125 research outputs found

    Entangled Games Are Hard to Approximate

    Get PDF
    We establish the first hardness results for the problem of computing the value of one-round games played by a verifier and a team of provers who can share quantum entanglement. In particular, we show that it is NP-hard to approximate within an inverse polynomial the value of a one-round game with (i) a quantum verifier and two entangled provers or (ii) a classical verifier and three entangled provers. Previously it was not even known if computing the value exactly is NP-hard. We also describe a mathematical conjecture, which, if true, would imply hardness of approximation of entangled-prover games to within a constant. Using our techniques we also show that every language in PSPACE has a two-prover one-round interactive proof system with perfect completeness and soundness 1-1/poly even against entangled provers. We start our proof by describing two ways to modify classical multiprover games to make them resistant to entangled provers. We then show that a strategy for the modified game that uses entanglement can be “rounded” to one that does not. The results then follow from classical inapproximability bounds. Our work implies that, unless P=NP, the values of entangled-prover games cannot be computed by semidefinite programs that are polynomial in the size of the verifier's system, a method that has been successful for more restricted quantum games

    Garbling Schemes and Applications

    Get PDF
    The topic of this thesis is garbling schemes and their applications. A garbling scheme is a set of algorithms for realizing secure two-party computation. A party called a client possesses a private algorithm as well as a private input and would like to compute the algorithm with this input. However, the client might not have enough computational resources to evaluate the function with the input on his own. The client outsources the computation to another party, called an evaluator. Since the client wants to protect the algorithm and the input, he cannot just send the algorithm and the input to the evaluator. With a garbling scheme, the client can protect the privacy of the algorithm, the input and possibly also the privacy of the output. The increase in network-based applications has arisen concerns about the privacy of user data. Therefore, privacy-preserving or privacy-enhancing techniques have gained interest in recent research. Garbling schemes seem to be an ideal solution for privacy-preserving applications. First of all, secure garbling schemes hide the algorithm and its input. Secondly, garbling schemes are known to have efficient implementations. In this thesis, we propose two applications utilizing garbling schemes. The first application provides privacy-preserving electronic surveillance. The second application extends electronic surveillance to more versatile monitoring, including also health telemetry. This kind of application would be ideal for assisted living services. In this work, we also present theoretical results related to garbling schemes. We present several new security definitions for garbling schemes which are of practical use. Traditionally, the same garbled algorithm can be evaluated once with garbled input. In applications, the same function is often evaluated several times with different inputs. Recently, a solution based on fully homomorphic encryption provides arbitrarily reusable garbling schemes. The disadvantage in this approach is that the arbitrary reuse cannot be efficiently implemented due to the inefficiency of fully homomorphic encryption. We propose an alternative approach. Instead of arbitrary reusability, the same garbled algorithm could be used a limited number of times. This gives us a set of new security classes for garbling schemes. We prove several relations between new and established security definitions. As a result, we obtain a complex hierarchy which can be represented as a product of three directed graphs. The three graphs in turn represent the different flavors of security: the security notion, the security model and the level of reusability. In addition to defining new security classes, we improve the definition of side-information function, which has a central role in defining the security of a garbling scheme. The information allowed to be leaked by the garbled algorithm and the garbled input depend on the representation of the algorithm. The established definition of side-information models the side-information of circuits perfectly but does not model side-information of Turing machines as well. The established model requires that