout(L—Lo)

Neff
~ < .
Nin 1 — e—#inLog—kout (L—Lo) — L (4.90)

since e #nlo < 1. This implies that, considering this approach, the effect of ther-
mal noise in the antenna is reduced when compared with respect to the study we
present here. The reason is that we were considering before the thermal state as the
incoming state of the antenna from the right, while it is now substantially reduced
since part of the thermal photons are also absorbed in the cryostat before arriving
at the antenna. Therefore, the introduction of these losses is a tradeoff between the
effect of the effective beam splitter on the entanglement, and the improvement on the
performance of the antenna due to the lower number of photons corresponding to the
effective thermal state. Of course, these effects will substantially depend on the exact
profile of temperatures along the TL. When this is obtained, one should repeat the
optimization procedure for the impedance and then add the effective beam splitter
after the antenna to take into account the entanglement degradation.

In this chapter, we have studied recent advances in superconducting quantum
technologies, in the form of devices that are used for quantum communication and
for quantum computation. We have discussed different kinds of amplifiers, but fo-
cused on Josephson parametric amplifiers due to their state generation capabilities,
although the most important milestone for microwaves is the photocounter, achieved
through Josephson ring modulators. As the elementary step following state gener-
ation in a cryostat, we have presented a quantum antenna that attempts to reduce
reflections of a signal travelling from here into open air, and therefore to maximize
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entanglement preservation. We have treated this device as a finite cavity that con-
nects a waveguide which transports the state out of the cryostat, and a waveguide
representing the transmission of that state in open air. Therefore, the antenna real-
izes a smooth impedance matching between the two environments, maximizing the
transmission of energy.
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Wireless Microwave

Quantum Teleportation

NTANGLEMENT distribution lies at the core of many quantum communication
E protocols; it is essential to quantum teleportation, and is required by many QKD
protocols. The entangled resources that can be consumed to obtain an advantage
in these quantum communication protocols have to be shared between the parties
involved, and that step alone represents a challenge.

In the optical regime, entanglement distribution has been achieved with optical
fibres [43, 44, 97, 98, 45] and in free space [46, 31, 47, 48].

In the microwave regime, entanglement distribution [121, 126] and quantum tele-
portation [38, 39] have been achieved inside a cryostat. There has also been a the-
oretical proposal for CV quantum teleportation [134], followed by the realization of
entanglement distribution with coaxial cables, subsequently used for quantum tele-
portation [135]. Currently, there are no microwave entanglement distribution or
quantum teleportation experiments in open air. The main reason behind this is
that microwave quantum signals suffer from a bright thermal background at room
temperature, which induces photon-absorption losses and thermalization of the sig-
nal. Diffraction losses, which we will not study in this chapter, are also expected to
play an important role, given the lack of proper collimators for microwave quantum
signals. Efficient quantum repeaters, on the path towards quantum communication
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networks, can help overcome this problem; in the current landscape, however, quan-
tum repeaters use, in most cases, multiple copies of a quantum state, and therefore
require quantum memories for storage purposes. Other repeaters for quantum com-
munication are non-deterministic, and the magnitude for improvement decreases with
the success probability.

In this chapter, we address two pragmatic questions: which is the maximum dis-
tance for open-air microwave Gaussian entanglement distribution in a realistic sce-
nario, and which technological and engineering challenges remain to be faced? In par-
ticular, we adapt the Braunstein-Kimble quantum teleportation protocol employing
entangled resources previously distributed through open air, adapted to microwave
technology. Performing this protocol is possible due to the recent breakthrough in
the development of microwave homodyning [135] and photocounting [176] schemes.
When formulated in continuous variables, teleportation assumes a previously shared
entangled state, ideally a TMSV state with infinite squeezing. In real life, however,
only a finite squeezing level can be produced, making the state sensitive to entan-
glement degradation whenever either one or both modes are exposed to decoherence
processes like thermal noise and/or photon losses. We study the generation of two-
mode squeezed states and the challenges of their subsequent distribution through
open air, and compute maximum distances of entanglement preservation for vari-
ous physical situations. We consider recent advances in microwave photodetection
and homodyning, and address their current limitations, and investigate open-air mi-
crowave quantum teleportation fidelities using the various quantum states derived in
this chapter.

5.1 Wireless entanglement distribution

Once we have generated our entangled resource, and once that state has been suc-
cessfully sent out of the cryostat, we have to address the effects of entanglement
degradation in open air. Considering directed transmission in open air, we envision
an infinite array of beam splitters to describe losses in open air, as represented in
Fig. 51. Each one of these beam splitters represents the probability of an absorption
event with probability 79, such that a propagating signal mode is transformed as

Gin — /1 — Mo@in + /NoGth, (5.1)

mixing with thermal noise from the environment characterized by <&Ih&th> = Nip
thermal photons. Assuming constant temperature throughout the sequence of possi-
ble absorption events, meaning that the thermal noise in each of the beam splitters is
characterized by NVyp, we can obtain the reflectivity of an effective beam splitter based
on an attenuation channel [61], which represents the decay of quantum correlations
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Figure 51: Sketch of a beam splitter loss model of an open air quantum channel.
Entanglement degradation of a state propagating in open air at constant temperature is
modeled by an array of N beam splitters, each one mixing one signal mode and one thermal
mode, represented by din and d¢n respectively. The latter introduces thermal noise charac-
terized by (&Ih&th> = Nin thermal photons, assuming constant temperature throughout the
path. An infinite array of beam splitters (N — 0o) can be approximated by a single beam
splitter with reflectivity neny = 1 — ef“L, where L is the total channel length and pu is the
reflectivity per unit length.

and amplitudes,
Nenv = 1 — e Mk, (52)

Here, u represents a density of reflectivity, which in turn models photon losses per unit
length, and L is the traveled distance. This density of reflectivity can be interpreted
as an attenuation coefficient that quantifies the specific attenuation of signals in a
given environment. In this work we consider u = 1.44 x 1076 m~! for the specific
attenuation of 5 GHz signals caused by the presence of oxygen molecules in the
environment (see Refs. [237, 238]).

We could go further and assume that, attached to the antenna (at constant tem-
perature), there is another transmission line where the temperature is not constant
throughout the trajectory, which leads to an inhomogeneous absorption probability.
This is represented by the density of reflectivity p(x), and the number of thermal
photons n(z). The latter still follows the Bose-Einstein distribution. An infinite
array of beam splitters that reproduce these features (see Ref. [239]) can be replaced
by a single beam splitter with an effective reflectivity and number of thermal photons
given by
1—e fode“(x), (5.3)

Nenv —
L 7 !
fOL dxp(z)n(xz)e” Jo dlut)
Nth = L ’ (54)
1 — o Jo dan@)

where L represents the total length of the array. Given that we are extending the
length in which the transmission line remains at cryogenic temperatures, we see that
Ngn < Nin-
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Figure 52: Representation of an entanglement distribution protocol that uses
antennae to efficiently transmit the quantum states into open air, where pho-
ton losses and thermal noise effects are described with a beam splitter with
reflectivity 7nenv. We analyze two different scenarios: (a) Alice generates the entangled
state, and attempts to share one of its modes with Bob by sending it through a noisy and
lossy open-air channel that degrades the entanglement strength; (b) Charlie generates a
two-mode entangled state, and sends one entangled mode to Alice and another to Bob. In
this case, although both modes go through the same noisy and lossy channel, they travel
half the distance compared to the previous case.

Now that we have discussed how the signal is processed into the environment,
let us characterize the resulting states. Assume that Alice generates a TMST state
with n thermal photons, and sends one mode to Bob over a distance L through open
air, with a thermal background characterized by Ny, thermal photons. Then, the
resulting state is what we call the “asymmetric” state

B [0Neft + (1 — Negr) cosh 2r] 1o /T — negrsinh 210,
Lasym = (1+2n) ( V1 — Negr sinh 2ro, cosh 271, ’ (5.5)

where 7o = 1 — e 7#(1 — nant) Tepresents the combined reflectivities of the antenna
Nant and of the environment 7e,,. A sketch of the layout that leads to this kind of
state can be seen in Fig. 52 (a). With this, using Eq. (2.19), we compute the partially
transposed symplectic eigenvalue,

: 1
pout — pin 4 (2 + Nth) Noff (5.6)

for very low reflectivities, negNy, < 1, with 7™ = (1 + 2n)e=2?". Note that, by
reducing the reflectivity of the antenna, the impact of thermal noise is reduced, and
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the partially transposed symplectic eigenvalue approaches that of the input state. In
this extreme case, entanglement is fully preserved.

Let us use the partially transposed symplectic eigenvalue to compute the limit of
entanglement. We use the negativity as a measure of Gaussian entanglement, such

that this limit occurs for 7_ = 1. This constitutes a bound on the reflectivity; all
smaller values of 7eg will result in entanglement preservation. This result is
: (57)
77 - = B .
max 1+ %

1+1 —(1+2n) cosh(2r)

together with the conditions n < e "sinh(r) and r > 0. With this bound, the
maximum distance entanglement can survive is

1
Lmax - _ﬁ IOg(]. - 7]max)~ (58)

Imagine that TMST states are generated in the cryostat at 50 mK temperature,
with thermal photons n ~ 1072, and squeezing » = 1. In open air, at 300 K, the
number of thermal photons is Ny, ~ 1250. Assuming a perfect antenna (7an; = 0),
the maximum distance the state can travel before entanglement completely degrades
is Lipax ~ 550 m.

As a different approach to the entangled resource, we assume that a TMST state
is generated at an intermediate spot between both parties, and that each mode
is sent through an antenna and travels some distance L;, with ¢ = {1,2}, before
reaching Alice and Bob. Then, each mode will see an effective reflectivity of nég =
1 — e #Li(1 — nupy), combining the effects of the antenna and the environment. We
assume for simplicity that Ly + Lo = L, where L is the linear distance between Alice
and Bob. The covariance matrix of such a state, which we refer to as “symmetric”

¢ = Qnég + (1 — nég) cosh 2r,
s = \/(1 — né?) (1 — né?) sinh 2r, (5.9)
B cily so,
Zsym = (1+2n) (s’az chly )’

and corresponds to the layout represented in Fig. 52 (b). With this state, the maxi-
mum distance entanglement can survive is Ly, ~ 480 m.

Throughout this chapter, we refer to these states as the (asymmetric and/or
symmetric) lossy TMST states, the bare states, or the TMST states distributed
through open air.

Furthermore, we could also consider the specific attenuation caused by the pres-
ence of water vapor in the environment [237]. This would lead to higher attenuation
coefficients, thus reducing the distances that entanglement can survive. For an av-
erage water vapor density, these distances are 450 and 390 m for asymmetric and
symmetric states, respectively. They become 400 m for asymmetric states and 350
m for symmetric states in a maximum water vapor density scenario.
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5.2 Wireless Quantum Teleportation Fidelities

In this section, we compute the average teleportation fidelity for different resource
states. In all cases, the teleported state is a coherent state |ag) {ayp]-

5.2.1 Two-mode squeezed vacuum resource

The case of a TMSV state is particularly simple, as we can simply plug its covariance
matrix into Eq. (2.64),
14+ A

Frvsv = —5— (5.10)

When symmetric 2k-photon subtraction is performed, the formula for Gaussian av-
erage fidelity can no longer be invoked. The results for & = 1,2 (2PS and 4PS,
respectively) are:

(5.11)

— A272 14 A7)3
Fops = <1—/\7‘+ T> (1+ A7)

2 ) 201+ A2r2)
(1+A7T)5[8 = A7(2 — A7)(8 = 3AT(2 — A7))]
16(1 4 42272 4 \i74) '

Fups =

In Fig. 53, we represent the result of subtracting the fidelity associated with the
bare TMSV state to those associated with two-photon-subtracted (2PS, blue) and
four-photon-subtracted (4PS, red) TMSV states. Fidelity differences associated with
heuristic photon subtraction appear as solid lines, whereas those associated with
probabilistic photon subtraction appear dashed. The green solid line represents the
no-gain line, above which any PS state presents an advantage in fidelity. Note that
photon subtraction works better for low squeezing, and as we increase it, we see
that using the TMSV state as a resource for teleportation renders a higher fidelity
than probabilistic photon subtraction, while heuristic photon subtraction tends to
the TMSV result.

5.2.2 Two-mode squeezed thermal resource

We now study the teleportation fidelity associated with a two-mode squeezed thermal
state, sent through a lossy and noisy channel defined by the combination of the
antenna and an environment with Ny, photons. By defining ¥4 = als, X5 = 81,
and e4p = 0., we can write the average fidelity as

1
1+3(a+B8-2v)

FrumsT = (5.12)

If we consider the composition of k teleportation protocols where each of the parties
involved is separated by L/k, with L the total distance aimed to cover. The final
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Figure 53: Average fidelity of CV quantum teleportation of an unknown co-
herent state using a TMSV state with photon subtraction, with respect to the
initial squeezing parameter. We subtract the average fidelity associated with a TMSV
state resource from the average fidelities of two-photon-subtracted (2PS, blue) and four-
photon-subtracted (4PS, red) TMSV states. Curves associated with probabilistic photon
subtraction appear dashed, whereas the solid curves are associated with heuristic photon
subtraction. The green curve describes the TMSV case, which delimits the no-gain line,
above which any point represents an improvement in fidelity due to photon subtraction.
In the inset, we plot the average fidelity associated with a TMSV state against the initial
squeezing parameter. We have considered the transmissivity of the beam splitters involved
in probabilistic photon subtraction to be 7 = 0.95.

average fidelity is then given by

F(k) - 1
TMST 1"‘(]9_%)(0["‘6_27)7

(5.13)

such that Fryst > F%\)/IST for £ > 1. Since the composition of teleportation pro-
tocols does not improve the overall fidelity, we study entanglement distillation and
entanglement swapping in search for such gain. However, this fidelity composition
may improve the overall fidelity when diffraction effects at the termination of the an-
tenna come into play, which will reduce the reach of entanglement from the hundreds
to the tens of meters.

In Table 5.1 we present the parameters we use to represent the different fidelity
curves in this section.
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Parameter Symbol Value
Losses per unit of length I 1.44 x 10~ %m~1
Atmospheric temperature T 300 K
Mean photon number Nin 1250
Squeezing parameter r 1
Thermal photon number (signal) n 1072
Transmission coefficient T 0.95
Antenna reflectivity Nant 0

Table 5.1: Parameters for a terrestrial (1 atm of pressure, temperature of 300 K) two-mode
squeezed thermal state generated at a 50 mK cryostat, for a frequency of 5 GHz. These
parameter values correspond to an Earth-based quantum teleportation scenario.

5.2.2.1 Asymmetric case
Assume that Alice generates a TMST state and sends one of the modes to Bob.
Then, the covariance matrix of the state, given in Eq. (5.5), is characterized by

a = (14 2Nn)nesr + (1 4 2n)(1 — negg) cosh 2r,
B8 = (1+2n)cosh?2r, (5.14)

v = (142n)y/1 — negsinh 2r,

which results in an average fidelity

— 1 1
Fomst = [1 + <2 + Nth> Net + <2 + n> (2 — negr) cosh 2r

—1
- (1+2n)\/1—neffsinh2r] , (5.15)

with Neff = 1-— ei'uL(l - nant)~

5.2.2.2 Symmetric case

In this case, we consider that the resource state is generated at an intermediate point
between Alice and Bob, and is sent to both of them, such that now both modes are
affected by the lossy and noisy channel described above. The covariance matrix of
this state, presented in Eq. (5.9), is characterized by

a = (14 2Nwm)nes + (1 4+ 2n)(1 — negr) cosh 2r,
B = (142Nwm)0esr + (14 2n)(1 — nes) cosh 2r, (5.16)
v = (142n)(1 — neg) sinh 2r
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where we have assumed L; = Ly = L/2, and thus 77(51? = T]é?f) =Neg=1-— T (1-

Nant) - Then, the average fidelity can be written as
Frust = |14 (1 + 2Ngw)ne + (14 2n)(1 — neg) cosh 2r
-1
— (14 2n)(1 — neg) sinh 27“} . (5.17)

Note that, for short distances, the fidelities associated with the asymmetric and
symmetric states coincide. That is, at first order in L < 1, and with 7, = 0,

— L L -t
Frmst ~ |1+ (1+ 2Nth)% 1 (1+2n) (1 - ”2> eﬂ . (5.18)

When considering a lossy antenna, we observe higher entanglement degradation in
the symmetric state due to the fact that both modes of the state are output by an
antenna, whereas only one mode of the asymmetric state goes through it. Although
/Nant can theoretically be reduced below 1072 [239], this leads to a slightly lower
fidelity in the case of the symmetric state. In the figures appearing in this section,
however, we consider 7,,; = 0 for simplicity.

5.2.3 Fidelity with photon subtraction

If we consider a symmetric two-photon-subtraction process, in which the desired
resource has lost a single photon in each mode, the average fidelity becomes

426 —aB)y® 49 +9" + (a = DB - 1AL +79) + (e +1)(B+1))] .

F =
o @+ath-293((a- DB -1+
(5.19)
This is the heuristic case; in the probabilistic case, the fidelity reads
- 1 —ﬂﬁ+u+vV+«1—wu—ﬁw~ﬁwr
F = - |1+ 5.20
R e (E = e (520)

14 Goab P o lam pP o 01— ) Py
(= af+72+ (1= a)1= ) = D)7~ (a— A2+ 42 |’
and the success probability

2[L=0B+77 + (L= )1 =B) = 7*)7]" — (@ =)’ +4*

[(L+7)2 + (a+ B) (1 —72) + (af —4?)(1 = 7))

P=4(1-71) (5.21)

In Fig. 54 we represent the difference in fidelities associated with a CV open-
air quantum teleportation protocols for an unknown coherent state, using two-mode
squeezed thermal states distributed through open air as a resource, against the trav-
eled distance. We subtract the fidelity associated with the bare resource (TMST) to
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Figure 54: Average fidelity of CV quantum teleportation of an unknown coherent
state using an entangled resource distributed through open air, with photon
subtraction and entanglement swapping, represented versus the traveled distance.
We subtract the average fidelity associated with the TMST state distributed through open
air (green), from the average fidelities of the two-photon-subtracted asymmetric (2PS asym)
and symmetric (2PS sym) states, represented in red and blue, respectively, as well as from
the average fidelity of the entanglement-swapped asymmetric (ES asym) state, in orange.
We represent the states resulting from probabilistic photon subtraction (dashed), as well as
heuristic photon subtraction (solid). The pale red background represents the region where
the fidelity is below the maximum classical fidelity of 1/2, and the quantum advantage is lost.
The green line then shows no gain, and any point above it corresponds to an improvement
in fidelity. Parameters are n = 10727 Nep = 1250, r = 1, u = 1.44x 6 mfl, Nant = 0,
T =0.95.

those related to 2PS symmetric (blue) and asymmetric (red) states, as well as ES
(orange) states. We consider both heuristic (solid lines) and probabilistic (dashed
lines, labeled 7) photon subtraction. In Fig. 55 (a), we can see the fidelity associated
with the bare resource, knowing that it coincides for the symmetric and asymmetric
states in the region uL < 1. The solid green line represents the no-gain line, above
which any point represents an improvement in fidelity over the bare state. The for-
mer gives an enhancement for short distances, whereas the latter helps extend the
point where the classical limit is reached. One of the reasons the gain related to pho-
ton subtraction is lost might be the increase of thermal photons in the state, which
occurs for increasing L. This happens because, as photon losses are more relevant,
the cost of doing photon subtraction is higher: if we subtract thermal photons, the
entanglement hardly increases, whereas if we subtract photons from the signal, en-
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tanglement decreases. Using a pale red background, we represent the region in which
the fidelity associated with the bare resource reaches the maximum classical value of
1/2.

