
 Eindhoven University of Technology

MASTER

Formal Verification of Saber

Meijers, M.C.F.H.P.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3f17fe9b-238a-4df4-9c50-e73ce3f6b427

Formal Verification of
Saber

Master’s Thesis

M.C.F.H.P. Meijers
Supervisor: dr. Andreas T. Hülsing

Department of Mathematics and Computer Science
Coding Theory and Cryptology Group

Committee Members:
dr. Andreas T. Hülsing

prof. dr. Peter Schwabe
dr. Erik P. de Vink

Final version

Thursday 23rd September, 2021
Eindhoven

Abstract

In this thesis, we consider the formal verification of (the specification of) the public-key encryption
scheme provided in Saber, one of the selected few post-quantum cipher suites currently eligible
for potential standardization. Specifically, we carry out a formal verification process concerning
the desired security and correctness properties of Saber’s public-key encryption scheme in the
EasyCrypt tool. The purpose of this undertaking is to attain more assurance regarding the Saber
cipher suite and its properties, assisting the cryptographic community in making a well-informed
decision on the standardization of Saber.

Prior to the actual formal verification endeavor in EasyCrypt, we perform an extensive manual
analysis of Saber’s public-key encryption scheme, constructing hand-written proofs for the scheme’s
security and correctness properties. We purposely structure these proof in a manner that facil-
itates their formal verification. Namely, regarding the security proof, we adopt the code-based,
game-playing approach to the provable security paradigm; this is the principal proof method sup-
ported by EasyCrypt. Furthermore, concerning the correctness proof, we devise an alternative
specification of Saber’s public-key encryption scheme that is equivalent to its original counterpart;
indeed, this alternative specification admits a considerably less strenuous formal verification of the
desired correctness property.

Leveraging the deliberate structure of the hand-written proofs, the formal verification effort for
the desired security and correctness properties closely resembles these proofs. For both of the
considered properties, the results of this formal verification effort are affirmative; that is, these
results indicate that Saber’s public-key encryption scheme indeed satisfies the desired security and
correctness properties.

Formal Verification of Saber iii

Preface

This document comprises the master’s thesis “Formal Verification of Saber”, which, fundament-
ally, is concerned with corroborating Saber’s possession of the desired properties. The rationale
for effectuating this thesis arises from the urgency of replacing our contemporary public-key cryp-
tography with post-quantum alternatives; namely, Saber is a post-quantum cipher suite presently
considered for potential standardization as a partial substitute for the current public-key cryp-
tography. However, due to the limited amount of time and resources, the research in this thesis
does not comprehensively cover the entirety of Saber; instead, it solely considers the most im-
perative and fundamental components of the cipher suite. This thesis constitutes part of the
graduation requirements for a master’s degree in Information Security Technology, a specialized
master’s track within the Computer Science and Engineering master’s program, jointly provided
by the Eindhoven University of Technology and the Radboud University.

At this point, I would like to thank several people for the assistance and opportunities they have
provided me throughout this project; without them, this thesis would have been significantly more
arduous and uneventful. First and foremost, I want to express my gratitude toward my super-
visor, Andreas Hülsing, for numerous things; in particular, among others, these include granting
me the opportunity to carry out this thesis, answering all of my questions on an extensive range of
varying subjects, and generally guiding and supporting me throughout the entire process. Second,
I would like to thank Pierre-Yves Strub for answering each of my questions on EasyCrypt and
directly contributing to my code. Third, I want to show my appreciation to Jan-Pieter D’Anvers
for helping me comprehend Saber by answering all of my queries and giving me access to an early
version (of a chapter) of his dissertation. Fourth, I would like to show my gratitude to Peter
Schwabe for first exposing me to the field of computer-aided cryptography and the Saber cipher
suite by offering me a research internship on the high-speed and high-assurance implementation
of Saber in Jasmin; moreover, I want to thank him for additionally being part of this thesis as
a member of the assessment committee. Penultimately, I would like to show my appreciation to
the teams working on Saber’s and Kyber’s encompassing formal verification projects for allow-
ing me to give a talk introducing these projects and their underlying process at NIST’s third
PQC standardization conference. In the context of this talk, I especially want to thank Manuel
Barbosa, Andreas Hülsing, and Peter Schwabe for giving me feedback on the slides, abstract, and
presentation. Lastly, I would like to thank Erik de Vink for his willingness to join my assessment
committee.

Formal Verification of Saber v

Contents

Contents vii

List of Figures ix

List of Tables xi

List of Listings xiii

1 Introduction 1
1.1 Post-Quantum Cryptograhpy . 2

1.1.1 Saber . 2
1.2 Computer-Aided Cryptography . 3

1.2.1 EasyCrypt . 4
1.3 Related Work . 4
1.4 Purpose and Contribution . 5
1.5 Overview . 6

2 Background Knowledge 7
2.1 Mathematics . 7

2.1.1 Abstract Algebra and Number Theory . 7
2.1.2 Probability Theory . 11

2.2 Cryptography . 12
2.2.1 Public-Key Cryptography . 12
2.2.2 Provable Security . 14
2.2.3 Security Properties . 16
2.2.4 Lattice-Based Cryptography . 17
2.2.5 Random Oracle Model . 19

2.3 Computer-Aided Cryptography . 20
2.3.1 EasyCrypt . 20

2.4 Notation . 25

3 Saber 29
3.1 Preliminaries . 29
3.2 Public-Key Encryption Scheme . 33

3.2.1 Specification . 33
3.2.2 Security . 37
3.2.3 Correctness . 55

4 Formal Verification 71
4.1 Preliminaries . 71

4.1.1 Saber Parameters and Axioms . 72

Formal Verification of Saber vii

CONTENTS CONTENTS

4.1.2 Types, Operators, and Distributions . 73
4.2 Public-Key Encryption Scheme . 81

4.2.1 Specification . 81
4.2.2 Security . 84
4.2.3 Correctness . 97

4.3 Demonstration: Proving Lemmas in EasyCrypt . 108
4.3.1 Fundamental Concepts and Mechanisms . 108
4.3.2 Proof of Step_Game1_Game2 Lemma . 114