the length of the argument, the length of the final result and the length of the function can be efficiently computable from the side-information function. Moreover, the side-information depends only on the function. In other words, the length of the argument, the length of the final result and the length of the function should only depend on the function. For circuits this is a natural requirement since the number of input wires tells the size of the argument, the number of output wires tells the size of the final result and the number of gates and wires tell the size of the function. On the other hand, the description of a Turing machine does not set any limitation to the size of the argument. Therefore, side-information that depends only on the function cannot provide information about the length of the argument. To tackle this problem, we extend the model of side-information so that side-information depends on both the function and the argument. The new model of side information allows us to define new security classes. We show that the old security classes are compatible with the new model of side-information. We also prove relations between the new security classes.Tämä väitöskirja käsittelee garblausskeemoja ja niiden sovelluksia. Garblausskeema on työkalu, jota käytetään turvallisen kahden osapuolen laskennan toteuttamiseen. Asiakas pitää hallussaan yksityistä algoritmia ja sen yksityistä syötettä, joilla hän haluaisi suorittaa tietyn laskennan. Asiakkaalla ei välttämättä ole riittävästi laskentatehoa, minkä vuoksi hän ei pysty suorittamaan laskentaa itse, vaan joutuu ulkoistamaan laskennan toiselle osapuolelle, palvelimelle. Koska asiakas tahtoo suojella algoritmiaan ja syötettään, hän ei voi vain lähettää niitä palvelimen laskettavaksi. Asiakas pystyy suojelemaan syötteensä ja algoritminsa yksityisyyttä käyttämällä garblausskeemaa. Verkkopohjaisten sovellusten kasvu on herättänyt huolta käyttäjien datan yksityisyyden turvasta. Siksi yksityisyyden säilyttävien tai yksityisyyden suojaa lisäävien tekniikoiden tutkimus on saanut huomiota. Garblaustekniikan avulla voidaan suojata sekä syöte että algoritmi. Lisäksi garblaukselle tiedetään olevan useita tehokkaita toteutuksia. Näiden syiden vuoksi garblausskeemat ovat houkutteleva tekniikka käytettäväksi yksityisyyden säilyttävien sovellusten toteutuksessa. Tässä työssä esittelemme kaksi sovellusta, jotka hyödyntävät garblaustekniikkaa. Näistä ensimmäinen on yksityisyyden säilyttävä sähköinen seuranta. Toinen sovellus laajentaa seurantaa monipuolisempaan monitorointiin, kuten terveyden kaukoseurantaan. Tästä voi olla hyötyä etenkin kotihoidon palveluille. Tässä työssä esitämme myös teoreettisia tuloksia garblausskeemoihin liittyen. Esitämme garblausskeemoille uusia turvallisuusmääritelmiä, joiden tarve kumpuaa käytännön sovelluksista. Perinteisen määritelmän mukaan samaa garblattua algoritmia voi käyttää vain yhdellä garblatulla syötteellä laskemiseen. Käytännössä kuitenkin samaa algoritmia käytetään usean eri syötteen evaluoimiseen. Hiljattain on esitetty tähän ongelmaan ratkaisu, joka perustuu täysin homomorfiseen salaukseen. Tämän ratkaisun ansiosta samaa garblattua algoritmia voi turvallisesti käyttää mielivaltaisen monta kertaa. Ratkaisun haittapuoli kuitenkin on, ettei sille ole tiedossa tehokasta toteutusta, sillä täysin homomorfiseen salaukseen ei ole vielä onnistuttu löytämään sellaista. Esitämme vaihtoehtoisen näkökulman: sen sijaan, että samaa garblattua algoritmia voisi käyttää mielivaltaisen monta kertaa, sitä voikin käyttää vain tietyn, ennalta rajatun määrän kertoja. Tämä näkökulman avulla voidaan määritellä lukuisia uusia turvallisuusluokkia. Todistamme useita relaatioita uusien ja vanhojen turvallisuusmääritelmien välillä. Relaatioiden avulla garblausskeemojen turvallisuusluokille saadaan muodostettua hierarkia, joka koostuu kolmesta komponentista. Tieto, joka paljastuu garblatusta algoritmista tai garblatusta syötteestä riippuu siitä, millaisessa muodossa algoritmi on esitetty, kutsutaan sivutiedoksi. Vakiintunut määritelmä mallintaa loogisen piiriin liittyvää sivutietoa täydellisesti, mutta ei yhtä hyvin Turingin koneeseen liittyvää sivutietoa. Tämä johtuu siitä, että jokainen yksittäinen looginen piiri asettaa syötteensä pituudelle rajan, mutta yksittäisellä Turingin koneella vastaavanlaista rajoitusta ei ole. Parannamme sivutiedon määritelmää, jolloin tämä ongelma poistuu. Uudenlaisen sivutiedon avulla voidaan määritellä uusia turvallisuusluokkia. Osoitamme, että vanhat turvallisuusluokat voidaan esittää uudenkin sivutiedon avulla. Todistamme myös relaatioita uusien luokkien välillä.Siirretty Doriast