In Fig. 55, we represent various features of the two-mode squeezed thermal states
distributed through open air: (a) average fidelity, which coincides for the symmetric
and asymmetric states for uL < 1; (b) logarithmic negativity En = logy (2N + 1)
of the symmetric (green) and asymmetric (purple) states; (¢) success probability
of photon subtraction (see Eq. (5.21)) for symmetric (blue, dashed) and asymmetric
(red, dashed) states, against (Fops — FrumsT)/(1— Frumst), which represents the gain
in fidelity of the photon-subtraction schemes, weighted to show larger values when
the gain occurs at larger fidelities; (d) efficiency of photon subtraction at x = 0,
computed as P(FQPS — FTMST), against different values of the transmissivity, with
7 € [0.9,1]. Note that greater fidelity gains come at lower success probabilities for
photon subtraction, which can be reflected in the efficiency (of the order of 107%).
The latter achieves maximum values for a transmissivity of 7 & 0.92, and goes to
zero with the probability, as 7 goes to 1. In an attempt to explain the crossing that
occurs between the PS and bare fidelities, which delimits the region in which photon
subtraction results in an enhanced teleportation fidelity, we consider the following
approach: we attempt to find the Gaussian state that is related to our non-Gaussian
PS state by the same teleportation fidelity. Essentially, we are looking to identify the
PS states with Gaussian resources in order to compute the negativities from their
covariance matrices, and investigate what happens to entanglement at the points
where fidelity with PS states loses its advantage. First, know that the fidelity with
probabilistic two-photon subtraction can be written as

Fops = #, (5.22)
Wheref‘zaziAaz—i—f]B—UZEAB—ELBUZ,and f]A,iB,and Eap are
s _ [, -0 +8)+*+(1-a)(1-8) )1
e i e v
s _ {1_27 I+a)1-8)+7*+ (1 —a)d-B) =T ]1
b A+7)2+(a+B)1 -7+ (af — 1)1 —7)2] >
Eap Ay (5.23)

T2+ (@t A) (I —72) + (@B -2 (172 "

Here, g is the result of integrating all the non-Gaussian corrections to the character-
istic function, which enforces the non-Gaussianity of the state resulting from photon
subtraction (see section 5.3 for the general expression). We split the terms in the
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Figure 55: Attributes of the symmetric and asymmetric TMST states distributed
through open air. (a), (b) Average fidelity of the CV quantum teleportation protocol of
an unknown coherent state and logarithmic negativiy Exr = log, (2N + 1), respectively,
for the lossy TMST symmetric (green) and asymmetric (purple) states, represented against
the traveled distance. (c) Success probability of two-photon subtraction on lossy TMST
symmetric (blue) and asymmetric (red) states, against the fidelity gain compared to the lossy
TMST state, which is larger for higher fidelities. (d) Efficiency of two-photon subtraction on
TMST symmetric (blue) and asymmetric (red) states at © = 0, against the transmissivity

T € [0.9,1].

(e), (f) Logarithmic negativity of the probabilistic (dashed) and heuristic

(solid) re-Gaussified two-photon-subtracted symmetric (2PS sym, blue) and asymmetric
(2PS asym, red) states, respectively, minus the logarithmic negativity of the corresponding
lossy TMST symmetric (TMST sym, green) and asymmetric (TMST asym, purple) states.
Parameters are n = 1072, Ny» = 1250, 7 = 1, = 1.44 x 107% m™ !, nans = 0, 7 = 0.95.
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previous equation and write

S S | {HT—OﬁﬁJr(1+7)2+((1—a)(1—ﬂ)—72)7]
det [1, + 3T] 2 I+a)1+8) 12— (af—(1-y))7
[ meB (1) (L)1 = B) =)

s {” L+ a)(1+8)—+*— (@B — (1~ >2>T}

5 (5.24)

[1 (1-aB+9%)?—(a—-p)* +49° +47((104)(15)72)T}
(I—af+72+((1—a)(1=5) —7)71)? — (= B)% + 42

If we define a matrix G = (1 + g)1, with G~ = 1+g 1,, then we can write 1 4+ g =
vdet G, which leads to

1 1
R _ . (5.25)
Vet [Lo+ 4T]  /det (1 + 4T) G1]
By rearranging the terms resulting from the matrix product, we can obtain
1 /T —2¢1, 1=
1+ =T t= S [—=—)=1,+-T 2

<2+ >G +2<1+g> 2+ 5T, (5.26)
where we have defined T' = f%ggl"’. Now, we want to incorporate the non-Gaussian

corrections into the covariance matrix of the effective Gaussian state by using the
formula

[ =0.540. + S5 — 02645 — & 50-. (5.27)

We refer to the resulting state as the “re-Gaussified” state. Then, we define

x 1 -

Y4 = Sa— gl),
A 1+g(A 92)

= 1 ~

b = Yp—gl 5.28
B 1+g(B 91s), (5.28)

= [

€ = EAB.

AB 1+gAB

These represent the submatrices of a covariance matrix S if
’\/detf}—g(2+d+ﬂ~)fl‘2(1+g)|d—5| (5.29)

is satisfied. This condition both ensures the positivity of the covariance matrix and
that the uncertainty relation is satisfied. For this, we have assumed that X4 = al,,
¥p = fly, and €4 = A0,. The problem is that this convention only works for the
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symmetric state, and not for the asymmetric one. For the latter, we write

= 1 -

by = — (X4 —kgl
A 1+g(A 92)7

x 1 ~

b)) = — (¥5—-(2—-k)g1 5.30
B 1+g(B ( )92); ( )

é N 5

AB = 1+gAB.

Since we have seen that a symmetric re-Gaussified state is viable, we impose the same

balanced partition on the re-Gaussification of the asymmetric state. From Y4 =25,
we obtain k = 1+ (& — 3)/2g, which leads to the submatrices

= 1 Ya+3p

by = —qgl

A 1+g( 2 g 2))

z 1 Ya+3p

by = —gl 5.31
B 1+g( 2 g 2)) ( )

< 1.

€ = g .

AB 1+g AB

The condition these terms need to satisfy is
| . .
detXH—4(&—6)2—9(&4—6)4—92—1‘20, (5.32)

which is naturally met. In a similar fashion, we can write the fidelity with heuristic

two-photon subtraction as

— 1
Fo__1fh (5.33)

det [15 4 3T

and identify h as the non-Gaussian corrections to the fidelity; we can then mask them
as corrections to the covariance matrix of a Gaussian state with the same fidelity.
We do this by defining

I' — 2h1,

For a symmetric Gaussian resource we define

~ 1

by = —(¥4—h1

A 1+h(A 2)

~ 1

Y = —— (¥g—~h1 5.35
B 1Jrh(B 2), (5.35)

€ = ! 5

AB = [j,EAB
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whereas, if the resource is asymmetric, we require ¥ 4 = Y g, such that

- 1 Ya+2Xp
$a = —hl
4 1+h< 2 2)’
~ 1 Ya+3p
Spo= —hl .
B 1+h< 2 2)’ (5-36)
.1
EAB = 1+h5AB-

These “re-Gaussified” covariance matrices need to satisfy positivity and the uncer-
tainty principle, meaning that [Vdet ¥ — 1| > |@ — /3|, assuming that we can write
iA = al,, i]B = 512, and €45 = J0,. Furthermore, if X4 = als, X5 = 1,5, and
€AB = 702, this condition can be expressed as

’\/detth(2+a+6)—1 > (14 h)la— 8] (5.37)

for a symmetric state, and as
1
‘\/det2+4(a—ﬁ)2—h(a+B)+h2—1’>O (5.38)

for an asymmetric one. In section 5.3, a graphical proof that these conditions are
met is provided.

As a result of these redefinitions, we effectively mask the non-Gaussian corrections
in the expression of the fidelity as further corrections to the submatrices of the
covariance matrix of an entangled resource, which is now Gaussian, while maintaining
the same fidelity we obtained with the PS states. This treatment has shown that we
are using a resource that, in the regions in which photon subtraction is beneficial,
shows higher entanglement than the bare resource. This is expected given that,
among all possible states with the same covariance matrix, entanglement is minimized
by Gaussian states [172].

In Fig. 55 (e) and Fig. 55 (f), we subtract the logarithmic negativity Exr =
log, (2N +1) of the bare resource (TMST) from those of the heuristic (solid) and the
probabilistic (dashed) 2PS states. In Fig. 55 (e), we display the symmetric states, and
in Fig. 55 (f), the asymmetric ones. Note that the gain in negativity is lost around the
same points as the gain in fidelity. As discussed before, the fidelities corresponding
to the symmetric and asymmetric states are equal at first order in u. < 1, and
the same behavior can be observed initially in the negativities of both states (see
Fig. 55 (b)). However, while the points at which the fidelities of the symmetric and
asymmetric states reach the classical limit differs by centimeters, the points at which
entanglement is lost for these states differ by tens of meters. This region where
negativity is lost is highlighted with a pale red background. Any point above the
green and purple line represents an improvement in negativity for the re-Gaussified
PS symmetric and asymmetric states, respectively. Although the entanglement in
the asymmetric state reaches further, the symmetric photon-subtraction protocol
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we envision works better when applied on the symmetric state. The logarithmic
negativity of heuristic PS states presents a 46% increase with respect to the value
for the bare state at = 0, while probabilistic PS states only present an initial gain
of 28%.

5.2.4 Fidelity with entanglement swapping

We consider the case in which both Alice and Bob produce two-mode squeezed states,
and each sends one mode to Charlie, who is equidistantly located from the two parties.
Then, he performs entanglement swapping using the two modes he has received,
which have been degraded by thermal noise and photon losses. If Alice and Bob use
the remaining entangled resource they share for teleporting an unknown coherent
state, the fidelity of the protocol will be given by

— 1
Feog=———, (5.39)
l+a-3
where now we have
a = (14 2n)cosh2r,
B = (142Nmm)nest + (1 4+ 2n)(1 — neg) cosh 2r, (5.40)

v = (14 2n)y/1 — negsinh 2r,

and neg = 1— e*“L/Q(l — Tant ), since the total distance has been reduced by half due
to the presence of a third, equidistant party.

This fidelity is represented as the orange curve in Fig. 54, where it shows a gain in
fidelity for large distances, right before the classical limit of F = 0.5 is reached. The
extended distance represents 14% of the maximum distance for the bare TMST state.
This will be advantageous when the distance at which the classical limit occurs can
be extended, for example in the case of quantum communication between satellites.

5.3 Positivity and Uncertainty Principle for Covariance Ma-
trices

In this section, we discuss the conditions that a covariance matrix must satisfy in
order for it to describe a quantum state. Then, we apply this criterion to the co-
variance matrices presented in this chapter, obtained after photon subtraction and
entanglement swapping. The first condition is the positivity of the covariance matrix

(XA €aB
5= (81;3 EB> >0, (5.41)
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Figure 56: Graphical check of positivity and uncertainty principle for covariance
matrices obtained in this chapter. The quantity in Eq. (5.45) is represented against the
travelled distance, computed from each covariance matrix derived in this chapter. If this
is positive, it proves that the submatrices used to compute it characterize a covariance
matrix satisfying positivity and the uncertainty principle. In orange, we represent the curve
associated with the submatrices in Egs. (2.98) that result from entanglement swapping. The
blue and red solid curves correspond to the heuristic 2PS “re-Gaussified” symmetric and
asymmetric states, respectively, described in Egs. (5.35) and (5.36). The blue and red dashed
curves correspond to the probabilistic 2PS “re-Gaussified” symmetric and asymmetric states,
respectively, described in Egs. (5.28) and (5.31). Inset: enlarged view of the region of short
distances, in which we observe that the condition ¥ > 0 is still met.

and the second one is preservation of the uncertainty principle,

EA EAB Q0
(3 22)+e(2 9) =0 a2)

If we consider ¥ 4 = als, g = Bls, and e 4 = 0., the positivity condition reduces
to

a > 0,
det¥ > 0, (5.43)

whereas the uncertainty principle can be written as

1,
a?+ 5% —292 — 1. (5.44)

(07

>
detX >
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Note that the latter imposes a more restrictive condition. Given that any covariance
matrix requires « > 1 and 8 > 1, we can summarize all conditions as

ﬁz’\/detZ—l‘—\a—mzo. (5.45)

In Fig. 56, we investigate whether this condition is satisfied for different modified
covariance matrices by representing ¢ against the traveled distance: submatrices in
Egs. (2.98) due to entanglement swapping (orange); in Egs. (5.35) and (5.36) due
to re-Gaussified heuristic photon subtraction (symmetric shown with a blue line,
asymmetric shown with a red line); in Eqs. (5.28) and (5.31), due to re-Gaussified
probabilistic photon subtraction (symmetric shown with a blue dashed line, asym-
metric shown with a red dashed line). Note that all five cases satisfy both positivity
and uncertainty principle conditions, confirming that they are indeed covariance ma-
trices. In the inset, we present an enlarged view of the short distance behavior, where
the curves approach the region in which ¢ < 0 (highlighted in a pale red background).
As we can see, even in that area 9 > 0 is satisfied.

5.4 Experimental Limitations to Photocounting and Homo-
dyning with Microwaves

In this section, we review current advances on photocounting and homodyne detec-
tion techniques with microwave quantum technologies. These techniques are vital for
photon subtraction, as well as for entanglement swapping and quantum teleporta-
tion, which are the processes described in this chapter. We also investigate different
sources of error that affect them; by using parameters taken from recent experimental
benchmarks in microwave quantum technologies, we are able to estimate how inef-
ficiencies and imperfections surrounding microwave photocounting and homodyne
detection affect photon subtraction, quantum teleportation and entanglement swap-
ping. We believe that this provides a closer relation to state-of-the-art experiments
with quantum microwaves.

5.4.1 Photodetection

Traditionally, the problem of detecting microwaves has been the low energy of the
signals when compared to the optical regime. Any of the entanglement distillation
protocols we have discussed will require some kind of photodetection scheme. In
particular, for photon subtraction, a photocounter for microwave photons is required.
In the current landscape of microwave quantum technologies, there have been recent
proposals for nondemolition detection of itinerant single microwave photons [225,
224, 226] in circuit-QED setups, with detection efficiencies ranging from 58% to 84%.
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Based on similar setups, a photocounter has been proposed [176] that can detect up
to three microwave photons.

This device is able to catch an incoming wavepacket in a buffer resonator, which is
then transferred into the memory by means of pumping a Josephson ring modulator.
Then, the information about the number of photons in the memory is transferred
to a transmon qubit, which is coupled to the memory modes, and from there it is
read bit by bit. Consequently, this photocounter requires previous knowledge on the
waveform and the arrival time of the incoming mode to be detected. Furthermore,
this device is not characterized by a single quantum efficiency; rather, the detection
efficiency varies depending on the number of photons. That is, 99% for zero photons,
76% =+ 3% for a single photon, 71% =+ 3% for two photons and 54% = 2% for three,
assuming a dark count probability of 3% + 0.2% and a dead time of 4.5 us.

First, let us introduce a parameter for the efficiency of the microwave photode-
tectors. In Ref. [176], a circuit-QED-based microwave photon counter was presented,
which could detect between zero and three photons, with fidelities ranging from 99
% to 54 %. Such a device is particularly useful for the photon-subtraction scheme
investigated in the chapter, in which we only consider single-photon subtraction in
each mode of a bipartite entangled state. Then, we need to look at the success prob-
ability of detecting a single photon, which in this experiment is 76 %. An imperfect
detector can be modeled as a pure-loss channel, which is represented by a beam split-
ter that mixes the signal traveling towards the detector with a vacuum state, and
whose transmissivity determines the efficiency. In this case, we have Tqetector = 0.76.
This characterizes the detection probability in the heuristic photon-subtraction case,
but in the probabilistic description, this will be given by Tiotal = Tdetector™ = 0.72,
since we have considered 7 = 0.95.

Taking into account the detector efficiency, we observe that the maximum nega-
tivity associated with the re-Gaussified PS states is, at least, 47 % of the maximum
negativity of the PS states with ideal detector efficiency. This means that, taking
into account this source of error, the negativity of the states obtained through this
entanglement distillation technique is almost cut in half. Furthermore, these values
are below the negativity of the bare state in the ideal case, which means that per-
forming photon subtraction leads to entanglement degradation. In order for it to be
advantageous, with the parameters we have considered throughout this chapter, we
would need to have detection efficiencies above 85 % for the heuristic protocol, and
above 90 % for the probabilistic one.

5.4.2 Homodyne detection

Homodyne detection allows one to extract information about a single quadrature.
It can be used to perform CV-Bell measurements, i.e., a projective measurement
in a maximally-quadrature-entangled basis for CV states. One way to perform Bell
measurements with propagating CV states is to use the analog feedforward technique,
as demonstrated in Ref. [135]. This approach requires operating two additional phase-
sensitive amplifiers in combination with two hybrid rings and a directional coupler,
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which effectively implements a projection operation for conjugate quadratures of
propagating electromagnetic fields. An alternative, more conventional approach can
be implemented by adapting microwave single-photon detectors to the well-known
optics homodyning techniques.

As we have seen, entanglement swapping provides an advantage if this measure-
ment scheme is used without averaging over the results (single-shot homodyning),
whereas the Braunstein-Kimble quantum teleportation protocol assumes that this
average is performed, given an unknown coherent state. In theory, single-shot ho-
modyning can be implemented by using quantum-limited superconducting amplifiers
and standard demodulation techniques [131]. However, some fundamental aspects
of the “projectiveness” of this operation and its importance for the Bell detection
measurements or for photon subtraction are still unclear and must be verified.

We are interested in the case of finite gain homodyne detection. The theoretical
description of these measurements corresponds to a projection onto a state that is
infinitely-squeezed in 2 (or in p) in phase space. That is, an eigenstate of the position
operator (or the momentum operator) whose eigenvalue corresponds to the signal’s
x (or p) quadrature value. In the symplectic formalism, this measurement operator

has a covariance matrix
6725 0 1 0
— = \/6
T ( 0 e ) =1 Ja) (5.46)

In the limit G — oo, we will recover the usual homodyne detection scheme. We have
obtained that the fidelity of teleporting an unknown coherent state with |9|? photons
using a bipartite entangled state with covariance matrix

aly o,
3= 5.47
(’70'2 ﬁ12) ( )
is given by
. 2[2—#%(14—@)}
4(1+%) + =B+ B+ 8- (v =D +5)] + &1 +a)
— l—a+y )2 9
F=&®exp |- ——F+——] |0 5.48
P (1 +2VG +a 61 (548)
_ -1

In the limit G — oo we recover F' = (1 + W , which is the usual result.

Notice that, while the average teleportation fidelity for an unknown coherent state
with ideal homodyne detection does not depend on the value of the displacement
for said state, we find that the first order corrections do include this dependence
in the value of 8. The average fidelity associated with a resource with increasing
entanglement asymptotically tends to 1 when considering ideal homodyne detection.

In this case, it tends to the value Hﬁ’ which becomes closer to 1 as GG increases.
Ve

100



LIST OF FIGURES

In a recent paper, CV quantum teleportation in the microwave regime was per-
formed [135], where the optimal gain considered was 21 dB, which implies that
1/G ~ 0.008. Using this value, and considering we want to teleport a vacuum state
(6 = 0), we observe that the fidelity reaches the maximum classical fidelity at 434 m
for the asymmetric state, and at 429 m for the symmetric one, while this distance is
479 m with ideal homodyne detection for both kinds of states.

Here, we also consider the effect of finite-gain homodyne detection on the states
that result from entanglement swapping. As a generalization of Eq. 2.98, these states
can be characterized by a covariance matrix with submatrices

2 1 1
B Yy (1+ﬁ2ﬂ+a)

Ya o= o — ; 5 2,
28+ (1+62) + £
2 1 1
B Y1+ =28+ 5
Sp o= |a- (1 Ve G)ﬂ 1, (5.49)
2[5+ &= (1+52) + &
2 1_i
. v ( G) ..

28+ 5 (1+82) + 5]

With entanglement swapping, the maximum classical fidelity is reached at 416 m,
which is smaller than the reach of the bare states taking into account finite-gain ho-
modyne detection. This is natural, since the effects of the finite gain come both from
entanglement swapping and from quantum teleportation. Nevertheless, we have seen
that finite-gain effects are not significantly detrimental to the measures we have com-
puted in this chapter, and this means that, if larger optimal gains can be engineered,
errors can then be reduced. At the end of the day, we have observed that entan-
glement distillation and entanglement swapping suffer from errors associated with
photon counting and homodyne detection. However, we believe that these errors
can be easily overcome by technological improvements. Furthermore, by the time all
the pieces necessary for experiments in open-air microwave quantum communication
arrive, we expect these errors to be further reduced. Meanwhile, entanglement distri-
bution and quantum teleportation with microwaves, in the realistic open-air scenario,
are still viable despite the errors we considered in this section.

However, further developments in the field of microwave quantum technologies are
needed. Efficient information retrieval from an open-air distribution of microwave
quantum states is a key component of open-air quantum communications, which
requires the design of a receiver antenna. The device achieving this target may
resemble that in chapter 3, but it calls for a different type of termination into open air
in order to, for instance, reduce diffraction losses. Since the lack of an amplification
protocol considerably limits the entanglement transmission distance through open air,
it seems necessary to develop a theory of quantum repeaters for microwave signals,
following the ideas shown in Ref. [134]. To this end, entanglement distillation and
entanglement swapping techniques discussed in this chapter are useful.
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Since superconducting circuits naturally work in the microwave regime, it is de-
sirable to explore realizations of photon subtraction that use devices specific to this
technology. In particular, a possible deterministic photon-subtraction scheme can
be studied, making use of circuit QED for nondemolition detection of itinerant mi-
crowave photons [226]. In this paper, the detection of a previously unknown mi-
crowave photon is triggered by a transmon qubit jumping to its excited state, indi-
cating a successful photon-subtraction event.
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Microwave & Optical Quantum

Communication with Satellites

A N important application of the technology and the protocols described in the
previous two chapters is quantum communication between ground stations and
satellites. The global communication network relies on satellite repeaters to dis-
tribute information across the earth. While this is optimized for classical signals,
quantum signals will not fare the same. Due to classicalization of signals by intro-
ducing thermal pollution, amplification cannot be used in quantum communication.
Therefore, a key step in the development of global quantum communication net-
works is understanding the main loss mechanisms for signals propagating through
free space. These include diffraction, atmospheric attenuation, and turbulence. In
the case of microwave signals, the main sources of loss are diffraction and thermal
radiation; therefore, an advantageous situation for microwave is quantum communi-
cation between satellites in the same orbit, where the effect of thermal noise is highly
reduced. Wireless microwaves have also been studied for CV QKD with mobile de-
vices in short-range scenarios (see Ref. [240], sec. III D).