5 Conclusions 127
5.1 Future Work . 128

Bibliography 131

viii Formal Verification of Saber

List of Figures

3.1 The General IND-CPA Game . 37
3.2 The IND-CPA Game for Saber.PKE . 38
3.3 The MLWR Game . 39
3.4 The GMLWR Game . 39
3.5 The XMLWR Game . 40
3.6 The GMLWR (Left) and XMLWR (Right) Games in the Random Oracle Model . . . 42
3.7 Initial Game in the Game-Playing Proof of Saber.PKE 45
3.8 Game Sequence in the Game-Playing Proof of Saber’s PKE 46
3.9 Reduction from GameGMLWR

BA0 ,l,µ,q,p
to Distinguishing Game0

A and Game1
A 47

3.10 Reduction from Game2
RA to Game1

A . 48
3.11 Reduction from Game3

RA to Game2
A . 50

3.12 Reduction from GameXMLWR
BA1 ,l,µ,q,p

to Distinguishing Game3
A and Game4

A 54
3.13 Formalization of Standard Correctness for Saber.PKE (Left) and Saber.PKEA (Right) 62
3.14 Formalization of FO-Correctness for Saber.PKE (Left) and Saber.PKEA (Right) . . . 63
3.15 Probabilistic Program Formalizing Correctness Probability Based on Error Expression 67
3.16 Probabilistic Program Formalizing Correctness Probability Computed by Saber’s Script 68

Formal Verification of Saber ix

List of Tables

3.1 Correctness of Saber.PKE and Saber.KEM for Customary Parameter Sets 69

Formal Verification of Saber xi

List of Listings

2.1 Basic Usage of the Functional Specification Language 21
2.2 Basic Specification of Distributions . 23
2.3 Basic Usage of the Imperative Specification Language 23
4.1 Saber’s Parameters . 72
4.2 Saber’s Parameter Requirements . 72
4.3 Types for Polynomial Quotient Ring Rq and Corresponding Coefficient Ring Zq 74
4.4 Types for Vectors and Matrices over Rq and Rp . 74
4.5 Types Representing Abstract Cryptographic Artifacts 75
4.6 Modular Reduction and Conversion Operator with Extensions 76
4.7 Preliminary Operators for Modular Scaling and Flooring 77
4.8 Modular Scaling and Flooring Operators with Extensions 78
4.9 Encoding and Decoding Operator Pairs for Public Key Type pkey 79
4.10 Properties of the Encoding and Decoding Operator Pairs for Public Key Type pkey . . 79
4.11 Distributions Over Rq . 80
4.12 Distributions Over Rp and Seeds . 80
4.13 Module Type for PKE schemes . 81
4.14 Skeleton Structure of Saber.PKE . 81
4.15 Saber.KeyGen’s Specification . 82
4.16 Saber.Enc’s Specification . 82
4.17 Saber.Dec’s Specification . 83
4.18 GameIND-CPA

A,PKE . 84
4.19 Module Type for Adversaries Against GameIND-CPA

A,PKE 85
4.20 Module Types for Adversaries Against GameGMLWR

A,l,µ,q,p and GameXMLWR
A,l,µ,q,p 85

4.21 GameGMLWR
A,l,µ,q,p . 86

4.22 Module Type for Programmable Random Oracles . 86
4.23 Module Types for Adversaries Against GameMLWR

A,l,l,µ,q,p and GameROMGMLWR
A,l,µ,q,p 87

4.24 GameMLWR
A,l,l,µ,q,p . 87

4.25 Reduction Adversary RA Against GameMLWR
RA,l,l,µ,q,p . 88

4.26 Equality of Advantages forAAgainst GameROMGMLWR
A,l,µ,q,p andRA Against GameMLWR

RA,l,l,µ,q,p 89
4.27 Security Theorem Assumption . 90
4.28 Reduction Adversary RA Against Game2

RA . 90
4.29 Reduction Adversary BA0 Against GameGMLWR

BA0 ,l,µ,q,p
. 91

4.30 First and Second Step in Game-Playing Security Proof 93
4.31 Equivalence Between GameIND-CPA

A,Saber.PKE and Game0
A . 95

4.32 Analysis of Game4
A . 95

4.33 Intermediate Result and Security Theorem . 96
4.34 Saber.EncA’s Specification . 98
4.35 Saber.DecA’s Specification . 99
4.36 Equivalence between Saber.PKE and Saber.PKEA . 99
4.37 Standard Correctness Definition (i.e., PProgSTDCOR

PKE) 101

Formal Verification of Saber xiii

LIST OF LISTINGS LIST OF LISTINGS

4.38 Equivalence Between PProgSTDCOR
Saber.PKE and PProgSTDCOR

Saber.PKEA 101
4.39 Module Type for Adversaries Against GameFOCOR

A,PKE . 101
4.40 FO-Correctness Definition (i.e., GameFOCOR

A,PKE) . 102
4.41 Error Terms errbq and errb′q . 103
4.42 Error Expression . 103
4.43 PProgCOR . 104
4.44 Equivalences Between PProgSTDCOR

Saber.PKEA, GameFOCOR
A,Saber.PKEA, and PProgCOR 104

4.45 PProgδCOR . 105
4.46 Pr

[
PProgδCOR = 1

]
is Constant . 106

4.47 1− δ Probability Assumption . 106
4.48 Equivalences Between PProgSTDCOR

Saber.PKE, GameFOCOR
A,Saber.PKE, and PProgδCOR 107

4.49 Pr
[
PProgSTDCOR

Saber.PKE(m) = 1
]

= Pr
[
GameFOCOR

A,Saber.PKE = 1
]