    Quantum Information and Variants of Interactive Proof Systems

    Get PDF
    For nearly three decades, the model of interactive proof systems and its variants have been central to many important and exciting developments in computational complexity theory such as exact characterization of some well known complexity classes, development of probabilistically checkable proof systems and theory of hardness of approximation, and formalization of fundamental cryptographic primitives. On the other hand, the theory of quantum information, which is primarily concerned with harnessing quantum mechanical features for algorithmic, cryptographic, and information processing tasks has found many applications. In the past three decades, quantum information has been used to develop unconditionally secure quantum cryptography protocols, efficient quantum algorithms for certain problems that are believed to be intractable in classical world, and communication efficient protocols. In this thesis, we study the impact of quantum information on the models of interactive proof systems and their multi-prover variants. We study various quantum models and explore two questions. The first question we address pertains to the expressive power of such models with or without resource constraints. The second question is related to error reduction technique of such proof systems via parallel repetition. The question related to the expressive power of models of quantum interactive proof systems and their variants lead us to the following results. (1) We show that the expressive power of quantum interactive proof systems is exactly PSPACE, the class of problems that can be solved by a polynomial-space deterministic Turing machines and that also admit a classical interactive proof systems. This result shows that in terms of complexity-theoretic characterization, both the models are equivalent. The result is obtained using an algorithmic technique known as the matrix multiplicative weights update method to solve a semidefinite program that characterizes the success probability of the quantum prover. (2) We show that polynomially many logarithmic-size unentangled quantum proofs are no more powerful than a classical proof if the verifier has the ability to process quantum information. This result follows from an observation that logarithmic-size quantum states can be efficiently represented classically and such classical representation can be used to efficiently generate the quantum state. (3) We also establish that the model of multi-prover quantum Merlin Arthur proof system, where the verifier is only allowed to apply nonadaptive unentangled measurement on each proof and then a quantum circuit on the classical outcomes, is no more powerful than QMA under the restriction that there are only polynomial number of outcomes per proof. This result follows from showing that such proof systems also admit a QMA verification procedure. The question related to error reduction via parallel repetition lead us to following results on a class of two-prover one-round games with quantum provers and a class of multi-prover QMA proof systems. (1) We establish that for a certain class of two-prover one-round games known as XOR games, admit a perfect parallel repetition theorem in the following sense. When the provers play a collection of XOR games, an optimal strategy of the provers is to play each instance of the collection independently and optimally. In particular, the success probability of the quantum provers in the n-fold repetition of an XOR game G with quantum value w(G) is exactly (w(G))^n. (2) We show a parallel repetition theorem for two-prover one-round unique games. More specifically, we prove that if the quantum value of a unique game is 1-e, then the quantum value of n-fold repetition of the game is at most (1-e^2/49)^n. We also establish that for certain class of unique games, the quantum value of the n-fold repetition of the game is at most (1-e/4)^n. For the special case of XOR games, our proof technique gives an alternate proof of result mentioned above. 3. Our final result on parallel repetition is concerned with SepQMA(m) proof systems, where the verifier receives m unentangled quantum proofs and the measurement operator corresponding to outcome "accept" is a fully separable operator. We give an alternate proof of a result of Harrow and Montanaro [HM10] that states that perfect parallel repetition theorem holds for such proof systems. The first two results follow from the duality of semidefinite programs and the final result follows from cone programming duality