Turbulence effects, caused by small variations of temperature and pressure in
the atmosphere, affect optical signals, but not microwaves. In the weak turbulence
regime, these suffer two distinct effects: beam broadening and beam-centroid wander-
ing. The effects on turbulence on classical signals have been well studied [142, 143],
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but also on the quantum regime [144, 146, 147, after it was demonstrated that the
non-classicality of signals can be preserved [145]. The QKD capabilities of quantum
states propagating through turbulent media has also been addressed, establishing
links between ground stations [148] and between ground stations and satellites [149].
All these works have provided insight into the limitations for the involvement of
satellites in quantum communications [140, 141]. We aim to contribute by consider-
ing the effects of atmospheric attenuation with turbulence on quantum states, how
entanglement is degraded, and their efficiency for performing quantum teleportation,
between ground stations and satellites.

6.1 Inter-Satellite Microwave Quantum Communication

Given the security inherent to quantum-based communication protocols, many of
the motivations for the use of submillimiter microwaves, i.e., frequencies in the range
30-300 GHz, which is a trend in classical communication between satellites orbiting
low earth orbits (LEOs), fade away, and it seems reasonable to aim at maximizing
the distances between linked satellites [102].

We consider a greatly simplified model for free-space microwave communication,
assuming unpolarized signals and hence ignoring the effects of scintillation and polar-
ization rotation, among others. This means that whenever we discuss entanglement,
it will be understood that we are talking about particle number entanglement. Po-
larization entanglement, even if perhaps more natural when considering the physics
of antennae, is lost whenever the signal enters a coplanar waveguide, hence making
it not a good candidate for quantum communication between one-dimensional super-
conducting chips. Moreover, we assume that the communication is done within the
same altitude, i.e., that the two satellites are in similar orbits, which is typically the
case when building satellite constellations. This means that the atmospheric absorp-
tion, if any, will remain constant during the time of flight of the signals. Additionally,
we ignore Doppler effects caused by relative speeds between the orbits.

There are four main families of satellite orbits: GEO, HEO, MEO, and LEO,
corresponding to geosynchronous, high, medium, and low earth orbits, respectively.
It is customary to define LEOs as orbits with altitudes in the range 700-2000 km;
MEOs would then range between 2000-35786 km; and HEOs in 35 786-d,; /2, where
dps is the distance from the Earth to the Moon. The seemingly arbitrary altitude
separating MEOs and HEOs is actually the average altitude for which the period
equals one sidereal day (23 h 56 m 4 s), and this is precisely where GEOs sit. This
altitude is more than 3 times the point at which the exosphere, the last layer of
the atmosphere, is observed to fade. GEOs and HEOs are hence “true” free-space
orbits, in the sense that there is hardly any gas, and temperature is dominated by
the cosmic microwave background —which peaks at 2.7 K. The MEO region is the
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least populated one, since it is home to the Van Allen belts, which contain charged
particles moving at relativistic speeds due to the magnetic field of the Earth, and
that can destroy unshielded objects. LEOs, on the other hand, are ‘cheap’ orbits,
where most of the satellites orbiting our planet live. Their low altitudes simplify the
problems arising from delays between earth-based stations and the satellites.

In this section we will be concerned only with two satellites orbiting either the
same GEO or the same LEQO, as a simple case study of expected losses and entangle-
ment degradation. There are essentially two kinds of loss one must take into account:
atmospheric loss and free-space path loss (FSPL). Total loss will then be simply given
by

L = LaLgspr. (6.1)

Atmospheric absorption loss is caused by light-matter interactions. These strongly
depend on the altitude of the orbits considered, among other parameters such as po-
larization, frequency, or weather conditions. Atmospheric loss can range from almost
negligible (up in the exosphere and beyond) to very significant in the lower layers of
the atmosphere, especially when water droplets and dust are present. Atmospheric
loss has to be taken into account when considering the case of up- and downlinks,
i.e., when linking a satellite with an earth-based station. However, for relatively high
altitudes—that is, any altitude where there are satellites—absorption loss is so low in
microwaves that it can be taken to vanish as a first approximation, so we set Ly = 1.

FSPL is due to the inevitable spreading of a signal in three dimensions; they
are often referred to as geometric losses. FSPL is maximal when there is no beam-
constraining mechanism, such as a wave guide, or a set of focalizing lenses, i.e., when
the signal spreads isotropically: Lgrgpr, = ()\/47rz)72.

Suppose that two comoving satellites are separated by a linear distance z, and that
the emitter sends a quasimonochromatic signal with power P. centered at frequency
v = w/2r = c¢/A. The receiver gets a power P, such that their ratio defines a
transmission coefficient that is the product of the loss and gains (or directivities)
of the antennae. The resulting equation for long, ‘far-field’ distances is sometimes
referred to as Friis’ equation [241, 242, 243], which is the compromise between gain
(or directivity) and loss:

P.  D.Dy
P, LaLpspL

A

2
= DeDr (47‘(,2) = Tpath- (62)

Here D, and D, are the directivities of the emitter and receiver antennas, and we set
L =1 as discussed before. The directivity of an antenna is the maximized gain in
power in some preferred direction with respect to a hypothetical isotropic antenna, at
a fixed distance from the source, and assuming that the total radiation power is the
same for both antennas: D = maxg 4 D(0, ¢). It is a quantity that strongly depends
on the geometry design, but that can be enhanced in a discrete fashion by means
of antenna arrays. Indeed, given N identical antennas with directivity gain D(0, ¢),
a phased array consists of an array of such antennas, each preceded by a controlled
phase shifter. This diffraction problem essentially gives Dayray (6, ¢) = A% (€)D(0, ¢),
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Figure 61: Entanglement preservation in different regions of free space and its
relation with diffraction-induced signal transmissivity: (a) Contour plot of the trans-
missivity associated with diffraction, 74isr, against the aperture radius of the antenna and
the traveled distance. We can observe that losses are greatly reduced with the aperture of
the antenna. (b) Contour plot of the regions of free space as delimited by the relation be-
tween the aperture radius of the antenna and the distance at which the signal is observed:
near field (blue) 2wy > (2v/2/0.62)%/3, Fresnel (gray) \/z\/2 < 2wo < (2v/21/0.62)%/3,
and far field (orange) 2wwo < /2A/2. With dashed lines, we represent the region where
entanglement can be preserved. Parameters are A = 6 cm, ar = 2wo.

where Ay is the so-called N-array factor that symbolically depends on the phases via
some vector € [244]. In three dimensions, phase arrays are two-dimensional grids of
antennas, so that the main lobe of the resulting signal becomes as sharp as possible.
We assume that we have an array of small coplanar antennas as discussed in chapter 4,
adding up to a radiation pattern mimicking that of a parabolic antenna. We also
assume that both emitter and receiver have the same design, D, = D,. = D with

Ta

D= (7)2 eq (6.3)

where 0 < e, < 1 is the aperture efficiency, defined as the ratio between the effective
aperture A., and the area of the antenna’s actual aperture, Apnys, and a is the
diameter of the parabola, such that Aphys = ma?/4. With this, the parabolic path

transmissivity becomes
2 2
Ta“e
Tpath =< 42Aa> . (6.4)

The effect of path losses can alternatively be described by a diffraction mechanism,
affecting the spot size of the signal beam,

o=mf(-5) + ()

given an initial spot size wy, curvature of the beam Ry, and Rayleigh range zp =
nwi /A, Given the aperture radius ag of the receiver antenna, the diffraction-induced
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transmissivity can be computed as [149, 148]
Tair = 1 — e~ 20R/%", (6.6)

Note that, in the far-field approximation, we can recover the result for Tpacn, by
substituting the beam spot size wq by the intensity spot size wg/v/2,

2
W’WO(ZR> 7 (67)

Taift & ( Az

and by setting ag = wo = a/2, Ry = z, and assuming that e, = 1.

Setting A = 6 cm and arp = 2w(, we plot the transmissivity associated with
diffraction versus the distance z for different values of the aperture wy in Fig. 61 (a),
observing that losses are reduced as a result of an increase in the aperture.

We address entanglement preservation in TMST states distributed through open
air by considering that the dominant source of error will be diffraction, as opposed
to attenuation, which we describe by means of a beam splitter with a thermal input.
We introduce N, ~ 11 as the number of thermal photons in the environment at
2.7 K. Considering this loss mechanism, entanglement preservation is achieved for
reflectivities that satisfy 7 < (1+ Ny,) ™! ~ 0.083 for lossy TMST asymmetric states,
and 7 < [1+ Ny (1 +cothr)] =1 ~ 0.038 for lossy TMST symmetric states, assuming
that n =~ 0 and 7 = 1 — 5. Given this diffraction channel, entanglement is preserved

in the regime agwo/z > (A/m)4/ —% log Mim ~ 0.024, for A = 6 cm and 7, = 0.038.
This implies that, for two satellites that are separated by z = 1 km, the product of
the apertures of emitter and receiver antennae must be arwy > 25 m? in order to
have entanglement preservation. In Fig. 61 (b), we represent the regions of free space
as delimited by the relation between the distance at which the signal is detected and
the aperture of the emitting antenna, taking ar = 2wg, and depicting the region in
which entanglement is preserved with a dashed line. This shows that the radius of
the antennae of emitter and receiver satellites will be large, as is usually the case
for microwave communications. In order to correct the effects of diffraction with mi-
crowaves, it would also be useful to study focalizing techniques and the incorporation
of beam collimators.

6.2 Free-space Optical Quantum Communication

In this section, we investigate the effect of free-space turbulence on the propagation of
quantum states generated in the optical regime, and how entanglement is degraded
in this process. We assume two parties attempt to share an entangled state, dis-
tributed through open air, to perform quantum teleportation. We then look at the
Braunstein-Kimble teleportation protocol [85] for continuous-variable (CV) Gaussian
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Figure 62: Optical quantum communication scenarios that we have studied in this
section. We have investigated downlink and uplink channels, between a ground station and
a satellite, both directly and with an intermediate station. We have also studied horizontal
paths, between two ground stations and between two satellites.

states. Particularly, we consider that we initially have TMSV states, and use them
to teleport a coherent state. We also look at the negativity of these states after free
space attenuation. We investigate different instances of quantum communication:
ground station to satellite (uplink), satellite to ground station (downlink), and we
also consider the placement of an intermediate station (intermediate), either to gener-
ate states, or to refocus the beam, at an intermediate location. We follow by studying
the limits for entanglement distribution and quantum teleportation with microwave
signals, and compare them with optical signals, in a bad weather situation. We ob-
serve that the distances are highly reduced due to diffraction and thermal noise, as
we would expect fro microwaves. We conclude by investigating entanglement distri-
bution and quantum teleportation in horizontal paths, between two ground stations,
and between two satellites.

The different quantum communication scenarios studied here are depicted in
Fig. 62.

6.2.1 Loss mechanism

We consider that we have a ground station at altitude hg, and a satellite of orbit Ry
and distance from the surface of the Earth h = Ry — Rg, where Rg is the radius of
the Earth. Then the distance between the ground station, that sees the satellite at
an angle 0, and the satellite is

z = \/(Ah)2 + 2AhR + R?cos? 6 — Rcos b, (6.8)

108



LIST OF FIGURES

Photodetection
Qfov
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Figure 63: Quantum communication channel between a ground station and a
satellite. A Gaussian beam is generated at the ground with an initial waist wg, and
propagates a distance z through free space, where it suffers from diffraction and turbulence
effects, as well as atmospheric absorption. These mechanisms induce transmissivities 75, and
Tatm, respectively. Apart from the broadening of the beam waist, wst, caused by turbulence,
we also have wandering of the beam centroid, quantified by the distance ¢q. The efficiency
of the photodetectors is represented by the transmissivity 7es. Given the field of view, Qsov,
there is a mean number of thermal photons n detected by the receiver.

where we have defined

Ah = /R2+ 22+ 2zRcosf — R,
R = Rg+ ho. (69)

In this section, we have considered zenith communication, i.e. § = 0.

In order to understand the limitations of entanglement distribution and quantum
teleportation in free space, we need a comprehensive study of loss mechanisms. We
will describe them through attenuation channels with transmissivity 7;, which act on
the modes of a given quantum state as

4 — /Tia + V1 — 0. (6.10)
Here, we will consider that these attenuation channels incorporate a thermal mode

from the environment, represented here by d¢n. If we assume that the quantum state
is propagating through a homogeneous thermal environment, then the composite
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effect of N attenuation channels is represented by the action of a single one whose
effective transmissivity is 7 = sz\il T

We sketch the general quantum communication scenario in Fig. 63. We will
consider the combined effects of different loss mechanisms that apply to signals in the
optical regime propagating through free space.These mechanisms have been identified
in previous works studying quantum communication links involving ground stations
and satellites [147, 148, 149].

6.2.1.1 Diffraction

We consider the effects of diffraction in signals propagating through free space. We
assume a quasi-monochromatic bosonic mode represented by a Gaussian beam with
wavelength A, curvature radius of the wave-front Ry, and initial waist wy. For a
focused beam, Ry is equal to the distance between transmitter and receiver, whereas
for a collimated beam, it is set at infinity. The receiver aperture is ag, and zgr =
73 /X is the Rayleigh range, such that the far-field regime is defined by z > zg, for
a transmission distance z.

The transmissivity induced by diffraction is given by

Taig = 1 — e~ 2ar/@)" (6.11)

where w, is the waist of the beam at a distance z [245],

% = w? l(l - ;())2 + <ZZR>T . (6.12)

Here we will work with collimated beams, for which we have

1+ (;ﬂ . (6.13)

Notice that losses associated to diffraction will be larger when arp < w,.

2 _ 2
W, = Wy

6.2.1.2 Atmospheric attenuation
The transmissivity affected by atmospheric attenuation of signals at a fixed altitude
is given by

Tatm = €XP [—aozefh/h] , (6.14)

where ag = Nyo is the extinction factor, IV is the density of particles, 0 = Taps+ Tgca

is the cross section associated with absorption and scattering, and h = 6600 m is a

scale factor [147]. At sea level, and for A = 800 nm, we have ag =5 x 107¢ m~1L.
Naturally, this needs to be adapted to variable altitudes. For that, we will use

Egs. (6.8) and (6.9), considering hg to be negligible. Then, we can write
Tatm = € ©09(0) (6.15)
where we have defined ho) )
g(h,0) :/0 dye hw.0/h (6.16)
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6.2.1.3 Detector efficiency and thermal background

As another source of loss, we can consider that we may have inefficient detectors. We
will take, as the lowest value, Tog = 0.4 [146], whereas the maximum possible one is
Toft = 1. We will refer to the latter as the ideal case. Nevertheless, we consider that
the signal traveling through the link will acquire excess noise that will be caught in
the detectors, characterized by a thermal state that introduces 7egn thermal photons
into our TMSYV state. Furthermore, we consider that the effective number of thermal
photons that the signal acquires in the path is the one that can be effectively captured
by the detectors. We compute this using [149]

Tr = AMIQa%,
—1
Npp = 2eA~* [ehC/WfBTLq , (6.17)
n = I'rNps,

where I'g is the photon collection parameter, At and A\ are the spectral filter and
the time bandwidth, respectively, Q¢ is the field of view of the receiver, and Ngp
is the number of thermal photons, quantified by the black-body formula, in units
of I‘gl. Furthermore, c is the speed of light, A is the wavelength of the signal, h is
Planck’s constant, kp is Boltzmann’s constant, T is the temperature, and finally n
is the average thermal photon number.

We take AX = 1 nm, At = 10 ns, Qg = 107'% sr and ap = 40 cm. Then, we
are left with average thermal-photon number ngg;vn = 0.30 and nﬂfgvi’l‘g =3.40 x 107¢
for a daytime and nighttime downlink, respectively, and ngb = 0.22 and nf,, =

5.43 x 107 for a daytime and nighttime uplink, respectively.

6.2.1.4 Turbulence

Let us now look at the effects of turbulence. We aim at working in the weak-
turbulence regime, in which the effects of scintillation are ignored. This regime
can be characterized using the spherical-wave coherence length,

po = [L.46E>Iy(2)]7%/2,
z é- 5/3
N 1 (R R ) (6.13)
0
through the following formula
z <k (min{2ag, po})”, (6.19)

for a beam with wavenumber k = 27/, propagation distance z, and refraction index
structure constant C2. The latter, in the Hufnagel-Valley model of atmospheric
turbulence [246, 247], reads

2
02 =5.94 x 1073 (217) R10e=h/1000 | 9 7y 10=16=h/1500 | go=h/100 (g op)
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and it measures the strength of the fluctuations in the refraction index caused by
spatial variations of temperature and pressure. In this chapter, we consider v =
21 m/s for the wind speed, and Agay(nighty = 2.75(1.7) x 10~ m~=2/3 for daytime
(nighttime) values. At constant altitude, we see that py = (0.548k2C22)=3/5. If we
consider an uplink, we can use the above formula, but for a downlink, we need to
substitute £ — z — £ in the structure constant.

In the weak-turbulence regime, we can distinguish between two sources of errors,
caused by the interaction of the beam with vortices, or eddies, of different sizes: beam
broadening and beam wandering [142, 143]. Beam broadening is caused by eddies
smaller than the beam waist, and acts on a fast time scale. This will replace w, by
some short-term waist wg;, leading to the modified diffraction-induced transmissivity

T = 1 — e 2(ar/m=)* (6.21)
Here, we can write
Az \ 2
w2~ w? 42 (Z) (1-¢)2, (6.22)
TPo

where ¢ = 0.33(po/wo)/3. In the weak-turbulence regime, we find that ¢ < 1, and
thus we can approximate (1 — ¢)? &~ 1 — 0.66(po/wo)'/? [248].

Beam wandering is caused by eddies larger than the beam waist, and act on a
slow time scale. This causes the beam to deflect by randomly displacing its center,
leading to a wandering of the waist. This random displacement will be assumed to
follow a Gaussian probability distribution with variance o2, which will be composed
of the large-scale turbulence 025 and the pointing error o2 variances. The long-term

waist of the beam can be approximated by
2
Az
2 2
~ +2| — 6.23
=ate(2) (6.23)
and it is related to its short-term counterpart through

2 9 5 0.1337)\222
9TB = Wit — Wst = 7173 5/3 -
Wo  Po

(6.24)

The beam centroid wanders with total variance 0? = o + 03, and we will take

op = 107%2. We define q as the distance between the beam centroid and the original
center (horizontally-aligned with the transmitter and the receiver), also known as
deflection. Following Ref. [145], we assume that this value takes a Gaussian random
walk following the Weibull distribution

q2

q _ >
Pwp(q) = —e 27 (6.25)
Then, the maximum value of the transmissivity occurs for ¢ = 0,

Tmax — T(C] = O) = Tst (q = O)TatmTeff- (626)
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However, for each instantaneous value of ¢, there will be an instantaneous 7(q) < Tmax
happening with a probability P(7). The transmissivity associated to diffraction
modified by this behavior is then [145, 149]

2
—4(q/we)? 2s* 4qap
Tse(q) = e M/ Qg <W§’w52t ) (6.27)

where Qo(z,y) = % foy dt te_t2/4xlo(t) is an incomplete Weber integral and I, is the
modified Bessel function (of order n) of the first kind. We can express

7(q) = Tmaxe_(qm‘))w, (6.28)
where we have defined
2a2
far R
Tst ;;’
A (z) e 27 1,(2x), (6.29)
-1
A () o,
v far IOg far ?
1_A0(Tst) 1_A0(Tst)
-1
1 2Tst /’Y
q0 ap |08\ ——F .
1= Ao (r3)

The probability distribution over ¢ induces another probability distribution over 7,

2 2_ 2 2
. QO ( Tmax ) Y qo ( Tmax ) Y
P(r) = log —— —— (1 . .
(1) 0%y og . exp { 552 og - (6.30)

This function can be obtained from the Weibull distribution Pywg(g) by using

dg (6.31)

P(T) = p(q|0)|q:q(‘r) dr

together with
Tmax ) %

T

q4=4qo (log (6.32)

6.2.2 Entanglement distribution and quantum teleportation

The quantum channel, once characterized by transmissivity 7, is now described by
the ensemble & = {&,, P(7)}, where the quantum channel &, is selected at random
with probability density P(7). This is called a fading channel. We will use this to
describe the degradation of entanglement on states propagating through free space,
which we will quantify through the negativity of the covariance matrix of Gaussian
states, and through the average fidelity of teleporting an unknown coherent state us-
ing the entangled resources. We will consider two-mode squeezed states as a typical
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case of bipartite CV entangled states. Since two-mode squeezed states are Gaussian,
and the fading channel we consider is Gaussian-preserving, we can use the covariance
matrix formalism to describe the evolution of the state. This will provide the obvious
advantages of using finite-dimensional matrices to work with infinite-dimensional op-
erators, but it will also lead to a convenient description of fading channels. Consider
a two-mode Gaussian state with vanishing first moments and covariance matrix in

normal form given by
aly o,
= , 6.33
<’70'z 512> ( )

and consider a single-mode environment described by a Gaussian state with covari-
ance matrix £ = mls. For example, for a daytime downlink, this state is charac-
terized by m = 1+ QTeHngg;m. We assume that the second mode is the one being
transmitted through open air, and therefore it is affected by the fading channel.