= 1− δ 107
4.50 Example Goal 1 . 108
4.51 Example Goal 2, Equivalent to Example Goal 1 . 109
4.52 Example pRHL Judgment Goal . 109
4.53 Example pRHL Statement Judgment Goal . 110
4.54 Proof Demonstration 0 – Specification of Step_Game1_Game2 Including Proof 114
4.55 Proof Demonstration 1 – Initial Goal . 115
4.56 Proof Demonstration 2 – Goals After have Tactic . 115
4.57 Proof Demonstration 3 – Goals After Chain of byequiv and trivial Tactics 116
4.58 Proof Demonstration 4 – Goals After proc and (Chain of) inline Tactics 117
4.59 Proof Demonstration 5 – Goals After wp Tactic . 118
4.60 Proof Demonstration 6 – Goals After call Tactic . 119
4.61 Proof Demonstration 7 – Goals After auto Tactic . 120
4.62 Proof Demonstration 8 – Goals After call and auto Tactics 121
4.63 Proof Demonstration 9 – Goals After progress Tactic 122
4.64 Proof Demonstration 10 – Goals After Chain of congr Tactics 123
4.65 Proof Demonstration 11 – Goals After Chain of rewrite and simplify Tactics 124
4.66 Proof Demonstration 12 – Goals After rewrite Tactic 124
4.67 Proof Demonstration 13 – Goals After trivial and rewrite Tactics 125
4.68 Proof Demonstration 14 – Final Goal . 126

xiv Formal Verification of Saber

Chapter 1

Introduction

Cryptography is the scientific field concerned with guaranteeing the security of information, both
in communication and storage. In this context, “security” may refer to any desirable properties
that one wants to assure and preserve in the presence of an unauthorized, potentially malicious
third party. Originally, confidentiality was the only such property that cryptography regarded;
nevertheless, over time, the set of considered properties has extended significantly. Examples
of some relatively prominent properties that contemporary cryptography concerns in addition to
confidentiality are authenticity, integrity, and non-repudiation [1].

At present, in an attempt to satisfactorily achieve the above-mentioned security in numerous differ-
ent contexts, the field of cryptography has advanced to the point where a plethora of cryptographic
constructions is readily available for deployment. Fundamentally, all of these constructions are
comprised of (a combination of) cryptographic primitives. A prevalent category of such primitives
is the category of public-key primitives. Intrinsic to the primitives in this category is that they
require two mathematically related artifacts to function correctly: a public key and a private key.
As their names suggest, the former key may be openly distributed to every entity in the considered
communication medium, while the latter key must remain exclusive to the owner of the key pair.
Utilizing the mathematical relation between the keys and the fact that nobody but the rightful
owner has access to the private key, the primitive intends to provide a certain functionality satis-
fying a set of security properties. Indeed, the security of such a primitive therefore wholly relies
on the fact that knowledge of the public key (or any other public information that the primitive
produces) does not provide any information about the private key nor enables the violation of
the primitive’s security properties in some other manner. In turn, this is entirely contingent on
the hardness of the mathematical problem(s) underlying the primitive’s operations and the re-
lationship between the keys. Currently, nearly all of the public-key primitives are based on the
integer factorization or discrete logarithm problem [2]. Albeit these problems are hard to solve for
classical computers, i.e., computers operating on classical bits, they are trivial to solve for quantum
computers, i.e., computers operating on quantum bits [3]. Consequently, an operational quantum
computer would be able to compromise the security of all such public-key primitives and, as a
result, the currently employed constructions that utilize these primitives [4]. Since the advent of
operational quantum computers is an envisioning that is likely to become a reality, a timely re-
placement of the contemporary cryptographic constructions reliant on public-key primitives with
quantum-resistant alternatives is imperative [5].

Generally, confidence in the fact that cryptographic constructions possess the desired proper-
ties is established through the extensive scrutinization of these constructions and their proofs,
predominantly performed by the cryptographic community. Nevertheless, despite this extensive

Formal Verification of Saber 1

1.1. POST-QUANTUM CRYPTOGRAHPY CHAPTER 1. INTRODUCTION

scrutinization, faulty constructions and incorrect proofs frequently go unnoticed for extended peri-
ods of time, as exemplified by a multitude of instances throughout history [6]. In part, these issues
instigated the inception of the scientific field of computer-aided cryptography. This field seeks to
develop approaches to the construction and verification of cryptography that employ computers
to formally guarantee the veracity of claims related to the desired properties of cryptographic
constructions [7]. The utilization of computers in this manner assists in reducing the complexity
of the construction and verification effort while simultaneously providing a consistently high level
of rigorousness.

Combining the subjects introduced above, this thesis concerns the computer-aided (or formal)
verification of the security and correctness of several cryptographic constructions from a post-
quantum cryptographic suite that utilizes quantum-resistant public-key primitives. Expanding on
this, the remainder of this chapter is organized as follows. First, Section 1.1 and Section 1.2 further
introduce the fields of post-quantum cryptography and computer-aided cryptography; specifically,
these sections extend the above introductions and elaborate on the more specific parts of these
fields relevant to this thesis. Second, Section 1.3 discusses some of the earlier and, at the time of
writing, ongoing work related to the work presented here. Third, Section 1.4 explains the purpose
of this thesis and argues for the significance of its contribution to the field of cryptography. Lastly,
Section 1.5 provides an overview of the rest of this thesis.

1.1 Post-Quantum Cryptograhpy
Over the past few decades, a considerable amount of research has been conducted on the feasibility,
applications, and consequences of quantum computing. This research has led to plentiful significant
discoveries, many of which are related to the protection of digital information. In particular, one
of these discoveries asserts that, as soon as sufficiently powerful quantum computers become
operational, a substantial part of our contemporary cryptography is trivial to break; this assertion
primarily concerns the current public-key cryptography [8, 9]. As a result, in the presence of
such quantum computers, it would be impossible to ensure the security of information through
this public-key cryptography. Moreover, information communicated or stored at present, even if
secure by current standards, is at risk of having its security compromised in the future; indeed, if
such information is preserved until an adequate quantum computer becomes available, the security
of this information can trivially be compromised [10]. Although it is not entirely clear when the
first sufficiently powerful quantum computer will be operational, the tremendous progress made
hitherto, the currently remaining challenges, and the exceptional amount of interest in this topic
suggest that this could well transpire within the next several decades [5, 11]. Considering the
standardization and ubiquitous deployment of post-quantum (i.e., quantum-resistant) alternatives
to the contemporary public-key cryptography will bring about numerous novel challenges that
require a significant amount of time and effort to resolve, it is of utmost importance to commence
this process promptly [12].