    Quantum Information and Variants of Interactive Proof Systems

    Get PDF
    For nearly three decades, the model of interactive proof systems and its variants have been central to many important and exciting developments in computational complexity theory such as exact characterization of some well known complexity classes, development of probabilistically checkable proof systems and theory of hardness of approximation, and formalization of fundamental cryptographic primitives. On the other hand, the theory of quantum information, which is primarily concerned with harnessing quantum mechanical features for algorithmic, cryptographic, and information processing tasks has found many applications. In the past three decades, quantum information has been used to develop unconditionally secure quantum cryptography protocols, efficient quantum algorithms for certain problems that are believed to be intractable in classical world, and communication efficient protocols. In this thesis, we study the impact of quantum information on the models of interactive proof systems and their multi-prover variants. We study various quantum models and explore two questions. The first question we address pertains to the expressive power of such models with or without resource constraints. The second question is related to error reduction technique of such proof systems via parallel repetition. The question related to the expressive power of models of quantum interactive proof systems and their variants lead us to the following results. (1) We show that the expressive power of quantum interactive proof systems is exactly PSPACE, the class of problems that can be solved by a polynomial-space deterministic Turing machines and that also admit a classical interactive proof systems. This result shows that in terms of complexity-theoretic characterization, both the models are equivalent. The result is obtained using an algorithmic technique known as the matrix multiplicative weights update method to solve a semidefinite program that characterizes the success probability of the quantum prover. (2) We show that polynomially many logarithmic-size unentangled quantum proofs are no more powerful than a classical proof if the verifier has the ability to process quantum information. This result follows from an observation that logarithmic-size quantum states can be efficiently represented classically and such classical representation can be used to efficiently generate the quantum state. (3) We also establish that the model of multi-prover quantum Merlin Arthur proof system, where the verifier is only allowed to apply nonadaptive unentangled measurement on each proof and then a quantum circuit on the classical outcomes, is no more powerful than QMA under the restriction that there are only polynomial number of outcomes per proof. This result follows from showing that such proof systems also admit a QMA verification procedure. The question related to error reduction via parallel repetition lead us to following results on a class of two-prover one-round games with quantum provers and a class of multi-prover QMA proof systems. (1) We establish that for a certain class of two-prover one-round games known as XOR games, admit a perfect parallel repetition theorem in the following sense. When the provers play a collection of XOR games, an optimal strategy of the provers is to play each instance of the collection independently and optimally. In particular, the success probability of the quantum provers in the n-fold repetition of an XOR game G with quantum value w(G) is exactly (w(G))^n. (2) We show a parallel repetition theorem for two-prover one-round unique games. More specifically, we prove that if the quantum value of a unique game is 1-e, then the quantum value of n-fold repetition of the game is at most (1-e^2/49)^n. We also establish that for certain class of unique games, the quantum value of the n-fold repetition of the game is at most (1-e/4)^n. For the special case of XOR games, our proof technique gives an alternate proof of result mentioned above. 3. Our final result on parallel repetition is concerned with SepQMA(m) proof systems, where the verifier receives m unentangled quantum proofs and the measurement operator corresponding to outcome "accept" is a fully separable operator. We give an alternate proof of a result of Harrow and Montanaro [HM10] that states that perfect parallel repetition theorem holds for such proof systems. The first two results follow from the duality of semidefinite programs and the final result follows from cone programming duality

    Post-Quantum Insecurity from LWE

    Get PDF
    We show that for many fundamental cryptographic primitives, proving classical security under the learning-with-errors (LWE) assumption, does not imply post-quantum security. This is despite the fact that LWE is widely believed to be post-quantum secure, and our work does not give any evidence otherwise. Instead, it shows that post-quantum insecurity can arise inside cryptographic constructions, even if the assumptions are post-quantum secure. Concretely, our work provides (contrived) constructions of pseudorandom functions, CPA-secure symmetric-key encryption, message-authentication codes, signatures, and CCA-secure public-key encryption schemes, all of which are proven to be classically secure under LWE via black-box reductions, but demonstrably fail to be post-quantum secure. All of these cryptosystems are stateless and non-interactive, but their security is defined via an interactive game that allows the attacker to make oracle queries to the cryptosystem. The polynomial-time quantum attacker can break these schemes by only making a few classical queries to the cryptosystem, and in some cases, a single query suffices. Previously, we only had examples of post-quantum insecurity under post-quantum assumptions for stateful/interactive protocols. Moreover, there appears to be a folklore belief that for stateless/non-interactive cryptosystems with black-box proofs of security, a quantum attack against the scheme should translate into a quantum attack on the assumption. This work shows otherwise. Our main technique is to carefully embed interactive protocols inside the interactive security games of the above primitives. As a result of independent interest, we also show a 3-round quantum disclosure of secrets (QDS) protocol between a classical sender and a receiver, where a quantum receiver learns a secret message in the third round but, assuming LWE, a classical receiver does not

    Wireless-channel Key Exchange

    Get PDF
    Wireless-channel key exchange (WiKE) protocols that leverage Physical Layer Security (PLS) techniques could become an alternative solution for secure communication establishment, such as vehicular ad-hoc networks, wireless IoT networks, or cross-layer protocols. In this paper, we provide a novel abstraction of WiKE protocols and present the first game-based security model for WiKE. Our result enables the analysis of security guarantees offered by these cross-layer protocols and allows the study of WiKE\u27s compositional aspects. Further, we address the potential problem of the slow-rate secret-key generation in WiKE due to inadequate environmental conditions that might render WiKE protocols impractical or undesirably slow. We explore a solution to such a problem by bootstrapping a low-entropy key coming as the output of WiKE using a Password Authenticated Key Exchange (PAKE). On top of the new security definition for WiKE and those which are well-established for PAKE, we build a compositional WiKE-then-PAKE model and define the minimum security requirements for the safe sequential composition of the two primitives in a black-box manner. Finally, we show the pitfalls of previous ad-hoc attempts to combine WiKE and PAKE

    Formal Verification of Saber

    Get PDF
    corecore