Keeping only the transmitted contribution, we obtain

!l _ 0412 <ﬁ> YO~
> = (<ﬁ> vo. (P8 (1= (r))m] 12) : (6-34)

This description assumes that turbulence is a fast process, compared with the detec-
tion speed. Let us look at how this result can be derived. First, see that the Wigner
function of the state that results from applying the fading channel is

W (. p) = /O " G PW (). (6.35)

Here, the Wigner function W (x, p) results from the modification of the quadrature
operators & and p by the quantum channel instance ¢,

N
P = Pr=VTHh+V1—Tpe, (6.36)

which get mixed with the quadrature operators of the state of an environment. In
this formalism, the expectation value of the operator AB is computed as

PN

(AB) = /dxdpABW (z,p)

P / dzdpABW, (x, p)
= / drP(1){AB).. (6.37)
0

This result implies that we can replace the elements of the covariance matrix of the
state resulting from the fading channel by the weighted integral of the expectation
values resulting from each channel instance [249, 250]. The later looks as follows, for
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the second moments of quadrature operators:

P = 2 =12+ (1 -7)22 + T(1 = 7){Z, T},
P = pi—rp—l—l—rpe—k\/ (1 = 7){D,Pe}, (6.38)
{#,py — {20} =7{2,p} + (1 = 7){Ze, P} + VT(1 = 7) ({Z, pe} + {D, Tc}) -

For the complete fading channel, we will have to make the replacement
T — ()= / r drP(7)T,
0
S (V) = / drP(r)T. (6.39)
0

Therefore we observe only an average characterization of the channel through (7)
and (/7). If we considered that the detectors were much faster than the turbulence,
then we would obtain 7 instead of (), and we would have to average the obtained
quantity afterwards. In this scenario, the quantum teleportation fidelity would be

T /O " g Py (). (6.40)

We refer to this as the slow-turbulence regime. In contrast, the teleportation fidelity
in the fast-turbulence regime is F' ((7)).

For an entangled Gaussian resource that has the covariance matrix in Eq. (6.33),
the average fidelity of teleporting an unknown coherent state is F' = [1 + %(a + 56— 27)] -
Now, if we introduce the effect of the fast fading channel, we see that

F:{l—i-;[a+<7>5+(1—(7>)m—2<\ﬁ>v]} , (6.41)

while for the slow fading channel, the average is computed numerically. The other
quantity we are interested in is the negativity of the covariance matrix, a measure of
entanglement for bipartite Gaussian states [64]. We will use the smallest symplectic
eigenvalue of the partially-transposed covariance matrix, as the condition 7_ < 1
defines the region of entanglement. For the one in Eq. (6.33), we can write it as

L _atf- \/<c; AR 6.42)

such that 7_ < 1 can be expressed as (o — 1)(8 — 1) < 2.

Both the teleportation fidelity and the negativity are reduced because the entan-
glement of the state degrades as it propagates through free space. The degradation is
more severe with increasing distance, as the transmissivity of the fading channel de-
creases. Here, we investigate the teleportation fidelity and the negativity associated
with a TMSV state with covariance matrix

_ (cosh 2rls sinh 2r0z>

sinh 2ro, cosh2rls (6.43)
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where r is the squeezing parameter, and it is directly related with the (initial) neg-
ativity through 7. = e~2", meaning no entanglement for » = 0, and infinite entan-
glement for r — oco. The teleportation fidelity associated with using a TMSV state
is F=(1+ 67274)71 [82], and it reaches the maximum classical fidelity of 1/2 for no
entanglement (r = 0), while approaching 1 for infinite entanglement (r — c0).
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Figure 64: Uplink and downlink quantum communication between a ground sta-
tion and a satellite using a TMSV state distributed through free space, which has under-
gone a loss mechanism comprising diffraction, atmospheric extinction, detector inefficiency
and free-space turbulence, for a signal with wavelength A = 800 nm, squeezing parameter
r =1, and waist o = 20 cm, assuming the receiver has an antenna with aperture ar = 40
cm. We represent the negativity for (a) a downlink and (b) an uplink. We also represent
the fidelity of quantum teleportation for coherent states using this entangled resource, for
(c) a downlink and (d) an uplink. Dashed lines represent the regime of slow turbulence, and
solid lines represent the regime of fast turbulence, when comparing them to the velocity of
the detectors. Nighttime and daytime thermal noise is taken into account in the blue and
red curves, respectively. In the case of the downlink fidelity, note that the results which
incorporate daytime (red) and nighttime (blue) thermal noise coincide. In full color, we

present the results for perfect detector efficiency, 7eq = 1, whereas the high-transparency
curves correspond to Teg = 0.4.

In Figs. 64 (a), (b), we represent the negativity of a TMSV state with initial
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squeezing r = 1 against the height of the link. Fig. 64 (a) shows the results for a
downlink, and Fig. 64 (b) illustrates an uplink. In solid lines, we can see the results of
a fast-turbulence scenario, whereas the dashed lines represent a slow-turbulence one.
Furthermore, blue and red lines incorporate nighttime and daytime thermal noise,
respectively. In full color, we can see the values associated with perfect detector
efficiency, 7.g = 1, whereas the lines with high transparency correspond to faulty
detectors with 7. = 0.4. We can observe that the negativity is reduced exponentially
with the distance, and we see better results for a downlink than for an uplink. In
vertical lines, we mark zones associated to different orbital altitudes. These are the
low-Earth orbit (LEO), from 200 km to 2000 km and the medium-Earth orbit (MEO),
from 2000 km to 42164 km. Orbits from 42164 km on are known as geostationary
orbits.

Figs. 64 (c), (d) show the fidelity of a quantum teleportation protocol for coherent
states, that uses TMSV states distributed through (c) a downlink or (d) an uplink
through free space. The degradation of the entanglement of this state is due to the
various loss mechanisms that comprise the fading channel: diffraction, atmospheric
attenuation, detector inefficiency and turbulence. This degradation is responsible for
the deterioration of the teleportation fidelity, which depends only on the entangled
resource that is consumed. The slow-turbulence regime is represented by dashed
lines, while the fast-turbulence regime is represented by solid lines. The red ones
incorporate daytime thermal noise, whereas the blue ones consider nighttime thermal
noise. Perfect detector efficiency (7.g = 1) is represented by full-color lines, while an
imperfect detector (rog = 0.4) was considered in the high-transparency lines. Here,
we observe that only quantum teleportation protocols through a downlink in the LEO
region can produce fidelities above the maximum classical result [251]; all instances
worse than this are enclosed in a pale red background. Notice that, in Fig. 64 (c),
results for daytime and nighttime thermal noise coincide, both in the perfect and
imperfect detector scenarios. This also happens for short distances in Fig. 64 (a).

6.2.2.1 Intermediate station for state generation

We have observed that the effects of turbulence are more severe in the atmosphere,
and have stronger effects on signals that have not suffered diffraction. Therefore,
the scenario in which we have an uplink path presents bleaker hopes for free-space
entanglement distribution. Nevertheless, we investigate a scenario in which there
is an intermediate station connecting the ground station and the satellite, and we
consider that TMSV states can be generated at this intermediate station. Our goal
is to observe whether there is an increase in the entanglement available when the
distance that the signals travel through free space is reduced. This already presents
an advantage, because now the uplink does not start at the Earth, but at a given orbit,
and the turbulence effects are highly reduced. In this case, the covariance matrix of
the two-mode Gaussian state, after a single application of the fading channel, is

;[ lraa+ (1 —7q)mq] 1 /TaTa VO~
¥ = ( ’ \/TdTu'YiTz o [T + (1d— Tu) My 12) ’ (6-44)
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Figure 65: Uplink and downlink quantum communication between a ground sta-
tion and a satellite, using an intermediate station for state generation. We con-
sider that one mode of the state is sent to the ground station, and the other to the satellite.
(a) Negativity of transmitted TMSV states in free-space communication against the height
of the satellite, with respect to the ground station. We study a signal with wavelength
A = 800 nm, squeezing parameter r = 1, and initial waist o = 20 cm, sent to a receiver
that has an antenna of radius agr = 40 cm. This signal is subject to a loss mechanism com-
posed of diffraction, atmospheric extinction, detector inefficiency and free-space turbulence,
described by a fading channel. In this case, the results that incorporate daytime (red) and
nighttime (blue) thermal noise coincide. We distinguish between the results obtained in
the slow-turbulence and fast-detection regime, in dashed lines, and the fast-turbulence and
slow-detection regime, in solid lines. The results for perfect detector efficiency, Tex = 1,
appear in full color, whereas the transparent curves correspond to 7eg = 0.4. (b) Fidelity of
teleporting an unknown coherent state using these entangled resources. We represent the
optimal position of the intermediate station, for the different turbulence conditions, that
achieve the maximum possible negativities in (c), and those that lead to maximum fidelities,
in (d).

where we define by 74(,) the transmissivity of the fading channel describing signal
propagation through the downlink (uplink). After multiple applications of the fading
channel, in the case of fast turbulence and slow detection, we will have that the
negativity and the teleportation fidelity can be averaged as N = N ((r4), (1)) and
F = F ({14), (1)), respectively. On the opposite regime, slow turbulence and fast
detection, these averages are computed as

N

Tqmax Tymax
/ deP(Td)/ dr P(m)N (74, T4) »
0 0

7 / draP(ra) / " AR P(R)T (10, 7). (6.45)
0 0
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In Fig. 65 (a), we represent the negativity of the final state, considering an optimal
placement of the intermediate station, for each value of the total height. These op-
timal points are shown in Fig. 65 (c). We can observe that the results are improved,
with respect to both the downlink and the uplink. We can also observe this im-
provement, especially with respect to the uplink, and remarkably for high altitudes,
in Fig. 65 (b). Here, we represent the fidelity of teleporting an unknown coherent
state using TMSV states, generated at the intermediate station, and having both
modes distributed through the noisy and turbulent links. Only the fidelities with
nighttime thermal noise remain above the maximum classical fidelity of 1/2, while
the accumulated thermal noise in daytime links leads to fidelities that fall below this
limit at altitudes in the LEO region. We can see that the limit is extended with
respect to the downlink, and the fidelity for an uplink never achieved values above
it. Therefore, the generation of entangled states in an intermediate station between
the ground station and the satellite greatly improves the teleportation fidelity.

In the case of the negativity with an intermediate station, we observe an im-
provement especially in the case of ideal detectors; for imperfect ones, represented
by 7ot = 0.4, the results do not differ significantly from those of the downlink. This
is because, for an intermediate station, we are considering now two detection events,
instead of one, which enhances the error in the case of imperfect detectors.

These comparisons are illustrated in Figs. 66 (a) and (b). On the contrary, the
results for the teleportation fidelity are highly improved with an intermediate station,
and extend also to the case of imperfect detectors, as can be seen in Figs. 66 (c¢) and
(d). Although, for imperfect detectors, fidelities with daytime thermal noise can go
below the maximum classical fidelity.

In Fig. 66, we present the different negativities and fidelities, for fast and slow
turbulence regimes. We compare the case of a downlink, an uplink, and the combi-
nation required by an intermediate station, against the height of the link. We can
observe in Fig. 66 (a), (b) that the negativity, in the case of an intermediate station
is larger that a single dowlink/uplink, but only in the ideal case; when we consider
inefficient detectors (7eg = 0.4), this gain is not so clear. As we increase the height of
the link, this gain is not significant with respect to the downlink, although it remains
relevant against the uplink. In Fig. 66 (c), (d) the fidelity of teleporting an unknown
coherent state is much better with an intermediate station, with respect to either
a downlink or an uplink. Specially, we can highlight its partial saturation at the
maximum classical fidelity value.

We observe that the transmissivity in the case of the intermediate station is only
higher than that of the downlink in the ideal case; when we have imperfect detectors,
since there are now two detection events, the transmissivity is always worse. This can
be observed in Fig. 67, where we represent the transmissivity induced by downlink,
uplink, and intermediate-station scenarios. We consider nighttime and daytime noise,
again seeing that transmissivities associated to downlink and intermediate-station
communication coincide. The same thing happens in Fig. 66. Although we can
see this behavior in the negativity plots, the fidelity behaves different. Of course, it
would be natural to assume that we obtain good results for the fidelity because we are
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optimizing the placement of the intermediate station and keeping the highest fidelity
at each altitude. And rightly so, but the improvement difference in the negativity
and the fidelity is due to the fact that the states generated at the intermediate station
and distributed through a downlink to Earth and through an uplink to a satellite
are more symmetric. On the other hand, in the case of a single downlink or uplink,
one of the modes was kept and the other was sent through free space, resulting in a
covariance matrix that was highly asymmetric (see Eq. (6.34)). Given two Gaussian
quantum states with the same negativity, the one whose covariance matrix is more
symmetric shows higher teleportation fidelity.

Take the covariance matrix in Eq. (6.33), and assume it represents an asymmetric
state. Here, we are referring to symmetry in the second moments of modes A and
B, and not in the sense that the covariance matrix is symmetric. The partially-
transposed symplectic eigenvalue of this asymmetric covariance matrix is

5A—°‘+ﬁ_”°§_m2+4y2, (6.46)

and the associated teleportation fidelity is

— 1

Fp= . 6.47
A Py (6.47)
For a symmetric Gaussian state with covariance matrix
o (512 E0 4
g = <saz 512) , (6.48)
we have
S o= §—e,
Fy = 1 (6.49)
ST 1t5-¢ ’

If these two states have the same negativity, then

O‘+B_V(C;_ﬁ)2+472=5—g, (6.50)

and we can write
— 1

Fs = .
ST ep—e—prray
2

Claiming that the fidelity with the symmetric state is higher than that with the
asymmetric state amounts to checking that

a+B—+y(a—B2+42<a+pB—2y, (6.52)

(6.51)
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Figure 66: Ground-to-satellite uplink and downlink quantum communication
comparison with intermediate station, where these states are generated. We study
a signal of wavelength A = 800 nm and initial waist wg = 20 cm, in a TMSV state with
squeezing parameter r = 1, sent to a receiver that has an antenna of radius ar = 40 cm,
and that is subject to a loss mechanism composed of diffraction, atmospheric extinction,
detector inefficiency and free-space turbulence, and described by a fading channel. In a
solid line, we plot the quantities associated to a downlink; those corresponding to an uplink
appear dashed, and the dashed-dotted lines describe the case of an intermediate station.
In full color we represent the results for perfect detector efficiency, 7eg = 1, whereas im-
perfect detection, 7eg = 0.4, is marked by the transparent curves. Negativity of the state
after the fading channel in the slow-turbulence and fast-detection regime (a), and in the
fast-turbulence and slow-detection regime (b), against the height of the complete link. The
average fidelity of teleporting an unknown coherent state, using the entangled states that
result from the fading process, in the slow-turbulence and fast-detection regime (c), and in
the fast-turbulence and slow-detection regime (d), against the height of the complete link.

and this is always true for o # 3. This statement works for a perfectly symmetric
state, but we can study an extension for more general covariance matrices. We take

a1ly yo, azly a0,
= , Yo = , 6.53
! (’Yldz 5112> ? <’720z ﬁ212> (6:53)
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assuming «; > B; (i € {1,2}) for convenience, and expand up to first order in
a; — B; < 1. We can say that, if the states represented by these two covariance
matrices have the same negativity, then state 1 shows higher teleportation fidelity
for an unknown coherent state if

ar — f1 < ﬂ(042 — f2). (6.54)
Y2
This also works the other way around; for two states with the same teleportation
fidelity, state 1 shows lower entanglement if its covariance matrix elements satisfy
the above condition. Furthermore, we could fix 1 = «9 =y, and see that for higher
orders of the expansion «; — 3; < 1, we obtain that a; — f1 < ag — (B2 if

Vi = B1)? + (ag — B2)? < 4y (6.55)

is satisfied. Therefore, we have shown that for two states with the same negativity,
the one that is more symmetric will result in higher teleportation fidelity.

6.2.2.2 Intermediate station for beam focusing

Here, we consider using the intermediate station as a point where the signal is refo-
cused, in an attempt to reduce the effects of diffraction and turbulence. This could
improve the transmissivity of the downlink, but especially that of the uplink, where
the turbulence effects are more damaging. This is what we observe in Fig. 68, where
we represent the transmissivity of the fading channel describing the propagation
through the link, against the total height. In Fig. 68 (a) the transmissivity for a
downlink is improved in the ideal case, similarly to how it was improved by gener-
ating the states in the intermediate station; in this case, however, we consider that
the sender generates both modes, and thus only have one detector at the receiver.
Furthermore, notice that in Fig. 68 (¢) the optimal location of the intermediate lens
is very similar to the optimal position of the intermediate station in Fig. 67 (b). This
emphasizes the statement that an intermediate station and an intermediate lens con-
tribute about equally to improving the transmissivity of the channel, considering a
downlink. However, when we see the case of an uplink in Fig. 68 (b), we notice that it
is improved greatly, achieving values above the transmissivity of the downlink. This
is because the optimal locations of the focusing lens, represented in Fig. 68 (d), all
fall in the tens of kilometres, very close to the ground station, in order to reduce the
effects of turbulence inside the atmosphere. As a last remark, see that the results
the results for daytime and nighttime thermal noise coincide for certain ranges, in
Fig. 68, both in downlink and uplink scenarios.

6.2.3 Microwave slant links

We aim at expanding the results shown in this chapter by considering the attenuation
of microwave quantum signals in free-space propagation. The major difference with
the model for signals in the optical regime will be the omission of turbulence effects.
Given the wavelengths for microwaves, on the order of centimetres, we can see that
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Figure 67: Transmissivity comparison between ground-to-satellite uplink and
downlink and intermediate station quantum communication (a) Average trans-
missivity of a fading channel modelling a loss mechanism present in a link connecting a
ground station and a satellite, and composed of diffraction, atmospheric extinction, detec-
tor inefficiency and free-space turbulence. In a solid line, we plot the quantities associated
to a downlink; those corresponding to an uplink appear dashed, and the dashed-dotted
lines describe the case of an intermediate station. In full color we represent the results for
perfect detector efficiency, 7o = 1, whereas imperfect detection, 7o = 0.4, is marked by the
high-transparency curves. In blue, we represent the result associated with nighttime ther-
mal noise, whereas those associated to daytime thermal noise appear in red. (b) Optimal
positions of the intermediate station, in order to maximize the transmissivity, against the
height of the link.

they will not be affected by the fluctuations that lead to turbulence for optical sig-
nals. Nevertheless, also because of the long wavelengths, microwaves will be highly
affected by diffraction. By proposing a loss mechanism composed of diffraction, at-
mospheric attenuation and detector inefficiency, we aim at investigating the limits for
entanglement distribution and quantum teleportation with microwaves in free space.
With the diffraction-induced transmissivity given in Eq. (6.11), and assuming ideal
detector efficiency 7.g = 1, we describe the absorption-induced transmissivity along
a slant path of zenit angle 6, starting at altitude hy and ending at h by

h
Tatm = exp |—secO [ dh a(h')|. (6.56)
ho

the atmospheric absorption coefficient a(h') = a, + auy(h') represents the combined
attenuation due to oxygen and water vapor. The former can be considered con-
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Figure 68: Average transmissivity of a turbulent fading channel connecting a
ground station and a satellite, composed of diffraction, atmospheric extinction, detector
inefficiency and free-space turbulence. In a solid line, we plot the quantities associated an
unaltered channel, and in a dashed line, we represent the cases in which a lens has been
placed in a mid point of the link to reduce beam broadening. In full color we represent
the results for perfect detector efficiency, Ter = 1, whereas imperfect detection, e = 0.4,
is marked by the transparent curves. In blue, we represent the result associated with
nighttime thermal noise, whereas those associated to daytime thermal noise appear in red.
We represent the results associated to a downlink in (a), with the optimal location of the
lens, in order to maximize the transmissivity, given in (c). The results for nighttime thermal
noise fall on top of those for daytime thermal noise. The results associated to an uplink are
represented in (b), with optimal positions of the lens shown in (d).

stant inside the atmosphere, but the latter will depend on the variation of the water
concentration with the altitude. The specific coefficients are [237]

oA 1.44 x 1073 km ™!,
aw(®) = 4.44x 10 %ppe~ ¥ km™!, (6.57)

where pg is the water-vapor density, whose average ground value is 7.5 g/ ms, at
5 GHz. These frequencies present one of the lowest attenuation profiles among mi-
crowaves [238], and therefore make them suitable for telecommunications independent
of the weather conditions. However, the main sources of loss for microwave signals
are diffraction and the thermal background.