1.1.1 Saber
At the time of writing, the National Institute of Standards and Technology (NIST) is hosting a
competition with the purpose of standardizing post-quantum alternatives to the current public-
key cryptography [13]. Recently, this competition has advanced to its final round, leaving only a
selected few of the best candidates. One of these final candidates is Saber, a suite of post-quantum
cryptographic constructions for public-key encryption and key-establishment. Specifically, Saber
consists of a Key Exchange (KE) scheme, a Public-Key Encryption (PKE) scheme, and a Key
Encapsulation Mechanism (KEM) [14]. These schemes are closely related due to the fact that the
KEM encompasses the PKE scheme, and the PKE scheme is based on the KE scheme. Despite
this close relation, each of these schemes attempts to fulfill a unique security property: the KE
scheme strives to generate keys that are indistinguishable from random keys, a property termed

2 Formal Verification of Saber

CHAPTER 1. INTRODUCTION 1.2. COMPUTER-AIDED CRYPTOGRAPHY

“IND-RND security”; the PKE scheme intends to provide ciphertext Indistinguishability under
Chosen-Plaintext Attack (IND-CPA), a property commonly referred to as “IND-CPA security”;
and the KEM aims to yield ciphertext Indistinguishability under Adaptive Chosen-Ciphertext
Attack (IND-CCA2), a property generally denominated “IND-CCA2 security”1.

As aforementioned, the security of cryptographic constructions utilizing public-key primitives is
contingent on the hardness of the primitive’s underlying mathematical problem; the schemes from
the Saber cipher suite are no exception. Furthermore, as Saber’s schemes are supposed to be
quantum-resistant, the problem underlying each scheme must not be efficiently solvable by both
classical and quantum computers. Since these schemes are built on top of each other, the underly-
ing mathematical problem is the same for all of them; this problem is dubbed the Module-Learning
With Rounding (MLWR) problem, a variant of the Learning With Rounding (LWR) problem [15].
Indeed, even considering the possibility of quantum computing, no efficient solving method exists
for these problems [16]. Combined with the other design decisions, this choice of mathematical
problem aspires to maximize the schemes’ simplicity, efficiency, and flexibility [14].

At the end of its competition, NIST will presumably exclusively standardize the KEMs of the
victors, establishing Saber’s KEM as the predominant scheme of the Saber cipher suite. This
thesis directs its attention at the unique core component of Saber’s KEM, i.e., Saber’s PKE
scheme, aspiring to analyze and formally verify the proposed security and correctness properties
of this PKE scheme. Indeed, due to the composition of Saber’s KEM, its properties are entirely
contingent on the security and correctness properties of Saber’s PKE scheme. As such, although
Saber’s PKE scheme will probably not be standardized as an independent scheme, the formal
verification of its properties still has considerable merit.

1.2 Computer-Aided Cryptography
Historically, cryptographic constructions have been demonstrated to possess their desired proper-
ties by means of hand-written proofs. However, the innovation and development in the field of
cryptography have led to a significant increase in the complexity of these constructions and their
proofs; as such, hand-written proofs have become substantially more challenging to carry out cor-
rectly. Multiple instances of proofs exist that, although extensively scrutinized and universally
considered correct, turned out to be faulty. Furthermore, in some of these cases, the correspond-
ing cryptographic construction was additionally found to be insecure [6]. These instances clearly
exemplify the intricacy of properly contriving and verifying cryptographic constructions and their
proofs.

In addition to the above concern, even if a cryptographic construction and its proof are entirely
correct, implementation flaws may invalidate any of the construction’s properties and guaran-
tees. Alternatively stated, despite the soundness of a construction’s specification and associated
proof, none of the desired properties might actually be achieved by a faulty implementation. Con-
sequently, such an implementation may, for example, not provide the level of security that the
corresponding construction intends to provide, allowing a malicious entity to compromise the se-
curity of any information processed by this implementation. As with the previous concern, ample
examples exist of this phenomenon, signifying the importance of proper cryptographic implement-
ations [17].

As alluded to before, the above-mentioned issues partially induced the establishment of the sci-
entific field of computer-aided cryptography. This field endeavors to devise methods for the con-
struction and verification of cryptography that employ computers to formally guarantee the vera-
city of claims related to the desired properties of both specifications and implementations [7].
The purpose of these computer-assisted methods is to reduce the complexity of the manual labor

1If any of these concepts seems unfamiliar, refer to Chapter 2 for an explanation and further insight.

Formal Verification of Saber 3

1.3. RELATED WORK CHAPTER 1. INTRODUCTION

required in the construction and verification process while consistently enforcing exceptional rig-
orousness. In turn, this increases confidence in the specifications and implementations that are
devised and analyzed in this manner.

1.2.1 EasyCrypt
Over the years, the research conducted in the field of computer-aided cryptography has produced
copious tools and frameworks that utilize computers to facilitate the construction and verification
of cryptography in a multitude of different ways and contexts [7]. Considering the context in
which Saber’s PKE scheme and the corresponding proofs manifests themselves, the tool of choice
for this thesis is EasyCrypt.

EasyCrypt is a tool predominantly aimed at the formal verification of the security properties of
cryptographic constructions [18]. To this end, the tool adopts the code-based approach, model-
ing common security-related concepts, such as security properties and hardness assumptions, as
probabilistic programs [19]. Moreover, the tool’s higher-order ambient logic, standard library, and
other built-in mechanisms allow for, among others, extensive mathematical reasoning, the realiza-
tion of different types of proofs, and the modular composition of cryptographic constructions. Due
to this voluminous set of features, EasyCrypt’s capabilities exceed the mere formal verification
of security properties; particularly, the tool is additionally capable of verifying other customary
properties of cryptographic constructions, e.g., correctness properties. As will become apparent
in the subsequent chapters, the above-mentioned approach and expressiveness make EasyCrypt
quite apt for the formal verification of Saber’s PKE scheme.