Due to the bright thermal background that microwave present at room tempera-
tures, these states are generated at cryogenic temperatures; nevertheless, we consider
that the squeezing operations are applied to a thermal state, and not to an ideal vac-
uum state, which leads to the more realistic TMST state. This is also a Gaussian
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state, with covariance matrix

(6.58)

S = (1+2n) (cosh 2rly  sinh 21"ch> .

sinh 2ro, cosh2rl,

Our choice of entangled resource describes a two-mode squeezed thermal (TMST)
state, characterized by n = 10~2 average number of thermal photons per mode, and
squeezing parameter r = 1.

In order for these states to remain entangled when distributed through free space,
we need the transmissivity of the channel to satisfy

(m—1)(c—1)

T (m—c)(c—1)+s?’

(6.59)

assuming that m > ¢, for a state represented by the covariance matrix in Eq. (6.34)
with @ = f = ¢ and v = s. If the state is symmetric, and its covariance matrix
resembles that in Eq. (6.44), with 74 &~ 7, = 7, this condition turns to

m—1

> (6.60)

m—c+s
Considering identical initial resources (see Eq. (6.43)), this condition is always more
restrictive for symmetric (7 > 0.9997) than for asymmetric states (7 > 0.9992, given
the states studied here).

We can reduce the effects of thermal noise if we assume that we know the time
of arrival of the signal, and therefore by using Eq. (6.17). In Ref. [240], the limits
for short-range microwave QKD were studied, using as parameters At A v ~ 1. This
lead to I'p ~ Afoova%/c and, by taking A = 6 cm, Qgy = 1074 sr and ag = 2 m,
the number effective number of thermal photons becomes n ~ 266 at 288 K.

With this, the condition for entanglement preservation on asymmetric states be-
comes 7 > 0.996. Then, we see that the entanglement-distribution limit is 44 m, while
the fidelity reaches the classical limit at 43 m. In this case, the asymmetry between
both modes of the state distributed through free space does not lead to a significant
difference between entanglement preservation and quantum teleportation distances.
For symmetric states, the condition for symmetric states is 7 > 0.998. Consider-
ing an intermediate station for state generation, the entanglement-distribution and
quantum teleportation limit extends to 49 m. On the other hand, an intermediate
station for beam refocusing leads to a limit for entanglement preservation at 52 m,
whereas the teleportation fidelity reaches the classical limit at 49 m.

As we can observe, microwave quantum communication is highly limited by
diffraction and thermal noise. However, inside the atmosphere, the attenuation suf-
fered by microwaves in severe weather conditions is inferior to that suffered by optical
signals. Let us look at an example, and compare the performance of signals in both
regimes. To account for the effects of rain on atmospheric attenuation and visibility,
we set ap = 3.4 x 107* m~! [252] and, in the Hufnagel-Valley turbulence model,
we now write Aqay(might) = 3.15(2.15) x 10~ m~—2/3 [146]. This exemplifies adverse
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Figure 69: Performance comparison between microwave and optical signals in free
space quantum communications under severe weather conditions. We represent
the negativity (a) and the quantum teleportation fidelity (b) for TMSV states generated at
a ground station at an altitude of 10 m, and where one of the modes is sent through an
uplink. We consider the signal has squeezing parameter » = 1, and initial waist o = 1 m,
assuming the receiver has an antenna of radius agr = 2 m. In red, we represent the results
associated to a signal in the optical regime, with wavelength A = 800 nm and zero thermal
photons, whereas in blue we represent the results for microwave signals with wavelength
A =6 cm and n = 1072 thermal photons. For optical signals, the thermal noise coming
from the environment is characterized by 13.57 photons, whereas for microwave signals,
we have 266 photons. In full color, we present the results for perfect detector efficiency,
Tet = 1, whereas the transparent curves correspond to 7es = 0.4. The pale red background
represents the region in which the teleportation fidelity falls below the maximum classical
value.

meteorological conditions for optical signals, which is a convenient scenario for a
comparison between microwave and optical. In the microwave regime, we need to set
the water-vapor density to po = 12 g/m® [237].

We observe that, when the link starts on the ground, microwaves can only do
as well as optical for a short distance, and then they worsen. This can be observed
in Fig. 69, where we represent the negativity (a) and the teleportation fidelity (b)
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associated to a TMSV state distributed through free space. The effects of diffrac-
tion remain severe on microwave signals. These results show that microwave quan-
tum communication can be appropriate for inter-satellite quantum communications.
There, the conditions for entanglement preservation become 7 > 0.706 for asymmet-
ric states, and 7 > 0.847 for symmetric ones, with an effective number of thermal
photons n = 2.39.

6.2.4 Horizontal paths

For the sake of completeness, we investigate the effects that free-space propagation
through turbulent media inside the atmopshere has on the negativity of TMSV states,
and how it affects the fidelity of a quantum teleportation protocol that uses these
states as resources, in order to teleport an unknown coherent state. We consider a
scenario in which TMSV states are distributed between two ground stations, at an
altitude of h = 30 m, each station having an receiving antenna with agz = 5 cm of
aperture radius, and able to generate quasi-monochromatic beams with wavelength
A = 800 nm and wy = 5 cm of initial waist. In this situation, since the altitude is
fixed, and for a wind speed of v = 21 m/s, the refraction index structure constant
is C2 = 2.06(1.29) x 10~* m~2/3 for daytime (nighttime) values. We characterize
the excess noise in the detectors by ngay = 4.75 x 1072 thermal photons for daytime
events, and npjghe = 4.75 X 10~8 thermal photons for nighttime events.

We represent the results of entanglement distribution and quantum teleportation
with TMSV states between two ground stations in Fig. 610. Daytime (nighttime) re-
sults are shown in red (blue), and the solid (dashed) curves correspond to fast (slow)
turbulence. The high-transparency curves show the results for inefficient detectors,
with 7. = 0.4, whereas the curves in full color correspond to ideal detection, with
Teft = 1. In Fig. 610 (a), we show the negativity of the TMSV state, with squeezing
parameter r = 1, against the traveled distance. We show the average fidelity of quan-
tum teleportation using these states, distributed through free space, in Fig. 610 (b).
We observe that, even in the low detector-efficiency case, entanglement is preserved,
and therefore quantum teleportation fidelity is still higher than the maximum clas-
sical fidelity achievable, marked in a pale red background in Fig. 610 (b).

The range of distances chosen to represent these quantities corresponds to the
“sweet spot” 200 < z < 1066, were the weak-turbulence expansion used here is
approximately correct [148].

In Fig. 610 (b) and (d), we represent the negativity (b) and the quantum telepor-
tation fidelity (d) for the same TMSV states, between two satellites in the same orbit.
In this scenario, the only relevant sources of noise are diffraction, pointing errors, and
detector inefficiency. Also, we are considering that the excess noise in the detectors
is characterized by n = 8.48 x 1072 thermal photons. Here, the solid lines are as-
sociated to fast turbulence and slow detection, whereas the dashed lines describe
slow-turbulence and fast-detection results. Notice that these appear overlapped.

This approach is quite different from the one we took in the previous section,
where we looked at entanglement preservation distances depending on the size of the
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Figure 610: Quantum communication through horizontal paths with TMSV states
distributed through free space. Ground-to-ground station quantum communication is stud-
ied through the negativity (a) and the quantum teleportation fidelity (c), for TMSV states
subject to a loss mechanism composed of diffraction, atmospheric extinction, detector ineffi-
ciency and free-space turbulence. Inter-satellite quantum communication is studied through
the negativity (b) and the quantum teleportation fidelity (d), where now the only loss mech-
anisms relevant are diffraction, pointing errors, and detector inefficiency. We consider the
signal has wavelength A = 800 nm, squeezing parameter r = 1, and initial waist wp = 5
cm, assuming the receiver has an antenna of radius ag = 5 cm. In red, we represent the
results that incorporate daytime thermal noise, whereas the blue lines consider nighttime
thermal noise. The dashed lines correspond to the instance of slow turbulence and fast
detection, and the solid lines correspond to fast turbulence and slow detection. In full color,
we present the results for perfect detector efficiency, 7o = 1, whereas the transparent curves

correspond to Teg = 0.4.

antenna.

In the microwave regime, we have studied the requirements for entanglement
preservation in the size of the antennae involved, for quantum communication be-
tween satellites in the same orbit. As expected, due to the larger wavelengths of
signals in this frequency regime, antennae must reach a few meters in diameter.
With state-of-the-art experimental parameters, entanglement cannot be preserved in
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the far-field regime.

We have then moved on to the optical regime, where we have studied the effects
of diffraction, atmospheric attenuation, detector inefficiency and turbulence on quan-
tum signals propagating through free space, between a ground station and a satellite.
We have observed the degradation of entanglement in TMSV states that propagate
through free space, and looked at the fidelity of performing quantum teleportation
with the remaining entangled resource, both after downlink and uplink communica-
tions, and for satellites in different orbits. We concluded that the best case occurs
when we use a downlink, i.e. when the bipartite states are generated in the satellite
and one of the modes is sent down to the ground station. The uplink represents the
worst case because turbulence effects, which are more drastic inside the atmosphere,
distort the waist of the beam and displace the focusing point; when considering the
whole path, these errors have a higher impact on a beam that is starting its path.

We have also considered the introduction of an intermediate station; we first in-
vestigated a scenario in which the states were generated there, and one mode was
then sent to the ground station through a downlink, while the other was sent to the
satellite through an uplink. Considering that now the uplink does not start inside
the atmosphere, the results for the negativity were slightly better than those for
the downlink in the simple case, provided an optimal placement of the intermediate
station. Furthermore, the results for the fidelity were highly improved because the
generation of states in an intermediate station leads to states that are almost sym-
metric. As we discussed, for two Gaussian states with the same entanglement, the one
that presents a more symmetric covariance matrix will have a higher teleportation
fidelity, in the well-known Braunstein-Kimble quantum teleportation protocol. The
second intermediate-station scenario we considered was one were the beam could be
refocused, but in a simple downlink or uplink. The uplink showed a higher improve-
ment than the downlink, because a refocusing station can help mitigate the combined
effects of diffraction and turbulence, which as we discussed earlier, are more severe
on more ideal beams.

We have followed by studying a similar free-space loss mechanism for microwave
signals, which are largely affected by diffraction and thermal noise. Although at-
mospheric absorption and turbulence effects can be neglected, the distances for en-
tanglement distribution and effective quantum teleportation are highly reduced with
respect to the optical case. In a bad weather scenario, we observed that microwave
and optical signals yielded a similar performance for short distances, microwaves then
leading to worse results as we separated from the source, mainly due to diffraction.

We have concluded by showing the limits of entanglement distribution and quan-
tum teleportation through horizontal paths, in ground-to-ground scenarios, where
turbulence effects are present, and inter-satellite quantum communication, where we
have mostly diffraction and pointing errors. Between satellites, the loss mechanism
is reduced to diffraction and beam wandering, and therefore entanglement and quan-
tum teleportation fidelity can be preserved for longer distances than in horizontal
paths between ground stations, where atmospheric absorption and turbulence come
into play.
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Microwave Quantum Local

Area Networks

HE paradigm of distributed computing attempts to distribute a processing task
T among multiple processing units. These units, which perform different parts of
the computation, can be close together, forming a local area network, or physically
distant, and connected through a wide area network. Therefore, scalability is not
an issue, and hence redundancy can be considered less parasitic. In fact, the latter
is beneficial to prevent the system from failing completely when one of the units
does. Applications of distributed computing include telecommunication networks,
the World Wide Web, or cloud computing for scientific purposes, among others. The
latter refers to the coordinated strategy of dividing a problem in different tasks,
which are solved in different computers, communicated with each other.

This logic can be applied to the design of current quantum computers, which
suffer from scalability problems, including connectivity issues, fabrication errors, or
lack of controllability, among others. The term NISQ (Noisy intermediate-scale quan-
tum) [150] is an adjective describing the current quantum computing landscape, far
away from quantum error correction: small quantum processors with noisy qubits
deprived of fault tolerance. However, there exist quantum algorithms specifically
design for NISQ devices [155], such as the variational quantum eigensolver and the
quantum approximate optimization algorithm.
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Therefore, quantum computing in the NISQ era can benefit from a distributed
configuration. By disseminating the workload between different medium-size quan-
tum processors [151, 153], distributed quantum computing [152, 154] can attempt
to reduce the scalability overhead. In order to achieve it, it is necessary an effi-
cient transmission of quantum information between the different processing units.
If we have a qubit, a straightforward technique to communicate the information it
holds to another unit is to use discrete-variable (DV) quantum teleportation of its
quantum state. Experiments in microwave quantum teleportation with DVs have
not surpassed the 90 % fidelity [38, 39], nor have remote entanglement genera-
tion ones [121, 126]. The problem is that DV states are very sensitive to losses.
Therefore, we are interested in exploring the use of CV states as the entangled re-
sources, due to their higher resilience to photon losses when compared to DV en-
tangled states. This has been considered in many different works, which used either
TMSV states [253, 254, 255, 256, 257, 258] or Schrodinger cat states [259, 260] as
the entangled resources. The latter have also been used in quantum-repeater proto-
cols [261, 262], as well as GKP states [263].

In this chapter, we study the fidelity of teleporting unknown qubit states employ-
ing different resources. In the Braunstein-Kimble quantum teleportation protocol,
the fidelity does not depend on the displacement of the coherent state, only on its
second moments. In this case, the fidelity will depend on the amplitudes of the
qubit, and therefore we will particularly focus on the fidelity for teleporting an aver-
age qubit. Therefore, we want to find the best teleportation protocol for an average
qubit, using a CV Gaussian state as the entangled resource. We compute the fidelity
of the Braunstein-Kimble quantum teleportation protocol with a two-mode Gaus-
sian quantum state, which involves homodyne detection, i.e. a projection into the
maximally-entangled basis for CV states, between the initial state and a mode of the
entangled resource. We attempt to improve the results by considering a 2PS resource.
Then, we consider the DV quantum teleportation protocol, in which we also project
onto a maximally-entangled basis, this time in the subspace of two qubits, what is
normally known as a Bell measurement. The displacement applied on the remaining
mode, characteristic of CV teleportation, is replaced by a single-qubit projection.

We are interested in the extension of the single-qubit case to a multi-qubit setting,
in which we use a two-mode entangled resource to teleport each qubit. This presents
many difficulties; in the case that the state of the full system is separable, the fidelity
will just be the product of the fidelities of teleporting each individual mode; otherwise
if the state is entangled, the entanglement will be teleported with some loss, as our
Gaussian resource will not present infinite entanglement.
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7.1 Single-Qubit Quantum Teleportation

In this section, we study quantum teleportation of a single qubit state. We look at
the teleportation fidelity, and take an average for qubit states uniformly distributed
on the Bloch sphere, since we will restrict this analysis to pure states. We will
investigate CV and hybrid approaches, and compare them with the DV case. We
also investigate the distribution of entangled states between different processing units
and compute the teleportation fidelities associated with the resulting resources.

7.1.1 CV quantum teleportation

We consider a CV quantum teleportation protocol in which we aim at teleporting a
single qubit state from one processor to another, using an entangled resource shared
between both. We take an initial qubit state 1)) = a|0) + b|1), with characteristic
function

b s r1 07 oo [ Lgrare o
79 QT12§29> exp [—40TQT1299} ,

X(6) = (1 + 07— (7.1)

where we have defined §7 = % (aE —ab i(ab+ ab)). The entangled resource is a
two-mode Gaussian state with null first moments and a covariance matrix given by

YA €aB
Y= , 7.2
(5LB Yp (7.2)
this its characteristic function is

ATQTS QA + ATQTe 450 + FTOTET, ;00 + fTATE 05

XAB(%B) = exp

4
(7.3)
The fidelity of teleporting this qubit state is
F(a,b) = S PP tr X' —gTX g+ E3 (tr X~ 1)% = oI (7.4)
’ det X 4 detX [’

with X = QT [12 + % (0,240, +Xp — 0,64 — ELBJZ)} Q.

Notice that this quantity depends on the amplitudes of the qubit; however, for
b = 0, we recover the well-known fidelity for teleporting a vacuum or a coherent
state. Nevertheless, we can obtain a more general formula for the fidelity; assuming
that we do not have information about the state we want to teleport, we average
over all possible qubit amplitudes. For that, we have to draw values from a uniform
distribution on the Bloch sphere, also known as a Haar distribution. A transformation
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from Cartesian to spherical coordinates leads to the identifications

x = rsinfcosp,
= rsinfsin, (7.5)
z = rcosb,

with » > 0, § € [0,7] and ¢ € [0,2n]. Using this convention, the state of a qubit in
the Bloch sphere can be expressed as

[v) = cosg|0> + sin gew|1>, (7.6)

taking r = 1, since we want to deal with pure states. Let us define v as a random
value drawn from an uniform distribution that produces values between 0 and 1;
then, in order to obtain an uniform distribution of states in the Bloch sphere, we
need to sample according to [264]

0 — arccos(l—2u),
© — 2mu. (7.7)

0

Since we have identified a = cos g and b = sin 56“", this is equivalent to replacing

a — 1—u,
b — Vue'. (7.8)

Therefore, we can replace the sampling by integrals over u and ¢, such that

1 2m 1

—/ d@/ du|b]* =
2m

7/ dgo/ du|b/* =
2

dga/ dug™X lg=—

c,oM—* N =

1
— Zer XL
2T 6

Consequently, we obtain

— 1 1 1 1 2
F=——<1—- X~ — —(trx—1! . 1
detX{ 3 (tr +th>+4(tr ) } (710

We now consider single-photon (heuristic) subtraction in each mode of the en-
tangled resource, and compute the teleportation fidelity for the same qubit. The
characteristic function of the PS Gaussian resource can be seen in Eq. (2.74). Using
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this resource to teleport a qubit, we find that

F(a,b)

1
Eovdet X

Eolb? tr X! — Eqgm X 17— |b]? {3trX‘1 tr (X7'Ey) —

{Eo +tr (X 'E)) 4+ 3tr (X 'E) tr (X' EY)

4
B [s e - ] et my g 2

|]* —1)2 -1 12 -1 -1
0 15<trX ) tr(X El)—?(tr(X El)—l—trX trEl)

. _ . 2
2 [15 6 X~ b (X7 BSY) b (X7 BF) — —— tr (QTESQEY)

o (X B B 4t (XD w BS + e X (B 0ER)) |
7T [15X e (XES) (XS - X‘lﬁ tr (QTELQEP)
6 _ 6 _ R
4
P 105 (b ) (X1 B2 e (X E5)
30

det X (2 tr (XilE;‘) tr (XilEQB) +2tr X! trEé4 tr (XflEzB)

260 X e B tr (XTUES) + (i X 1) (U ELQEF) )
24

where we have used the definitions in Eq. (2.88).

7.1.2 Hybrid quantum teleportation

We consider here the DV quantum teleportation protocol of a single qubit state,
while using a CV Gaussian state, as done in Ref. [257]. This means that, instead
of homodyne detection, we will project the input state and the first mode of the
entangled resource into a Bell state. Then, instead of applying a displacement on the
second mode of the entangled state, we will project it into a different state depending
on the measurement, as shown below

o) = RS o o=,
vy = PUERO o —ppiEmel (a2
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Therefore, if we measure in the |®4) basis, the remaining state will be

B

1
Pout = EU% (Pt|pin ® PAB‘(I)i>UJ;>i7 (7.13)

and we obtain the teleportation fidelity

= 1 -1 L2 f—
Fg(a,b) = 1—pPtr(la+ % (1—trX1
#(@) P(Pi\/det(lg—i—ZA)detX{( b er (12 + %)) 2
b4
+ ZTTX_:lQTELB(j-Q + EA)_lQO'Z:lj— 2(2% tr (€LBW12+2A712€AB)
— E —10T:T 3‘b|2
9 tr (X Q €ABW12+ZA,125ABQ) 9 tr X~ (714)
where we have defined
Py, = ! {1(1|b|2tr(12+EA) H-trxt
* Vdet (1o + S 4) det X

- 3 _
— |b|2 tr (X IQTELBW12+EA’12€ABQ) (1 — Ztl‘X 1)

b
= Saerx FEABWatsa1.2a8) () (7.15)
X = §QT [12 435 — el (Lo +54) 7" EAB] Q.

On the contrary, if we measure in the basis of |UL), we get

! {(1 ~Jal?tr (12 +2A)*1) (1 laf o x- )
Py, +/det (13 + X 4)det X 2

_lal*

F\p(a, b)

+ X (1 + 24) QoL — tr (el gWi,454,1.€48)

2det X
|a|? Tt _ 3la]?
— 7131“ (X Q) €ABW12+ZA712€ABQ) 5 tr X~ (716)
with
Py, = ! {1( —Ja?tr (Ly + $4) 7Y (4 — tr X
* Vet (13 + 2 4) det X

_ 3 _
— |0,|2 tr (X IQTELBW12+EA712EABQ) (1 - ZtI"X 1)

laf?
2det X (SLBW12+EA,12€AB) . (717)

In Fig. 71, we compare the CV and DV quantum teleportation approaches, using
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Figure 71: Average CV and hybrid (HY) quantum teleportation fidelity of a qubit
using a TMSV state. Taking the qubit state |1)) = a|0) + /1 — a2e’?|1), we average
over all possible amplitudes and phases, uniformly distributed in the Bloch sphere, and
represent the fidelity against the squeezing of the entangled resource. In blue and in green,
we represent the CV quantum teleportation fidelities with and without photon subtraction,
respectively. In red, we show the fidelities corresponding to the hybrid approach, with Bell
projections onto states |®+) and |¥). The red pale background indicates the fidelities that
can be achieved with a classical strategy, with a maximum value of 2/3.

a TMSYV state as the entangled resource. We represent the quantum teleportation
fidelity for a qubit, taking a = v/1 —u and b = /ue’®, and averaging over u € [0, 1]
and ¢ € [0, 27] uniformly. In blue and in green, we represent the fidelities associated
with CV strategies, with and without photon subtraction, respectively. In these cases,
the strategy involves homodyne detection and displacement of the remaining state.
The hybrid strategies, whose fidelity is shown in red, use Bell measurements |¥,)
and |®.), and the corresponding projections, oy, and g, , on the remaining state.
Both these DV strategies lead to the same fidelity once we average over all possible
qubit configurations. In a red pale background, we show the region of fidelities
that can be obtained with a classical strategy. The maximum fidelity that can be
obtained for teleporting a qubit state with classical means is 2/3 [265]. Recall that
this value was 1/2 for the teleportation of a coherent state. We can observe that the
hybrid strategies show better results for the average fidelity, reaching over 90 % for
squeezing parameters around 0.5, in contrast with the CV strategies, which require
squeezing over 1.35 to reach these fidelities. Nevertheless, all of them tend to 1 for
larger squeezing. Among the CV strategies, we see that photon subtraction brings
an advantage, as it increases the entanglement of the resource. In the hybrid case,
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both Bell projections, |¥1) and |®y), show the same fidelity; that is why we just
represent one curve.

Similar to what we discussed in chapter 5 concerning photon subtraction, the
advantage of the hybrid strategy lies in being non-deterministic. This process is quite
inefficient, because the probability of projecting a TMSV state onto the Bell basis is
low. In Ref. [257], this measurement is proposed by using the quantum scissors [177],
which were discussed in chapter 2 of this Thesis in the context of entanglement
distillation. Here, this technique is used for projection synthesis; by using single-
photon generation and detection, they are able to truncate coherent states to obtain
a qubit in a superposition state. If we use this process to truncate a TMSV state
onto the Bell state (|00) + |11))/v/2, the success probability will be A2/(2(1 + \)?),
where A = tanh r. For a typical squeezing parameter » = 1, this probability is 0.09.
If we take into account the 0.76 single-photon detection probability taken from the
microwave photocounter in Ref. [176], discussed in chapter 5, we find are left with a
0.07 probability that the Bell state projection is successful.

7.1.3 Quantum teleportation with losses

We take into account the losses suffered by the modes distributed among different
processors by considering a pure loss channel applied to one of the modes of the TMSV
state. Then, we compute the quantum teleportation fidelities for a single qubit, and
average over all possible amplitudes, showing them in Fig. 72. The results of a CV
quantum teleportation strategy are shown in green (without photon subtraction)
and in blue (with photon subtraction). In red, we represent the results of a hybrid
quantum teleportation strategy. Additionally, we consider a DV strategy using a
Bell state as the entangled resource which has suffered a pure-loss channel in one of
the modes. The resulting fidelity is represented in orange. The pale red background
indicates the region of fidelities that can be obtained with a classical strategy. Again,
we observe that the hybrid strategy lead to better fidelities than a CV strategy. The
latter reaches the maximum classical fidelity of 2/3 for a 26 % losses for a resource
with photon subtraction, and at 30 % losses for the bare resource, whereas the
former do it for 82 % in the worst case. Notably, this limit is 81 % for the DV case,
in which the fidelity behaves quite closely to the hybrid case. We want to explore
a more realistic case; given that the attenuation factor in superconducting coaxial
cables is u ~ 1073 m~', we can see how the degradation of entanglement affects
the quantum teleportation fidelity. Let us assume that we generated TMSV states
with » = 1; the attenuation suffered by the mode that travels between cryostats is
modelled by a beam splitter, with reflectivity n = 1 — e #&, L being the travelled
distance, that couples the signal mode and a thermal mode with average thermal
photons Ny, = 1072. In the symplectic formalism, we see that this transformation
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Figure 72: Average lossy CV and hybrid (HY) quantum teleportation fidelity of
a qubit using a TMSYV state, and lossy DV quantum teleportation fidelity using
a Bell state. We consider that one of the modes of the entangled resource is subject to a
pure-loss channel, and represent the fidelity against the percentage of loss, after takin the
average over all possible qubit configurations. We fix the squeezing of the TMSV at r = 1.
In blue and in green, we represent the CV quantum teleportation fidelities with and without
photon subtraction, respectively. In red, we show the fidelities corresponding to the hybrid
approach, and in orange, we represent the results of a DV approach with a Bell state as
the resource. The red pale background indicates the fidelities that can be achieved with a
classical strategy, with a maximum value of 2/3.

is quite simple; if 3¢, = (1 4 2NVg) 12, we obtain

a4 — (1 — 77)2,4 + NXgh = [(1 — 77) cosh 2r + 77(1 + 2Nth)} 1o,
X — (1 =-m)Zp+nZm =[(1—n)cosh2r+n(1+2Ny,)]1a, (7.18)
eap — +/1—meap =+/1—nsinh2ro,.

The case of a Bell state in which one of the modes undergoes such a transformation
is a bit more complicated. Starting from the state (]00) 4 |[11))/+/2, we end up with

|a|2 + nNin VI—n - _
p(a,b) A+ 7Nm)? 0){0f + T+ 7N)? (ab|0) (1| + ab|1){0]) (7.19)
1 1+n(n —14+nN§ (2 —n))

+ lal*n(1 + Nw) + |bf? (1.

(1 + NNy )2 14 Ny,

We can see these results in Fig. 73 (a). In Fig. 73 (b), we represent the case of
open-air entanglement distribution, with g = 1.44 x 1076 m~! and Ny, = 1250. We
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Figure 73: Average quantum teleportation fidelity for a qubit using entanglement
distributed through a cryolink and through open air, using CV and hybrid (HY)
strategies with a TMSV state, and a DV strategy with a Bell state. Both the
CV and the hybrid strategies use a TMSV state with » = 1, while the DV case uses a Bell
state. We consider that one of the modes of the entangled resource suffers losses into a
thermal environment with average thermal photons Ny, = 1072 inside the cryolink, and
Nin = 1250 in open air, and represent the average fidelity against the distance between the
two units. (a) Entanglement is distributed through a cryolink, where the attenuation factor
is 4 = 107 m™ ', and the environment is characterized by Ny, = 1072 average thermal
photons. (b) Entanglement is distributed through open air, where the attenuation factor is
p=144x10"% m™! and the environment is characterized by Ny, = 1250 average thermal
photons. In blue and in green, we represent the CV quantum teleportation fidelities with
and without photon subtraction, respectively. In red, we show the fidelities corresponding
to the hybrid approach, and in orange, we represent the results of a DV approach, with
a Bell state as the resource. The red pale background indicates the fidelities that can be
achieved with a classical strategy, with a maximum value of 2/3.

can observe that the hybrid and the DV strategies lead to better results than the
CV ones, behaving the hybrid and DV ones quite similarly. It is rather surprising
to observe how similarly are TMSV and Bell states affected by the same attenuation
channel; we would have expected entanglement in Bell states to degrade much faster
than in TMSV states.

With CV strategies, the fidelity reaches its maximum classical value at 300 m
through a cryolink, and at 80 m through open air, whereas for the hybrid strategy,
it is 2.3 km through a cryolink and 475 m through open air. Finally, for the DV
strategy, these distances are 2.3 km through a cryolink, and 550 m through open air.
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7.2 Two-Qubit Quantum Teleportation

In this section, we investigate the extension of the aforementioned protocols to the
case in which we have a two-qubit state, such as

|1,ZJ> = Coo|00> + 001|01> + ClO|10> + 011|11>. (720)

Similar to what we did for a single qubit, we need to characterize the amplitudes of
this qubit in terms of the angles of the equivalent of a Bloch sphere for two qubits.
For pure states, this object can be described by three spheres [266], characterized by
the coordinates

x1 = sin 64 cos ¢ T, = g1 8in x cos & To = sin O3 cos o
y1 = sin fy sin ¢ Ye = Y1 sin x sin &; Yo = sin Oy sin @9 (7.21)
z1 = cos By Ze = Y1 COS X 29 = cos Oq

The first set corresponds to the base sphere, the second one to the entanglement
sphere, and the third one to the fibre sphere; additionally, there is a phase parameter
&. While ¢; € [0,27], & € [0,2n], and 0; € [0,7], for i € {1,2}, we have x €
[0,7/2]. In order to obtain a uniform distribution, we need to sample from a uniform
distribution in the same manner we discussed above, such that

0;, x — arccos(l— 2u),
ei, & — 2mu. (7.22)

With this description, we can characterize the amplitudes of the two qubits described
above, as presented in Ref. [266],

oo = COs b cos — b2 eté?
00 2 2 )
0 0
Co1 = COs— sin —¢!(¥276) (7.23)
2 2
! 02 pi(E1—¢2)
o = sin— (cos 1 + isin ¢y cos x) cos 5 + ¢sin ¢ sin x sm 172
60 02 Cil€1—92) | gilpa—€2)
c11 = sin ) (cos 1 + isin 1 cos x) sin 5 1 sin 1 sin y cos 12 2o

Notice that the condition for separability in this state, which is cgoc11 = co1c10,
implies sin 5 sin ¢4 sin x. This quantity is zero if either the radius of the entanglement
sphere or the angle x are zero.

We proceed to teleport the two-qubit state |¢) using two TMSV states with equal
squeezing, in the CV and hybrid cases. If the state was separable, we would expect
the fidelity to be the square of the one obtained for the single-qubit scenario, since
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we are just performing two independent teleportation protocols. However, due to
the possibility of the state being entangled, we expected the average fidelity to be
different from this; it is not the case. Since Alice and Bob are sharing two entangled
modes, but both Alice’s or Bob’s modes are not entangled among themselves, it is
as if we were just teleporting two qubits independently. This result cannot change
based on information about the state to be teleported which we do not know.

Another remark we want to make is that the fidelity is not an appropriate measure
for the success of the protocol as we increase the number of qubits. The fidelity
between two N-qubit states tends to zero as N increases, so we should find a measure
that remained constant when we increased N.

In this chapter, we have investigated the quantum teleportation of qubit states
between different quantum processors, in a distributed quantum computing environ-
ment. We focused on TMSV states as the CV resources, and explored both the CV
and DV quantum teleportation protocols. We referred to the latter as the hybrid
protocol, in which we used a TMSV state to teleport a qubit through the DV pro-
tocol, consisting of Bell state projections and single-qubit rotations. This process,
non-deterministic and quite inefficient, led to better results than the CV one. We
introduced losses in the entangled resources and computed the fidelities, under pure-
loss and thermal attenuation channels, now comparing with a DV Bell state as well.
The results of the purely DV and the hybrid approaches fare similarly, whereas we
had expected Bell states to degrade much faster by the quantum channels considered.
All the fidelities represented here result from averaging from a Haar distribution all
possible qubit states in the Bloch sphere. We do the same for a two-qubit scenario,
and find that the average fidelity is just the square of fidelity for teleporting a single
qubit. This means that entanglement does not play a role, and it is as if we were
teleporting the two qubits independently.

Obtaining efficient transfer of quantum information between different process-
ing units will entail quantum error correction on the entangled resources. When
increasing the number of qubits that are teleported, we need the protocol to show
robustness. Furthermore, for a proper description it makes sense to use a different
measure other than the fidelity, which goes to zero with increasing number of qubits.
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8 Conclusions

N this Thesis, we explore the feasibility of propagating quantum microwaves, in the

form of Gaussian states, as resources for quantum communication and quantum
metrology protocols in open air with the current advances in superconducting circuit
technology.

In chapter 2, we have introduced the formalism of continuous variables through
Gaussian states. We have shown how the symplectic formalism can be conveniently
used to represent infinite-dimensional states and operators using finite vectors and
matrices. By means of the displacement vector and the covariance matrix, Gaus-
sian states can be completely characterized, and features like purity, negativity and
separability can be computed. An N-mode Gaussian state can be described by a
positive and symmetric 2N x 2N covariance matrix, which, by virtue of Williamson’s
theorem, can be brought into a block-diagonal normal form, and also admits a di-
agonalization into symplectic eigenvalues. We have provided transformations to two
such instances in the two-mode case. We have shown that the symplectic formalism
is also convenient to describe all-Gaussian evolutions and measurements.

Gaussian states are not only convenient in their description; as we have shown,
they can provide an advantage over classical strategies in quantum teleportation.
The advantage in this technique relies on quantum entanglement, and for that we
have also explored entanglement distillation protocols with Gaussian states. Given
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the impossibility to distill entanglement with Gaussian operations, we have used the
characteristic function formalism to describe the states after photon subtraction, one
of the most resource-wise efficient entanglement distillation techniques. Following
this, we have discussed entanglement swapping, a protocol that attempts to transform
two entangled states, shared pair-wisely by three parties, into a single entangled state
shared by the two previously-unconnected parties. Both entanglement distillation
and entanglement swapping can be crucial for quantum repeater protocols; in contrast
with distillation, swapping is Gaussian preserving.

In chapter 3, we have investigated the limits of purifying Gaussian states using
Gaussian operations. We have shown that a single mode of a two-mode Gaussian
state can be completely purified, however causing the resulting state to be separable.
Therefore, we have studied different partial purification protocols where, with a single
copy or two copies of the initial state, and with different combinations of Gaussian-
preserving operations and measurements, we traded entanglement for purity.

We tested the resulting states as resources in quantum illumination, using the
inverse of the Cramér-Rao bound, which indicates the minimum measurement error
in estimating the variance of a target observable, as an efficiency measure. The
partially-purified states not only have fewer photons, but they also present larger
quantum Fisher information than the initial TMST states; therefore, equating the
amount of resources lead to reducing the error by up to 1.5. We used this protocol
as a case study, where entanglement is not the only resource required for a quantum
advantage, but there could also be other quantum metrology protocols where purity
is relevant.

In chapter 4, we have addressed the state of the art of superconducting quantum
devices working in the microwave regime, which are involved in different stages of
quantum communication, such as state generation or amplification. We described
how parametric amplification, aided by JPAs, can be used to generate entangled
resources, and how these have to be shielded from thermal microwave radiation by
working at cryogenic temperatures. Thus, the necessity for an antenna, matching the
cryostat and the open air. Knowing that previous studies using similar architectures
had failed to detect entanglement in open air, we investigated a simple quantum
antenna, a finite inhomogeneous transmission line with an impedance that changes
with the position. The main difference from classical antennae is the lack of an
amplification feature, which can degrade quantum correlations.

We have studied entanglement preservation in the transmission of two-mode
squeezed thermal states from the cryostat into open air, and found that maximizing
entanglement transmission implies minimizing the reflectivity of the antenna. We
have seen that a cavity with a linear impendance, despite being an analytically-
solvable case, does not provide a low-enough reflectivity. Nevertheless, we were able
to use this result to introduce an optimization problem; the antenna was split into
infinitesimally-small slices of linear impedance, and the frontier points were opti-
mized to reduce the reflectivity. We have found numerical values down to 1078, for
a global impedance function resembling an exponential.

To conclude, we have observed a high-sensitivity of the optimal impedance to
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potential fabrication errors. We have introduced errors proportional to the value of
the impedance in each point, and found that the negativity of the output state drops
to zero when these errors are larger than 3 %.

In chapter 5, we have studied the feasibility of microwave entanglement distribu-
tion in open air with two-mode squeezed states. We have taken these as resources for
the Braunstein-Kimble quantum-teleportation protocol, adapted to microwave tech-
nology, reviewing the steps involved in this process and the possible experimental
realization. In chapter 4, we already discussed two key two key steps in this process,
which are the generation of two-mode squeezed states using JPAs, that was exper-
imentally demonstrated in Ref. [132], and the formulation of an antenna model for
optimal transmission of these states into open air, described in Ref. [239]. As the next
step, we have addressed the degradation of entanglement in open air for two-mode
squeezed thermal states; by identifying absorption and thermalization of the signal
as the main loss mechanism, using experimental parameters for the photon losses per
unit length, we were able to estimate the maximum distance that entanglement can
be preserved in different weather conditions. These distances fluctuated from 550 m
in ideal weather conditions, to 400 in high-humidity environments, with asymmetric
states. With symmetric resources, the distances range from 480 to 350 m.

Entanglement distillation and entanglement swapping techniques are discussed,
in order to improve the entanglement distribution distance. More precisely, we have
focused on entanglement distillation through photon subtraction, a technique which
only requires a single copy of the state. We have tested as resources for quan-
tum teleportation of an unknown coherent state the states distributed through open
air, including those after distillation and swapping, following the Braunstein-Kimble
protocol. The PS states perform better than the bare resources for short distances,
for longer distances the ES ones can extend the reach of teleportation. We have
concluded that the fidelities reach of the maximum classical value when their corre-
sponding resources lose entanglement. To compute the negativity of the PS states,
which are non-Gaussian, we have proposed a re-Gaussification trick. We masked
the non-Gaussian corrections to the fidelity as corrections to the submatrices of the
covariance matrix. We have also checked that the resulting covariance matrices are
positive and satisfy the uncertainty principle.

The operations discussed in this chapter require either homodyne detection or
photon subtraction; therefore, we have discussed the state of the art of these two
crucial techniques, given the current microwave quantum technologies available. We
have also attempted to quantify the error introduced in each of these operations by
imperfect photocounting, and finite-power homodyne detection. We have found that,
for finite-power homodyne detection, the fidelity of quantum teleportation fidelity
state depends not only on the gain, but also on the number of photons of the coherent
state we want to teleport.

In chapter 6, we have studied the applicability and efficiency of the techniques
discussed in this Thesis for quantum communication between satellites, a field where,
the reach of entanglement can be greatly increased, given the low absorption rates.
We have studied this limit for signals in the microwave regime, showing that the
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sizes of the emitting and receiving antennae must be larger in order for the entan-
glement preservation to reach outside of the near-field. This behaviour is caused by
diffraction, which we consider as the main source of loss in this environment. With
it, entanglement can reach up to a km, with a receiving antenna with radius of 5 m.

As the main advances in satellite quantum communication, and a few ground-
breaking experiments, have used signals in the optical regime, we have investigated
the limits for entanglement preservation and quantum teleportation in this frequency
range. We focused on the effects of diffraction, atmospheric attenuation, turbu-
lence, and detector inefficiency on various communication scenarios: ground station
to ground station (ground-to-ground), ground station to satellite (uplink), satellite to
ground station (downlink), and satellite to satellite (intersatellite). Being the action
of weak turbulence inside the atmosphere the main source of loss, we observe that
the downlink presents the most favorable results; in this regime, the quantum ad-
vantage of teleportation over a classical strategy can be obtained for satellites in the
LEO region (from 200 up to 2000 km from the Earth’s surface). In adverse weather
conditions, we found out that microwaves perform equally or worse than optics, even
though the disadvantages the latter present. Therefore, for the further development
of microwave quantum communication in free space, proper directivity control has
to be developed. With similar intentions, we also investigated here the placement of
intermediate stations between ground and satellite, both for state generation, and for
beam refocusing, which have shown promising results; as we expected, they improved
substantially versus uplink communications, and performed similar to downlink ones.

In chapter 7, we looked at the difficulties surrounding quantum computing archi-
tectures at the moment, and how a distributed configuration could be serviceable.
Therefore, we looked at quantum teleportation of qubit states as a way of connect-
ing different processing units. Making use of CV entangled states, we looked at the
teleportation fidelities using the Braunstein-Kimble and the DV protocols; the latter,
a hybrid approach, led to higher fidelities, as homodyne detection was replaced by
a Bell-state projective measurement. We average the final results over all possible
qubit configurations, taken from a uniform distribution on the Bloch sphere, also
known as Haar distribution.

Studying losses on one mode of the entangled resources, we find that both a hybrid
and a DV approach yield similar results, reaching the maximum classical fidelity of
2/3 at around 80 % pure loss. The former combines a TMSV state and the DV
protocol, while the latter uses a two-qubit Bell state. Investigating a channel with
thermal loss, we find that these the hybrid and DV results grow apart, the latter
being more resilient to thermalization, both in a cryolink and in open air. Finally,
we investigate the teleportation of two qubit states using a pair of TMSV states.
Despite accounting for the possibility of the two qubits to be entangled, this does not
make a difference, since we are two independent teleportation channels; therefore, we
obtain the squared average fidelity for teleporting a single qubit.