1.3 Related Work
Although this thesis comprises the first publicly known formal verification endeavor regarding
(the specification of) Saber’s PKE scheme, closely related work has already been carried out
or is currently in progress. Presently, we briefly discuss the most notable and relevant of this
work.

Previously in my studies, i.e., for my research internship, I implemented Saber’s PKE scheme and
KEM employing Jasmin2 [20]. Jasmin is a framework designed for the implementation of high-
assurance and high-speed cryptography [21]; this framework consists of three primary components:
a programming language, a certified compiler, and a set of verification tools. Noteworthy, this
latter component comprises multiple tools that, given a program written in Jasmin’s program-
ming language, produce specifically constructed EasyCrypt code. Subsequently, this code can be
analyzed in EasyCrypt to formally verify a particular property that is typically required from
cryptographic implementations; specifically, depending on the tool utilized to generate the code,
this concerns the constant-time and functional correctness properties [22]. In addition to these
tools, Jasmin contains a tool that, instead of generating EasyCrypt code, fully automatically
verifies the memory safety of a given Jasmin implementation; naturally, this is also a customary
property expected from cryptographic implementations [22]. As such, EasyCrypt and Jasmin can
be employed in conjunction to effectuate a general formal verification process, enabling the formal
verification of both the specifications and implementations of cryptographic constructions. In
fact, the work performed in this thesis and the aforementioned research internship is part of an
encompassing project that, following this general formal verification process based on EasyCrypt
and Jasmin, aspires to formally verify the specifications of Saber’s PKE scheme and KEM, as well
as construct formally verified, optimized implementations of these schemes.

Analogous to the above-mentioned encompassing project for Saber, a formal verification project
is currently ongoing for Kyber, a post-quantum cipher suite consisting of an IND-CPA secure

2The corresponding GitHub repository can be found at: https://github.com/MM45/SABER-Jasmin.

4 Formal Verification of Saber

https://github.com/MM45/SABER-Jasmin

CHAPTER 1. INTRODUCTION 1.4. PURPOSE AND CONTRIBUTION

PKE scheme and an IND-CCA2 secure KEM [23]. Similarly to Saber, Kyber is a finalist of
NIST’s post-quantum cryptography competition in the category for public-key encryption and
key-establishment [13]. The formal verification project for Kyber follows the same process as
the project for Saber; that is, utilizing EasyCrypt and Jasmin, the formal verification project for
Kyber attempts to formally verify the specifications of Kyber’s PKE scheme and KEM, as well as
devise formally verified, optimized implementations of these schemes.

With the purpose of introducing the above-mentioned formal verification process and projects to
the cryptographic community, I gave a talk at NIST’s third post-quantum cryptography stand-
ardization conference [24]. Refer to this talk for more information on these subjects.

1.4 Purpose and Contribution
As indicated in the preceding sections, this thesis considers the formal verification of the security
and correctness properties of Saber’s PKE scheme. The purpose of this endeavor is to establish a
higher level of confidence in the (in)security and (in)correctness of this scheme and, by extension,
Saber’s KEM. Namely, Saber’s KEM is constructed from Saber’s PKE scheme through a generic
transformation, i.e., a variant of the so-called Fujisaki-Okamoto (FO) transformation. A crucial
aspect of this transformation is that the properties of the resulting KEM are contingent on the
properties of the initial PKE scheme. In particular, considering Saber’s case, for Saber’s KEM
to be IND-CCA2 secure, Saber’s PKE scheme must be IND-CPA secure and sufficiently correct;
furthermore, the correctness of Saber’s KEM is identical to that of Saber’s PKE scheme [14, 25].
Suggesting its validity, this transformation has been formally verified by independent previous
work [26]. As such, by formally verifying the security and correctness properties of Saber’s PKE
scheme, the confidence in the desired properties of both Saber’s PKE scheme and KEM increases;
conversely, the confidence in the desired properties of both schemes decreases if the formal veri-
fication effort suggests that Saber’s PKE scheme does not satisfy its conjectured security and
correctness properties.

A caveat of leveraging the result of the above-mentioned formal verification effort concerning the
FO transformation to argue for the correctness and security of Saber’s KEM is that this effort
has not been carried out in EasyCrypt; instead, it has been performed in the qRHL tool [26].
Consequently, albeit the result of this effort suggests the transformation’s correctness, it is not
immediately apparent that this result can directly be integrated with the results of this thesis;
this is predominantly due to the nontrivial syntactical and semantical differences between qRHL
and EasyCrypt. As such, to reduce the risk of reaching unwarranted conclusions, this integration
should be substantiated by a sound justification that corroborates the compatibility of the results.
Indeed, given the complexity of the disparities between the considered tools, such a justification
is presumably quite intricate and difficult to (manually) verify. Naturally, this intricacy enhances
the potential of constructing an erroneous justification; if practicable, formally verifying the justi-
fication might partially alleviate this issue. Completely circumventing the predicaments pertinent
to the construction of such a sound justification, the project that encompasses this thesis’s work
envisions to formally verify the desired properties of Saber’s KEM in EasyCrypt.

Thus far, no other formal verification endeavors regarding Saber’s schemes have been carried out
(or, at least, no such endeavors are publicly known). Indeed, at the time of writing, Saber’s schemes
have solely been proved secure and correct through extensively scrutinized hand-written proofs.
However, as explicated above, this entirely manual process is relatively error-prone and unrigorous
compared to the computer-assisted scrutinization approach of formal verification. Hence, the work
carried out in this thesis serves its purpose; that is, the performed work establishes a higher level
of confidence in the (in)security and (in)correctness of Saber’s PKE scheme and, by extension,
Saber’s KEM. Since this assists the cryptographic community in making a well-informed decision
on whether to standardize Saber as a post-quantum cipher suite, this thesis constitutes a significant

Formal Verification of Saber 5

1.5. OVERVIEW CHAPTER 1. INTRODUCTION

contribution to the field of cryptography.

1.5 Overview
In total, this thesis comprises five chapters of which this introductory chapter is the initial one;
hence, the remainder of the thesis consists of four additional chapters. The following constitutes
an overview of these chapters, concisely introducing their order, titles, and content.

• Chapter 2 - Background Knowledge
Discusses the background knowledge required to facilely understand the discussion in the
succeeding chapters. In particular, this chapter examines several subjects from the fields of
mathematics, cryptography, and computer-aided cryptography.

• Chapter 3 - Saber
Elaborates on Saber and, particularly, its PKE scheme. More precisely, this chapter intro-
duces the context in which Saber manifests itself, explains the specification of Saber’s PKE
scheme, and performs (manual) analyses concerning the security and correctness properties
of Saber’s PKE scheme.

• Chapter 4 - Formal Verification
Covers the formal verification effort carried out for Saber’s PKE scheme. Specifically, this
chapter considers the formalization of the relevant concepts and artifacts and, utilizing these
formalizations, expands on the formal verification of Saber’s PKE scheme with respect to its
security and correctness properties. Furthermore, this chapter gives a demonstration on the
(lemma-)proving process in EasyCrypt by explicating the concrete proof of a single lemma
employed in the formal verification effort concerning Saber’s PKE scheme.

• Chapter 5 - Conclusion
Draws conclusions from the material presented in this thesis and discusses potential future
work.

6 Formal Verification of Saber

Chapter 2

Background Knowledge

Following the introductory chapter, this chapter provides the background knowledge necessary
to comprehend the discussions presented throughout this thesis facilely; in addition, this chapter
specifies the notational guidelines and conventions. More precisely, the provided background
knowledge comprises several subjects from the fields of mathematics, cryptography, and computer-
aided cryptography. Although the coverage of these subjects should provide sufficient information
to follow the remainder of this thesis comfortably, it does not encompass all material related to
Saber and its formal verification. In particular, certain rudimentary concepts within the relevant
branches of mathematics and computer science are merely concisely summarized, primarily serving
as a brief reminder, or not elaborated on at all.

The remainder of this chapter is structured as follows. First, Section 2.1 explains the mathematics
that underlies Saber and its analysis; this explanation covers topics from the branches of (abstract)
algebra, number theory, and probability theory. Second, Section 2.2 introduces the relevant no-
tions and concepts from the field of cryptography; among others, this section discusses the subjects
of public-key cryptography, provable security, and lattice-based cryptography. Third, Section 2.3
elaborates on material related to computer-aided cryptography, primarily fixating on the Easy-
Crypt tool. Lastly, Section 2.4 describes the notational guidelines and conventions considered
throughout.

2.1 Mathematics
The material discussed in this section and more elaborate explications thereof can be found in most
elementary books on the considered subjects. Examples of such books are the following: regarding
abstract algebra, [27] and [28]; concerning number theory, [29] and [30]; and for probability theory,
[31].

2.1.1 Abstract Algebra and Number Theory
Several topics from the branches of abstract algebra and number theory are fundamental to the
work in this thesis; most notably, this concerns the topics of modular arithmetic and algebraic
structures based on this arithmetic. In the ensuing, we briefly recapitulate the relevant rudiment-
ary material from these topics and, afterward, elaborate on the manifestation of these topics in
this thesis.

Formal Verification of Saber 7

2.1. MATHEMATICS CHAPTER 2. BACKGR. KNOWLEDGE

Euclidean Division and the Modulo Operation

With respect to integers, Euclidean division is the division of an integer, i.e., the dividend, by
another integer, i.e., the divisor, producing a quotient and a remainder. Here, both the quotient
and the remainder are integers; moreover, the remainder lies between 0 (including) and the absolute
value of the divisor (excluding). An important property of Euclidean division is that, assuming
the divisor does not equal 0, the quotient and remainder always exist and are unique. More
formally, given two integers x and y, where y 6= 0, there exists unique integers q (quotient) and r
(remainder) such that 0 ≤ r < |y| and the following equation holds.

x = q · y + r

Intimately related to Euclidean division, the modulo operation, denoted by mod, is solely con-
cerned with computing the above-discussed remainder; i.e., considering the same context as above,
the ensuing equation is veracious.

r = x mod y

Modular Arithmetic

Modular arithmetic refers to a system of arithmetic (for integers) that is defined with respect
to a particular strictly positive integer, the modulus. In such a system, two integers are said to
be congruent if their difference is an integer multiple of the considered modulus. That is, given
integers x, y, k, and n, where 1 < n, then x and y are congruent with respect to modulus n if
x−y = k ·n; equivalently, x and y are congruent with respect to modulus n if x mod n = y mod n.
Grouping the integers based on this congruence relation, we obtain a finite number of distinct
integer collections; these collections are referred to as congruence classes and, together, they
comprise all integers.

The fundamental operations in a modular arithmetic system are identical to those for the integers;
nevertheless, the computations in a modular arithmetic system are carried out on the above-
mentioned congruence classes instead of on integers. Practically, performing a computation in a
modular arithmetic system is straightforwardly accomplished by, for each considered congruence
class, choosing an arbitrary integer from this class and, subsequently, carrying out the computation
with these integers. Irrespective of the representative integer chosen for each congruence class, the
outcome of this computation invariably belongs to the same congruence class.

Sets, Groups, and Rings

In mathematics, a set can refer to any collection of distinct mathematical objects. Building on this
concept, a group is a set with a binary operator, commonly referred to as “addition”, satisfying
the following axioms. In describing these axioms, we denote the group’s set and binary operator
by S and +, respectively.

• Closure
For all x, y ∈ S, we have x+ y ∈ S.