As a whole, this Thesis analyzes the advantages and limitations of perform-
ing quantum communication and quantum sensing with propagating quantum mi-
crowaves in the form of Gaussian states. It proposes an improvement on quantum
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illumination using partially-purified Gaussian states, and it brings insight onto the
process of entanglement distribution for quantum teleportation, describing the pro-
cess of state generation in the current landscape of superconducting technology, as
well as the design of an antenna for open-air transmission and the inefficiencies of
the measurement techniques involved. It explores applications to quantum networks,
from satellite links to local area networks, and with current experimental parameters,
it establishes a recipe for understanding the technological and the physical overheads.
Our efforts are meant to spur the development of quantum technologies working in
the microwave regime for the development of wireless quantum communication net-
works.
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A Gaussian integrals

In this appendix, we provide the formulas for various species of Gaussian integrals,
which we have derived in the calculation of the different teleportation fidelities using
Gaussian states with photon subtraction. Some of these have also been used to obtain
the fidelity of teleporting a qubit using a Gaussian quantum state.

Please note that, to obtain these formulas, we have assumed that we are dealing
with 2 x 2 invertible, symmetric matrices. Therefore, the identities we present below
work for these types of matrices, and an extension to higher dimensions is not trivial.
First of all, to obtain these integrals we have repeatedly used

5 1 (X))
" /det(X — pY) o o 2VdetX
O (X =pY)7Y , = Wxy, (A.1)

where we have defined the function

QTMQ

WX’M = X_ltr(X_lM) — m,
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which has the following properties

tr( W 1M) = tr(XM),
( ) = tr(XWx m),
det (X "W M) = det(MX),
Wx-rwyn = M, (A.3)
M = XWxuX,
M = X "Wy X
Wx aa+oB = aWx a4+ bWx .

In deriving these, we have used the identities

det(A+ B) = det A1+ tr(A7"B)] + det B,
- QA+ B)QT
1 _
(A+B)~' = REY R (A.4)

which only work for 2 x 2 invertible symmetric matrices, as mentioned above.

The collection of Gaussian integrals we have used is

o d2ae—3d™Xatars _ T e%fTX’l.f’ A5
/ vdet X (A4.5)
° A2 a@TMFe 33 Xa+a™J _ T tr (XM + JT Wy J]| e2 #TX_lf,
/ \/detX{ ( ) oM ]
. /d2 adTGe—wdTXa+aT T (éTX_1f+ jTX_lé) e? qTX?lj,
2v/det X
2 T STA) pmsdTxa+aT g _ T an 7T 5
° /d a(@TMa) (a G)e 3 T x Wx md +J"Wx uG
1 . N 1 e
5 (r(XTM) + TWard) (GTX 1T+ JTX G [ed Y
2
o [ d2a(@TMQ)(ATPE)e 3 Xa+ETT — T [34( X~ M) tr(X 1P
/ ) (@ Pa)e e [sur(x ) e(x1P)
2 e .
s (QTPOM) + TWx a TT Wk, p T 4+ 7 (3WX,M (X1 P)
-1
-1 _ T 1yrx—ty
+3Wx,p tr(X M) — e tr(QTPQM) ) T e :
) Pa(arG) (aTR) e taTXa+arJ _ T GTX 'K+ KX 'G
f&a(@e) (@x) Wi=ad

P (Grx T xTG) (RTXT 4 FXTR) [,
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ﬁ%{é [or (x=00)  J1Wx a0 ] [T X1 4 RTx7G
€

1 = — — = =, — — = — —
= (JTX*lK + KTX*RJ) (JTX G+ ETX ) |+ G K

—

YR Wy G+ - (G T4 XN (BTW T + T Wx u )

+5 (BT T4 TR (GWaarT + W i) }eémlf,

/ 4% o (ATMA) (AT P&) (ATQa) e~ 39T Xa+aTT d:tX x (A.6)
{15tr(X‘1M) (X7 P) r(X71Q) — 0= [r(X71Q) (T M0P)

+ (X M) tr(QTQOP) + tr(X ' P) tr(QTQQM)}
#7156 (XTI M) (X1 P) Wi g + 15 tr(X M) tr(X7'Q) W p

15t (X 1P) tr(XT1Q) Wi ar — (@ PRMW g
-1

et X
+tr(QTQOM) tr(X 1 P) + tr(QTQQP) tr(X M) )| T

6
det X
Fr(QTQOM) Wy p + tr(QTQQP) Wy, M) -

(tr(@TPM) tr(X71Q)

)
+5te(X71Q) (W T) (T W, p])
+5t(X1P) (JTWxr ) (T Wx o)

+5t(X M) (JTWx o) (W, p])

- (fTX*lf) [ (fTWXQf) tr(QTMQP)

+ (W) (@TQP) + (JTWx T ) tr(TQQM) |

+ (T W ae ) (T ) (TWx o) } BITXT
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Note that the following integrals do not present a source term:

. / @ o (a7d) (7K ) (@7 2a0) (@7 P BTN = ST
{éT [?Xfl tr (X~'M) tr (X~'P) — ﬁxﬂ tr (QTPQM)
— S atPaw (X M) - o0TMow (X P) R
Rt {%X‘ltr (X~'M) tr (X~'P) — ﬁx—l tr (T PQM)
- ot (X - P ooTMow (X—lP)]é},
. / 42 a (@TM&) (6T P&) (3TQA) (AT RA) e~ 337 Xd — \/d:W x (A7)

{105 (XM (X P tr(X Q) tr(X ' R)

- dthX {tr(Xle) tr(X*lR) tr(QTMQP) + tr(XflM) tr(X'R) tr(QTQQP)

+tr(XT'P) tr(XTIR) tr(QTQOM) + tr(X T P) tr(X Q) tr(QTROM)
o (X TUM) (X T1Q) tr(QTROP) + tr(X M) tr(X 1 P) tr(2T ROQ)]

+ﬁ {tr(QTRQQ) tr(QTMQP) + tr(QTRQM) tr(QTQOP)

+tr(QTROP) tr(QTQQM)] }
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B Step-by-step quantum tele-
portation

In this section, we derive the famous formula for the fidelity of teleporting an un-
known coherent state using a two-mode Gaussian quantum state. We also derive the
formulas for a general two-mode Gaussian state with heuristic and with probabilistic
photon subtraction.

All teleportation protocols require the involved parties to share an entangled
state. Moreover, they require the sender to make homodyne detection measurements,
communicating the results to the receiver through a classical channel, who makes a
displacement in his state depending on the outcome of said measurements. Given a
shared entangled state psp and an initial state pi, to be teleported, the state that
the receiver has after the homodyne measurements is

op(z,p) = ) trra [pF @ papll(z,p)ra] (B.1)

PB(-’L‘,QD

with Pg(z,p) = trrap [pi* ® papll(z,p)ra]. Now, this expectation value over the
teleported (T') and the senders (A) modes is computed as

i 1 oo o0 . o
tera [oF @ panllep)ral = o [ [ dudy'er o iy ularaey Ipasly)a
(B.2)
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Once we have computed op, we need to compute the outcoming state after the
receiver applies the displacements,

P — / T da / " dpPs (e, p) Ds()os (v, p) Ds(~0). (B.3)

The average fidelity is computed as

F = tr[pinpout]- (B.4)

B.1 Coherent + Gaussian bipartite state

Assume two parties share an entangled two-mode gaussian state p4p with covariance

matrix
%
v= (5" 9P, (B.5)
€ap B

and they want to use this resource to teleport a given quantum state pif. In this case,
we will choose a coherent state, with covariance matrix .., = 15 and displacement
vector aj.

The first step is to compute Bobs reduced state after the homodyne measurement,
for which we write the density matrices in terms of this corresponding characteristic

function,
1 ~
p= 7/d2 ax(a)D(—a), (B.6)
T

where D(a) = exa' =44 is the displacement operator. The characteristic function is

then obtained as y(«) = tr [pﬁ(a)} , and that of a gaussian state can be constructed

from the covariance matrix ¥ and the displacement vector J: such that
1. I
x(a) = exp [—4aTQTZQa - zaTQd} (B.7)

. 0 1
with Q = (_1 0
can then be written as

) being the symplectic matrix. The reduced state that Bob obtains

. 1 .
trra [pF ® pasll(z,p)ral = 3 d* ay /d2 az/d2 asxr (a1)xap(az, az) X

A

DB(*QS)/ / dydy' eV (x| Dp(—an)lz + y)r (| Da(—a2)|y) a.
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Notice that we can write
A = AT _ . ~ . A . . A . ~
D(—a) _ eaa aa' _ e ﬁzlmaw+\/§zReap _ ezRealmae\/izReape \/§z|mozw7 (BS)

which leads to

<y'|l§(—a)\y> _ eiReOcImoz <yl|€\/§iReaﬁ67\/§ilmai‘y> _ eilma(Reafx/?y)< \/iiReozﬁ|y>

’
y'le
eilma(Rea—\/iy) <y/|y _ \/5R€Oz> _ eilma(Rea—ﬁy)(s(y/ —y+ \/§Reoz),

where we have used the fact that e~*P|y) = |z + y). Then, if we use this result on
the integrals over ¥, y’, we obtain

/ / dydy/ ip(y—y') zlmal(Re(xl \/§(w+y))eilma2(Rea2—\/§y) % (Bg)

S(z+y —x—y+ V2Rea)d(y — y+ V2Reay) = / dye~V2u(Ima +imas)

ei\/ﬁ(pReag—:vlmozl)ei(lmalRea1+lma2Rea2)5(\/§Rea1 _ \/iReag) — 97 X
ei\/ﬁ(pReag—xlmal)ei(lmalRea1+|ma2Rea2)5(\/§Rea1 _ \/iReag)é(\/ilqu -+ \/§Ima2).

Notice that we get an extra factor of 2 coming from Dirac deltas, since §(kz) =
d(x)/|k|. Basically, the Dirac delta functions we obtain imply that s = &;. Then,
going back to the reduced state,

trea [P ® papll(z,p)ral = /d2 oq/d2 ag/d2 asxf(on)xap(az, as) X

ﬁB(_ag)eiﬁ(pRearmlmal)ez(lmalRea1+|ma2Reaz)5(\[Rea1 _ fReaz) %

5(V2Imay 4+ vV2Imasy) = % /d2 o /d2 asx () xap (a1, a3)Dp(—as) x

oiV2(pRear —zImas) (B.10)
Let us explicitly compute the product of the characteristic functions,

. _ 1
xr(a1)xap(ar,a3) = exp{ 1 [alQT (1o + 0.3 40.) Qd; — Al 045005

— a0l po.Qay + ATQTE Q5] —id]Qdo |}, (B.11)

knowing that dy = 0,01, Qo, = —0,Q and QTQ = 1,. Here, we have identified
o_ZiT =2 (Reai Imai) = (wl pi). Notice that this will mean that d? a; = %dxi dp;
Furthermore, we write

ei\/ﬁ(pReal—xlmal) _ ei&IQE (B12)
with ET = (x p). Joining everything together, we obtain

i ) 1
qur“l(al)XAB(@hag)elﬁ(pReal_ﬂmal) — exp{ -1 [@'IQT(]_Q + 0.540,)Qd,

—alV0,e45003 — AIQTeT 0. Qd + O[gQTEBQO[3:| — a1 Q(d — )}(B.l?))
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Since A Q70,4003 = ol QTEABUZQoq, we can simplify things by

: . 1
X (@)X AB (61, ag)elV2PREI—TIMaL) — oy { 1 [ATQT (12 + 0.3 40.)Qa,

—&—a?T)QTZBQag] +alQr QUZEABQag +i(dg — E)] } (B.14)
We then define M = 1QT(1, + 0,%40.)Q and J = 1QTo,e450d5 + iQ7(d) — £),
and proceed to solve the integral over aq,

/d2 alx,izr}(al)XAB(al’Oég)ei\/i(pReallemal)

_ /dQO[lef%&IM&lJro?If -1a3I0"SEQds _ T 3T ™M T ,—5alQTSE0ds

Then, we write the reduced state for Bob as

o5(7.p) = 2n2P(x, p) \/det /
We compute the normalization by using tr {ﬁ(a)} = 70 (a), such that

1
2w/ det M

After Bob performs a displacement on his reduced state depending on the outcome
of the homodyne measurement Alice performed, given by &, the outcoming state is

= [ aa [ apP@.pDa©ontn)Da(-¢) (B.17)

We use the fact that

P(:C,p) = e*%(aqo*g)TMfl(aoff). (B.lﬁ)

A A A

Dp(€)Dp(—az)Dp(—€) = e*3¢~%¢ Dp(—ay), (B.18)

and we write

out _ 2 LITMYT —1aTQTS 5085 —ial QE A
dx/ dp/da2 e 1% BT S Dp(—ag).
Pe \/det / 3 (( )3)
B.19

Here, we can 1dent1fy the characteristic function associated to p%'* as

-

out

LITMYT - L13IQTSp0a;s —ial QF
X3 (az) = / dx/ dpe2 e N EERAeTIaYE 1 (B.20)
2mv/det M

and hence we can attempt to solve this integral. First, we will combine the exponen-
tials

L1 -
g LTS, — a0 = (B.21)

ku

—

-G - = *TQTEBQ% - ffTQM OTE+ (MG — as)TOE,

N~ N~
Ql
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where we have defined G = %QTUZEABQ&}, + iQ7a), and integrate over &

oo (o) o - . -

/ dx/ dpe—%gTQM*QTgw(M*lG—&S)TQg _ (B.22)
—00 —00

2m e—%(M*I@—&g)TQT(QI\/I*IQT)*IQ(M*I@—dg).

vdet M—1

where we have used the fact that det(Q2QMQT) = det M. Knowing that (QMQT)~! =
QM~1QT, we write

1At 14 _13TQT7 Fa — L “14_5.)T -14_x
XOBUt(ag):BQG M Ge 70IQ EBQage s(M™ G—=d3z)TM(M™ "G 043), (B23)
which simplifies to
X%Ut<a3) — e~ 18T (1240:8a0:+Np—0:ca5 ¢} p0:) Qa3 —iG] Qdo (B.24)

Finally, the average fidelity of the teleportation protocol is computed as

F=tr[p"p™] = % /d2 as d® Bx™(B)x" () tr [ﬁ(—ﬁ)b(—a3)]7 (B.25)

and by using tr {f)(—ﬁ)ﬁ(—(){g)} = 7d(as + B), we arrive at

in ou 1 in u
F=ulpp] = - [ & -ane(9), (B.26)
Introducing the characteristic functions, we obtain

pol /d2 e 4TI 4iBTG (~ AT (Lo ko B0, +En—0uean 5o QF-iFTG

(B.27)
Eventually, the average fidelity is given by
F = l /d2 /667%5701'[12+%(UZZAO'ZJrZB70'26,4376;30'2)]95 (B28)
s

1

\/det [12+ 3(0.X40. + X5 — 0.648 — €4 502)]

B.1.1 Heuristic photon subtraction

In this case, we can start from the reduced state that Bob has after Alice has per-
formed the homodyne measurements,

1 .
L i — N J
= %/(pal/d2a3X}1r“l(al)XAB(041,ag)DB(—az)))@ZQIQf’
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where the characteristic functions are again

) _ 1., o o o
XF(ar)xap(@,a3) = exp { 1 [@TQT (124 0.540.) Qa1 — @] Q70,4505

— AIQTEY 500 + AIOTE OS] i&IQdO}}, (B.30)

The one for the coherent state we attempt to teleport will not change, while the
photon subtraction process modifies the one for the bipartite Gaussian state as

2

1‘2
Xap(é1,a3) = N |07 + 05, + Zl + % + 2105, +p10p, + 1] X
2 2 1‘% p?, _
Opy + 0, + vy + 1 + 2305, + P30p, + 1| xap(aa, as). (B.31)

Notice that we are applying photon subtraction to the characteristic function x4 g (a1, as)
in which we have already applied “half” Homodyne detection, simply because when
integrating over y and y’ of the position basis in which the POVM is expressed, we
get a Dirac delta which sets as = a3, and thus do = o,d7. Then, we can apply
photon subtraction on x4p (a2, as), where the complex variable «; is reserved for
the coherent state that Alice wants to teleport, and then compute the integral over

g with the delta functions. Alternatively, we can directly apply photon subtraction

on xap(a1,as), which is what we do here. Both procedures should in the end be
equivalent.

Assume that, after applying the derivatives we obtain something that can be
written as

N {(mB + O_Z;;MBC_Y)g + O_ZIMBCc_ig + O_ZIJZMcazo_Zl) (mA + O_é).{MAO_Zl
—‘rO_ZIMAco_Zg + O_ngCo_fg) +mce + O_ZIMAcQTEABUZQO_z'l + QO_gMC (1o — QTEE0N) ds
+aT [Mac (1 — QTS5Q) + QTo,e45QMc] 523} XaB(d1, a3), (B.32)

where we have defined

1

ma = ]_ — itr EA,
R
mp = 2 rzp,
1
mo = Gtr(chpean), (B:33)
1
Ma = 7 (12— 2070.840.Q + Q70.5%0.0)
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Mp = i (1 — 207250 + QTE3Q),

Mo = iQTELBEABQ, (B.34)
Muye = % Q70,450 —QT0, ACQ),
Mpec = %(QTO'Z{-ZABQ*QTUZCBQ).

Notice that all matrices are symmetric, except for M 4 and Mpc. The normalization
constant is given by N~! = mamp + mc.

Let’s start integrating over «. Recall that

Xiqg(al)XAB(@has)ei\/i(pRearzlmal) _ 67%&IX&1+62L77 (B.35)

where we defined X = %QT(lg +0.¥40,)Q and J = %QTO'ZEABQO_Z:; + QT (dy — 5)
First, we integrate the free terms

/d2a1 {mAmB—&-mc—ko'Zg (mAMB-F(Q-I-mB)Mc)O_Z;g (B.36)
(AT Mpds) (I Mods) | e~ 38 Xa+al _ L[m mp +m
(@3 Mpas) (A3 Mcds) AT i c

+a] (maMp + (2 +mpMo)) @ + (G Mpds) (G Mcds) |37 X 7,
We continue with the terms

/d2 aq {&I (maMpc + (1 +mp)Mac) ds + (@S Mpas) (0] Macds)
+ (@] Mpeds) (@] Meds) |~ X@+a17
™ Fr o — -
= Nﬁ {JTX YmaMpe + (1+mpMac))ds
+ay(maMpe + (1 +mpMac))TX 1T
+ (@3 Mpas) (JTX ' Macds + A ML X 1)
F(TTX " Mpeds + AIME X J) (@] Meds) |37 X (B.37)
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Also, we integrate the first order terms
/ o [&{ (mao,Mco, +mpMa) @ + (@1 Mpds) (@1 Mad:)
+ (@0, Mco.a1) (a5 Meds) ] e~ palXa+al]
= \/% [tr [Xfl (mao, Moo, + mBMA)} + jTWX,mAUchUz+nLBMAj
+ (@1 Mpds) [tr(X’lMA)fTWXMAJj}
+ [tr(x—lachaz) + fTWXJchUj] (a;MC@g)}e% X (B.38)
Now, it is time to integrate the second order terms,
/ A% ay (AT Mpeds) (G] Macds) e 20 Xa+alT (B.39)
2\/% {&gMch’lMAc&g + &MY X Mped]
+% (&gM]TBCX_lfT + fTX_lMBCd’;;) x
(GTMEX 1T+ TX T Macdy ) 27X, (B.40)
and also
/d2 a1 (@70, Moo.d) (6] Mad) e 2FXE+aTT -

™

vdet X
+ j’TWXﬁMA jjTWX,achazj+ jT <3WX,MA tr(Xilgchaz)

tr(QTUZMc(IZQMA)

{3 tr (X' Ma) tr(X ' Mco.) — T

+3WX$(;Z Moo, tr (X_l MA)
_ 2x-1
det X

tf(QTUzMCUzQMA))deéjTXlf. (B.41)
Finally, we integrate the second order cross terms,

/ A2 ay (@70 Meo.d1) (8T Macds) + (8T Mpods) (6T Mady)] e 21X @ +ai7

=STAfT i =
013MACWX7JzMngJ + JTWXJchc,Z Macas

T
B \/detX[
+AT ML W ary T + T W v, Mpods (B.42)
1 = =) — —
+§ (tr(X_lazMCUZ) + JTWX,UchUz J) (O_ZgM;CX_l‘] + JTX_lMACO_z?))

1 - - - - 17 v—17
5 (X7 Ma) + T Wi J ) (@IMEX 1T + JTX ™ Mpods) | 37X,
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In order to simplify things, from now on we will consider that the matrices M4¢ and
Mpc are symmetric, which implies that we assume [Y4,£45] =0 and [Xp,e45] = 0.