• Associativity
For all x, y, z ∈ S, we have (x+ y) + z = x+ (y + z).

• Identity Element
There exists a unique element e ∈ S such that, for all x ∈ S, we have e+ x = x+ e = x.

• Inverse Element
For all x ∈ S, there exists a y ∈ S such that x + y = e, where e is the identity element
defined in the previous axiom.

8 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.1. MATHEMATICS

In case the group’s addition operator moreover satisfies the commutativity axiom, then the group
is called a commutative group or an abelian group; this axiom is defined below.

• Commutativity
For all x, y ∈ S, we have x+ y = y + x.

Harnessing the concept of an abelian group, a ring is an abelian group with a second binary
operator, customarily denominated “multiplication”, defined on the corresponding set. Naturally,
besides conforming to the abelian group axioms regarding its addition operator, a ring addition-
ally satisfies several axioms concerning its multiplication operator. More precisely, these axioms
concern the closure of S under multiplication, the associativity of multiplication, the existence of
an identity element in S with respect to multiplication, and the distributivity of multiplication
over addition. Indeed, the former three axioms are analogs of the above-defined “Closure”, “As-
sociativity”, and “Identity Element” axioms; contrarily, the distributivity axiom is entirely novel
and states the following. Here, we denote the multiplication operator by ·.

• Distributivity
For all x, y, z ∈ S, we have x · (y + z) = (x · y) + (x · z) and (x+ y) · z = (x · z) + (y · z).

Furthermore, if the ring’s multiplication operator satisfies the cognate of the aforementioned “Com-
mutativity” axiom, the ring is termed a commutative ring.

Finally, an algebraic structure is a non-empty set equipped with a (potentially empty) set of
operators and a finite set of axioms defining the behavior of these operators; certainly, groups and
rings are examples of algebraic structures.

Univariate Polynomials

Univariate Polynomials are mathematical expressions consisting of a sum of terms, where each
term is constructed as the multiplication of a coefficient and a non-negative power of the considered
indeterminate. Here, the coefficients represent constants from a particular commutative ring, while
the indeterminate signifies an abstract value from the same commutative ring1. Denoting the
coefficients by ai and the indeterminate by X, we can represent any univariate polynomial a(X)
as follows.

a(X) =
∞∑
i=0

ai ·Xi

This summation can be shortened based on the degree of a(X), which equals the greatest i for
which ai 6= 0, where 0 signifies the ring’s identity element with respect to addition. Specifically,
assuming the degree of a(X) equals n, the above can be rewritten as given below

a(X) =
n∑
i=0

ai ·Xi

The addition and multiplication operators for univariate polynomials are straightforwardly defined
based on the (properties of the) analogous operations of the underlying ring.

Crucially, cognates of the previously introduced Euclidean division and modulo operation exist
in the context of univariate polynomials. In particular, given two polynomials a(X) and b(X),

1Technically, polynomials may be defined over different types of algebraic structures as well; however, since this
thesis only considers polynomials over commutative rings, such generalization is gratuitous.

Formal Verification of Saber 9

2.1. MATHEMATICS CHAPTER 2. BACKGR. KNOWLEDGE

where b(X) has a unit as its leading coefficient, there exists unique polynomials q(X) and r(X)
such that either r(X) = 0 or deg(r(X)) < deg(b(X)), and the following equation holds2.

a(X) = q(X) · b(X) + r(X)

Correspondingly, considering the same context, the imminent equation concerning the modulo
operation is veracious.

r(X) = a(X) mod b(X)
In consequence of this Euclidean division for polynomials, the aforementioned concept of mod-
ular arithmetic also exists in the context of univariate polynomials. Namely, in this context,
two polynomials a(X) and b(X) are congruent with respect to a (polynomial) modulus p(X) if
a(X) mod p(X) = b(X) mod p(X). As with the integers, grouping the polynomials based on this
congruence relation produces a finite number of distinct sets of polynomials; the union of these sets
comprises all polynomials. Moreover, computations in such a system are carried out analogously
to the computations in a modular arithmetic system for integers; i.e., computations are performed
on the considered congruence classes, which practically entails replacing each congruence class in
a computation with an arbitrary polynomial from this class and, afterward, operating on these
polynomials.

Lastly, although “polynomials” is an umbrella term encompassing both univariate and multivari-
ate polynomials, we use “polynomials” synonymously with “univariate polynomials” throughout
this thesis. Indeed, since we solely consider univariate polynomials, this should not cause any
ambiguity.

Vectors and Matrices

A matrix is a two-dimensional array with a fixed number of rows and columns; at each intersection
of these rows and columns, the matrix contains an entry, i.e., an element of a commutative ring 3.
If a matrix has m rows and n columns, we say that the matrix has dimension m×n; additionally,
in the special case that m = 1 or n = 1, the matrix may also be referred to as a n-dimensional
row vector or a m-dimensional column vector, respectively. At times where it is either evident or
irrelevant whether the considered object is a row vector or a column vector, we will frequently
omit “row” or “column”.

Regarding matrices and vectors, several fundamental operators are of importance for the work in
this thesis. First, a matrix’s rows and columns may be swapped in a pair-wise manner through
the transpose operator, denoted by ·T ; more precisely, applying this operator to a matrix swaps
the first row with the first column, the second row with the second column, et cetera. Second,
matrix addition is only well-defined for matrices with an identical dimension; the addition of two
such matrices produces the matrix that results from entry-wise addition. Third, a matrix can
be multiplied by a single element from their entry ring; this multiplication is denominated scalar
multiplication and produces the matrix that is obtained from individually multiplying each of the
original matrix’s entries by the single element. At last, matrix multiplication is solely well-defined
if the number of columns of the left-hand side matrix is equal to the number of rows of the right-
hand side matrix. If this is the case, the entry at the i-th row and the j-th column of the resulting
matrix is computed by multiplying each entry in the i-th row of the left-hand side matrix by the
corresponding entry in the j-th column of the right-hand side matrix and, subsequently, summing
these entry-wise products. Indeed, the number of rows of the resulting matrix equals that of the
left-hand side matrix; similarly, the number of columns of the resulting matrix is identical to that
of the right-hand side matrix.