Summing together all the terms resulting from the integral, we obtain

resJTXTNT

{mAmB +mc + 07§ [mAMB + (2 + mBMc)} as

det X

JTX HmaMpe + (1+ mpMac))ds + (03 Mpds) JTX ™ Macds
—l—jTXilMBCo_Zg (O_gMco_Zg) + tr [Xil (mAUzMCUz + mBMA)]
FTTWx nsor Moo tmpitad + (63 Mpds) [ r(X- 1MA)JTWX MAJ}

+ {tr(X—lachaz)fTWX,gch(,zﬂ (G1Meds) + AIMpe X~ Macds

+ (fTX‘lMBco?3> (fTX‘lMAC&g) +3tr(X M) tr(X 1o Meo)

-

tr(QTo, Meo, QM) + JTWx i, JTTWx o Moo, J

Cdet X
vt (3WX,MA (X 0. Me02) + 3Wx o nieo tr(X 1 My)
9x 1

d tr(QTUZMCJzQMA)) j-i— QJTWX’JZMCgZMAcﬁg + QjTWX’MAMBCC_fg
[ (X to.Mca,) + fTWXJZMCUZf} (fTX_lMACd’g) (B.43)
+ (@

MBa3) (O_thco_fg> + [tr(X_lMA) + fTWX’MAj] (jTX_lMBcO_Z?,) }

We can regroup these terms by their dependence on a3 and J,

Hy = mamp+mg+tr [Xil (mAUzMCUZ+mBMA)]
+ 3tr(X_1MA) tr(X_lachoz) T qetx X tI‘(QO‘ZMcUZQ MA)
+ al [maMp+ (24 mpMc) + MpcX ' Mac| a3
+ (@ Mpds) (@ Mods), (B.44)
jTﬁl = jTX_l |:mAMBC+(1+mBMAC)+MACtr(X_1UzMCUz)

Mpe tr(X_lMA)} a3+ 2JT(Wx 0. Moo, Mac + Wx ., Mpo)ds
(@I Mpds) JTX ' Macds + JTX ' Mpods (G5 Mcds) (B.45)
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jTng = jT [WX’mAJZMCJz+mBMA + 3WX,MA tl"(Xilachaz)

2X1
det X

+ 3Wx g peo. tr(X M) — tr(QTazMCaZQMA)} J

+ @ MBag)[ (X*lMA)fTWX,MAf}
+ [t X—laZMcaz)fTWX,oncozﬂ(&5M0&3), (B.46)
JTH, TR = ( TX MBcag) (fTX—lMAco?g),
H = (JTWXM J) (JTWX,%MCUJ),

Hs = (J WX,(,ZMC(,Zf) (leé) + (fTWX,MAf) (fTﬁ3).

Now, we must integrate over all possible results from the Homodyne detection pro-
cess, x and p. Instead, we will integrate over J, and Jp, such that dzdp = d J, d J,.
Let us begin by integrating Hy,

7T v — 7T~ 21 12Tyvs
dJ,dJ,Hoes X T=TTas — T 383 Xas (B.47)
' vdet X1

and continue with

1

/dJ A, JTHyesTX T =TTy ST —36IXas [T X g, (B.48)
Then, we compute the integral
/dJ A J,JT Hy Jes T X T TTds
2n X [— v (X Ho) + @ Wx—1 g, @3] . (B.49)

together with

followed by

7 77 P lirx-17_Jta 2T 15T v ~
AT, AT, T Wy ar s JTTWx o atg. Je2d X T=dTds — TN —36Xds o
/ D X,Ma X,0.Mco. \/W
2
{3 tr (XWX,MA) tr (XWX,JZMCJZ) - m tr (QTWX,UchUZQWX,MA)
+O_Z;’-WX_1’WX1MA &307§WX_17WX,02MOUZ ai3 — O_g <3WX—1,WX,MA tr (XWx 0. Mco.)
2X ~
+3WX_17WX,UZMCUZ tr (XWx v, ) — Jet X1 tr (A" Wx o Moo QWx ar) )ag} .
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Finally, we compute

/ddeJp [( HTWX,UZMCUZJ) (HT *3) n (fTWX,MAf) (fTﬁg)} x

1T X o TTa 2r__ _-ia&Ixa ¢ 7
¢ T as{‘QK??WX%Wx,%Mcws
[ 0 (XYW nteo) + AWxs i o, @] K Xdiy (B.51)

“2HIWx iy, @+ [— 6 (X W) + G Wx 1w, ag,] ﬁgxag}.

Putting everything together, we find that

e~ 10397 (L2+0.840.+Ep—0:can—c ) 502)Qd3—id] Qo

out
az) = X
XB ( 3) mamp + mg

{ [mp + @l (Mg + Mpc + 0.Mco.)ds| [ma + @l (Ma + Mac + Mc) ds)

me + &1 (2Me + Mac) QT (1s + eapos — S5) 9523}, (B.52)

which is exactly the result of applying the differential operators of photon subtraction
to the characteristic function, but changing ov; — as. Then, we can define

Ey = mamp+mc,
Ei = ma(Mp+o.Mco.+ Mpc)+mp (Ma + Mc + Mac)
+ (2Mc + Mac) QT (12 + 0,648 — ¥5) Q2 (B.53)
Ef = Mc+ Mac + Ma,
EP = Mp+ Mpc +o0.Mco.,

and write a shorter formula, in order to integrate

F

1 3TOT =1 = - =, = =, =
» [ @ ae OO (B 4 TG+ GBS G ESS)
s EO

1
= —— |Ey+tr (Qr'Q"E 3tr (QUIQTEMN tr (QI QT EE
v [ (00T 3 (00T (o007 )

2 AT B
- ot (B E2)] (B.54)

B.1.2 Probabilistic photon subtraction (beam splitters & photocounters)

Assume two parties want to perform quantum teleportation using a shared bipartite
gaussian entangled resource with covariance matrix

(XA €aB
EAB—(SLB ZB), (B.55)
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where ¥4, Y, and €4p are 2 X 2 symmetric matrices. In order to improve the
entanglement of this resource, we want to perform entanglement distillation through a
photon subtraction procedure. This implies sending both modes of the state through
low-reflectivity beam splitters, where they become mixed with two ancillary modes
C and D, both vacuum states. The global covariance matrix is then given by

EA 0 EAB 0

0 1, O 0
) = , B.56

0 0 0 1.

and after combining modes A with C', and B with D by identical beam splitter with
reflectivity 1 — 7 this matrix becomes

R R Z/ !
BoacppBl = 4B ) (B.57)
EAB 2B
where we have identified
s ( T4+ (1—7)1, (1o —24)/7(1 T))
A (lo—SA)V/T(l—=7) (1—7)Sa+71,
X+ (1—7)1, (1 — ¥p) 7'(1—7'))

Xp = ((12—23 VTl =7) (1-7)Xp+ 71
E/ _ < TEAB —EAB 7'(1—7'))
AB —eapy/T(l—7)  (1—7T)eap /)

Knowing the covariance matrix of the state, we can use it to construct the charac-
teristic function, and express

PABCD = */d2a1/d2 Oéz/d2ﬁl/d Baxapep(on, az, B, B2) x
DA al)DB( Ozg)Dc( ﬁl)DD( 52) (B59)

Now, in order to perform photon subtraction, we need to measure a given number of
photons in the reflected arm of each beam splitter. We are interested in two-photon
subtraction, in the particular case in which a single photon is reflected on each beam
splitter. Then, we need to project the state into the subspace that describes this
outcome,

(B.58)

(1,1lpagep|l, VYep = %/d2041/d2042/d261/dQBQXABCD(Oélaa%BIaﬁQ)
Da(—a1)Dp(—a2)(1|De(—B1) 1) (1| Dp(—B2)I1) p. (B.60)

In order to compute this, we need to know that

2 m! e /n amk(—a)nk
(m|D(a)|n) = e~ /2\/;;;) (k) o(m — k)(m(_k))!, (B.61)
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which for the special case n = m =1 leaves

(11D(=a)1) = e 1*F72(1 — |af?). (B.62)
Remember that, since we had defined & = /2 (Rea Ima) = (zo pa), we can write
2 2 2 1 To 1. .
I1—|of’=1- (Rea+Im’a) =1— = (zo Pa) =1--a"l,d (B.63)
2 Pa 2

We consider writing the characteristic function as
Xapop (a1, as, B, fo)e” 311 e 2102 = (B.64)
exp {— %EIXA@ + 61 (jA + Hﬁz) - %E;XBBZ + 1T
—E&IQT (754 + (1 = 7)1) Qs — i&;m (S5 + (1= 7)) 0y — ZaT0Te450a),

where we have defined

X4 = %QT [(1—7)244+ (14 7)12]9Q,
Xp = %QT [(1-7)2p + (1+7)1]Q,
Jy = %mm [(Z4 — 1,)Qa] +apQas], (B.65)
Jo = GV TN [eas0a + (S5 — 1,)0a5],
H = —%(1 —7)QTe450.
Now we can integrate over the ancillary modes. We will start with mode C,
[0 (1 511 ) e HRAR ) (5.66)

1 1 =, - R P L
[1 —5lr (xX3') - 3 (f/rx +3;H) Wx 12 (JA + Hﬁz)} e (JA+ATH) X, (Ja+HB:)

)

and then integrate over mode D. Let’s do this step by step; first, we define

Y = Xp-HX;'H,
K = Jg+HX;'Ja. (B.67)
and integrate the free terms,
17Ty —17
iy (173 R - ] [ (1 )
CAEYRAAR _ T ATXFRTY IR
Vdet Xy det Y

1 1 - - 1 1~ -
[1 - 5‘51‘ (X1 - ZJLWXA,12JA:| [1 - itrY_l - 2KTWy712K] . (B.68)
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We continue with the integral

Fe%j;xglj;\ 2 1z 7\ 7 > 13Ty B+ BT K
S Vdet X, 52( - 2551252) GIHWy , 1, Jye 355 Pt fl
A
2
71- 17T =17, 115 1z .
3JAX Jat+zKTY K{ — ﬂWXA,leWY’lzK

T /At Xadety

q 1 1 4
JIWx, 1, HY 'K [1 - imf—l - 217<TWYJQK} } (B.69)

and finally compute

LT X T,
mTez’ata 1o =\ = 3 o~ 18IV B+BIK
meraT 7 e (1o tgm THW , 1, HFpe™ 293V P2FPIR
det X4 62< 22 2ﬂ2) P

2 . . 4

T %J;X;lJfrFéKTY_IK{ —tr (Wy 1, HWx ,1,H)

T /At Xadety

B} ; 1 1. ;
[tr (Y LHWx 1, H) + KTWKHWXAIZHK} [1 — YT - KTy, K

~RT Wy, tr (VT W1, H) + Y~ (Wy 2, HWx o, H)

QOTHWx 1, HQ 1] =
——22 1Y }K. B.70
det Y ' (B.70)
Now, putting everything together, we can write the final result as
m? LTTX Tt ARTY IR 1 1z -
S — R SN l——trY ™ — —K™Wy 1, K | X
vdet X4detY 2 2 ’

1 1. , L1
(1 — St X5 = ST Wi, Ja = TiWx, 1, HY 7R = St (YT H W, H)
1. B, L1
—*KTWY,HWXAJQHK) + HWXA712HWY712K + §tr (Wy712HWXA712H)

1
o KT Wy, tr (YT H W, 1, H) + Y~ (Wya, HWx 1, H)
OTHWx, 1, HQ 11 -
SN LTy R | B.71
detY g ] (B-71)

Let’s expand the terms in a; and as, since we will need to integrate them later on.
In order to keep the expressions as short as possible, let us write

GTOK, + GJ0K,,
OT{QJl + O?;QJQ,

KT

7T
Ja

(B.72)
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where we have defined

1
K, = 3 T(1—7) [eapQT + (24 — 1,)QTX ' H,
1
Ky, = 3 T(1—7)[(Zp — 1)QT +e4pQT X H], (B.73)
1
Jl = 5 T(l—T)(EA—lg)QT,

1
Jo = 5\/7'(1 —7)eapQt.

Furthermore, we also define

Ry

Ry

1
1——trY ™!,

2

1 o 1.,
l—itI'XA —itr(Y HWXA,:LQH)7
1
5 tr (WY,leWXA,le) ’

1
—§QK1WY,12KIQT,

1
— S QW KIOT,
— QK Wy, KIOT,
1 _
—59 (J1WXA,12JI + 2J1WXA,12HY 1KI + K1WY,HWXA,12HKI) QT,
1 _
—39 (2Wxa 220 + 2 Wo 0, HY K] + KoWiwi 1, K3 ) 97,
o (J1WXA,12J2T F AWy, HY K] + K Y H Wy 1, 0] (B.74)
+K1WY,HWXA,12HK2T)QT7
1
QQ[JlVVXA,leszKlT

Ky Wy, tr (Y H W, 1, H) + Yt (Wya, HW 1, H)

QHWx , 1, HQT

—1 T T
S o,

1
59 |:J2WXA,12HWY712K;-

Ko Wy, tr (Y H W, 1, H) +Y e (Wya, HWx 1, H)

QHWx , 1, HQT

1 T T
detY oy )KQ}Q ’
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1
Ry = 2Q[J1WXA,12HWY,12K2T+K1WY,12HWXA,12J2T

1 2K, (sz tr (Y HWy 1, H) + Y~ tr (Wy.q, HW , 1, H)

QHWx , 1, HQT

1 T T
e ay )KQ}Q . (B.75)

Then, we can rewrite the previous result as

2
4 31O (XTI HE Y THRT ) Qd,
vdet X4detY
o3 QT (Jo X NI+ Y T K] )Qaa+aTQT (N1 X NI+ KLY K] )Qds

[ (my + GI PG + @ Pado + @1 Pradia) (ms + G1Q1G1 + G Qads + AT Q12ds)

X

+ms + &IR1&1 + O_Z;RQO_ZQ + &IRQ&Q . (B.76)

If we recover the exponentials remaining in the characteristic function, and introduce
p )
the normalization factor NV, we can write the characteristic function of the remaining
resource as
(-1 71)( ) Ne—i[a]1975406:+a] QTS50 +26] QTEApQd:]
Xap lai,02) = X
AB ’ Vdet X 4 det Y

[(m1 + GTPL@) + GY Padia + @] Prads) (ma + G1Q1a1 + GYQads + AT Q12ds)

+ms + &1 R1 &1 + &) Roda + @'{Ru&g} . (B.77)

where we have defined

Sa = 1S4+ 1 -7l -2 (L X U] + K YTIR]),
S o= 8+ (1 7)1 —2(LX T+ KoY TLK]), (B.78)
Eap = teap—2 (N X ']+ K YT'K]).

The normalization constant is given by

vdet X4detY

mims +msg

N = (B.79)

such that the success probability of this protocol can be computed as P = 1/N.
Remember from the previous case that after applying Homodyne detection we get
a1 — 0,071, and after integrating over a; and over £, the factors in front of the
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integral are transformed only by «; — as. This means that we eventually obtain

Ne— 1397 (1o40:540: 455 —0:645 €], 502 ) Qa2 —id] Qdo
042) = X

vdet X4detY
{ [m1 + @) (ZP1o, + Py + ZP12) A [mo + A3 (ZQ10. + Q2 + ZQ12) ds)

—1,-1
%

+ms + (52; (ZRlaz + Ry + Zng) 0_22} (BSO)

and when the product of this with the characteristic function is integrated to obtain
the average fidelity, we obtain

F =

1 1 _
AT tr [0 (ZQuo. + Q2 + Z
\/M{ mimse + ms {ml t [ ( Q10 Q2 ng)]

+ motr [QLTIQT (ZPio, + Py + ZPro)| + tr [Q0 QT (ZRy0. + Ry + ZR15)]
+ tr [Qf_lgT (ZPlaz + P2 + ZP12>} tr [Qf_lQT (ZQlUZ + QQ + ZQ]_Q)]

QtI’ |:WQfQT,ZP102+P2+ZP12 (ZQlUZ + QQ + ZQlQ):| } }» (B.S]_)

_|_

Here, we have defined I = 1, + % (UZEAUZ + X5 — 0.E4p — ELBUZ).
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C Step-by-step entanglement
swapping

Consider the case in which we have two entangled states, shared by three parties
pairwise. That is, between Alice and Charlie, and between Charlie and Bob. Consider
that these states are gaussian, with covariance matrices

. YA €4B - Yc €cp
Yap = (5?;3 ZB) , Xcp = < T 2D> ) (C.1)

and null displacement vectors, meaning that we can write the characteristic function
of, for example, the first one as

1 1 1
XAB(Oél,ag) = exp [—4&IQT2AQ@1 — E@EQTEBQ&Q — Q&IQTEABQ&Qil . (CQ)

With this, we can express the density matrix of the state as

1 A N
pan = /d2 a1 &2 agyan(ar, an)Da(—ar) Di(—as). (C.3)
Now, entanglement swapping is a technique which allows to convert two pairwise

entangled states into a single one between initially unconnected parties. By making
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measurements in a maximally-entangled basis, Charlie is able to transform the en-
tangled resources he shares with Alice and Bob into a single entangled state shared
by Alice and Bob. In CV, these measurements are described by Homodyne detection,
and its effect on the state is computed as we have done before,

trpe [pas @ pepll(z, p)Bc] /d2 o /d2 Oég/d2 B1 /d2 Ba x

XaB(a1,02)xcD(B1, B2) Da(—0n) D (—Bp)e'V2(PRED —sImas
¢ilmazReas HIMBIReA) 5\ /oRe, — \/2Re )5 (\f|ma2+\flmﬂ1)
1
=3 d2a1/d252/d asxapop(ai, ag, az, B2)Da(—ar)Dp(—fB2) x
e f(pREI)QfI'mOQ). (04)

We can rewrite the characteristic function as
xag(a1,as)xcp(@z, B2) = exp [f —alQTY 400, — *&;QTEBQO[Q (C.5)

1 1
—5a10Teap0d; — 1a]070. Xe0. 0, - fﬁgQTZDQBQ + d’;QToze(;DQﬁg}

knowing that, since 51 = aa, El = 0,04, with Qo, = —0,Q and QTQ = 15. Here, we
have identified @] = V2 (Reai Imai) = (:CZ pi). Notice that this will mean that
d? ;= %dxi d p; Furthermore, we write

ei\/i(pReaglemaz) — ei&;Qg (06)
with gT = (x p). Joining everything together, we can express
Xap(ar, az)xep (@, f)e’V2PREz—oImaz)
1 1. - =
exp | — Z&IQTZAQO_Zl — Zﬂ;QTZDQﬂQ + Z&EQ&
1, . 1. - .
—ZOQQT (Xp +0.Xc0,) Qds + ia;QT(azs(;DQﬁg —eapQay)|. (C.7)
and we can define

1
X = 597(23—&—022002)9,

<~
[

.1 .
i€ + §QT(UZECDQ[32 —eaBQay). (C.8)

We will integrate first over aq,
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After Homodyne detection, need to apply a displacement to the remaining modes,
proportional to the result of the measurement. This amounts to computing

D(E)D(—a)D(~€) = 63 D(—a) = e % D(—q). (C.10)

Now, we can identify the resulting state, conditional on the measurement results x
and p. The covariance matrix of the resulting state is characterized by

Zi{)nd = ZA - ELB (ZB + UZECUz>_1 EAB,
nend =y el 0. (B 4 0.500.) oeop, (C.11)
ECAOBd = €LB (EB + UZECUZ)_l 02ECD,

where the residual exponents can be grouped into ef (9+9¢*) | such that
iz 2 -
& = §€TQTX719T(O—ZECDQﬂ2 —eapflay),
1= .
g(&?) = —igTQX*QTg. (C.12)
Now we are in position to integrate over all possible results from the Homodyne

measurement, which is equivalent to integrating over £&. By a simple change of vari-
ables, we introduce —iQ)¢ = G'— J, and we integrate over J, such that

Iz d Jpe
\/det /

on2e= 5 (@1 +53) X (a1+62) o (4] +683 )G (C.13)
We can combine all the exponents remaining, and group them to obtain
1—'TT = 1"TT 3 L o = 3 =T | 3T\ A
30107840 — L AIOTSo0G, - 5 (aT + A1) X (ay+ &) + (a7 + A1) &
1 1= -
= _Z&IQT X4 +2QTXQ+ 2e45] Q07 — ZBQTQT [Xp +2QTXQ — 20.e0p] Qb2
1 o
3 AT 2QTXQ + eap — 0.6cp] Q2. (C.14)

We write the resulting state after measurement and displacements as

A A

o= / 0 0 d? Bx5p (0 B) D a(—a) Dp(—a), (C.15)

and identify the previous exponents as the components of the covariance matrix
associated to the remaining state,

$4 €
EESD:(@EZ 5‘5) (C.16)

175



C. STEP-BY-STEP ENTANGLEMENT SWAPPING

as follows
Y4 = Za+Y¥p+o.Sco, + 245,
iD - ED + EB + UZECUZ - 2O—chDv
€ap = XpB+0.Xc0,+¢EaB — 0.CD.
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