2A unit is an element of a ring that has an inverse with respect to the ring’s multiplication operator. Further-
more, deg(·) denotes, as its name suggests, the degree of its argument.

3As with polynomials, matrices can technically be defined over algebraic structures other than commutative
rings; nevertheless, again, because this thesis solely regards matrices over commutative rings, such generalization
is unnecessary.

10 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.1. MATHEMATICS

Structures of Interest

Having recapitulated the relevant rudimentary concepts from (abstract) algebra and number the-
ory, we introduce the algebraic structures that are of particular interest for this thesis.

First, the (commutative) ring of integers modulo n, where n is an integer greater than 1, consti-
tutes the most fundamental algebraic structure ubiquitously utilized throughout this thesis. This
ring precisely corresponds to the above-discussed modular arithmetic system for integers with
respect to modulus n. That is, the ring’s set comprises the congruence classes of this modular
arithmetic system; furthermore, the ring’s addition and multiplication operator are carried out on
the congruence classes, as in the modular arithmetic system. Indeed, the combination of this set
with these operators satisfies the commutative ring axioms as a direct consequence of the fact that
the set of integers with integer addition and multiplication conforms to these same axioms.

Second, analogous to the ring of integers modulo n, the (commutative) ring of polynomials modulo
p(X), where p(X) is a polynomial with a unit as its leading coefficient, exactly corresponds to the
aforementioned modular arithmetic system for polynomials with respect to p(X). Furthermore,
we exclusively consider such polynomial rings concerning polynomials over the ring of integers
modulo n.

Unless explicitly stated otherwise, in computations concerning elements from instances of the two
above-introduced rings, we assume canonical representatives of the congruence classes. Essentially,
the canonical representative of a congruence class is the remainder obtained through Euclidean
division of any element within that congruence class; by definition, such a representative is itself
included in the congruence class. Certainly, these canonical representatives are, in the case of
integers, the (unique) smallest element and, in the case of polynomials, the (unique) lowest-degree
element of their respective congruence classes. Regarding a ring of integers modulo n, this implies
that each element is represented by an integer in the range [0, n − 1]. Moreover, for a ring of
polynomials modulo p(X), this validates the assumption that each element is represented by a
polynomial with a degree strictly less than the degree of p(X).

Finally, we frequently utilize groups of m×n-dimensional matrices over a particular commutative
ring; in most cases, this commutative ring constitutes an instance of the above-mentioned ring of
polynomials modulo p(X).

2.1.2 Probability Theory
Albeit less ubiquitously than the topics from abstract algebra and number theory, we occasionally
employ concepts from the field of probability theory; these concepts primarily regard particu-
lar probability computations and distributions. Presently, we succinctly summarize the relevant
material related to these concepts. Here, we predominantly provide intuitive descriptions and
definitions, abstracting away from unnecessary mathematical granularity and technicalities; this
should be adequate for the work in this thesis.

Probability Computations

In probability theory, a random experiment is a repeatable procedure with a well-defined set of
distinct possible outcomes, the sample space. If this sample space is discrete, which is invariably
the case throughout this thesis, each outcome can be associated with a particular probability
that denotes the likelihood of the outcome happening; axiomatically, this probability must be a
value in the continuous range [0, 1] and the probabilities of all possible outcomes must precisely
sum to 1. Combining several possible outcomes, an event is any subset of the sample space4.
An event has occurred if the outcome of the random experiment is contained within the event.

4Indeed, an event can also be a singleton set comprising a single possible outcome.

Formal Verification of Saber 11

2.2. CRYPTOGRAPHY CHAPTER 2. BACKGR. KNOWLEDGE

Correspondingly, the probability of an event’s occurrence is defined as the sum of the probabilities
associated with the outcomes encompassed by the event. Two events are mutually exclusive if
their intersection equals the empty set, i.e., the events do not share any mutual outcomes; two
events are independent if they do not influence each other’s probability of occurring. Regarding the
probability computations in this thesis, we exclusively consider mutually exclusive events.

Given n mutually exclusive events Ai, where 1 ≤ i ≤ n, with associated probabilities Pr[Ai], the
following identity defines the probability of any of these events occurring.

Pr
[
n⋃
i=1

Ai

]
=

n∑
i=1

Pr[Ai]

Probability Distributions

Intuitively, a probability distribution, or distribution, is a mathematical function that defines the
probability of occurrence for each event considered in a random experiment. If the set of these
events is countable, then the probability distribution is discrete. In this thesis, we merely con-
duct one type of random experiment called sampling: the random extraction of a single element
from a set. This random experiment exclusively considers all singleton events, each comprising a
single possible outcome. As such, the probability of extracting a specific element in this random
experiment is equal to the probability of occurrence associated with the corresponding (singleton)
event; certainly, this is contingent on the considered distribution. In total, we employ two distri-
butions: the (discrete) uniform distribution and the centered-binomial distribution; both of these
distributions are discrete.

The discrete uniform distribution assigns an equal probability of occurrence to each possible out-
come. As such, the probability of obtaining a specific element by sampling from this distribution
is equal for all elements in the considered (countable) set.

The centered binomial distribution is a discrete probability distribution designed to approximate
a discrete Gaussian distribution while simultaneously facilitating efficient and secure implement-
ations in software [32]. Parameterized by a strictly positive integer µ, the centered binomial
distribution considers, by definition, the integer range [−µ,−µ+1, . . . , µ−1, µ] as the (countable)
set of possible outcomes; furthermore, the probability of acquiring a specific element k from this
range by sampling from the centered binomial distribution with parameter µ is defined by the
following function [33].

fµ(k) = (2 · µ)!
(µ+ k)! · (µ− k)! · (

1
2)2·µ

2.2 Cryptography
In this section, the covered material without locally provided references can, with the exception
of the material concerning lattice-based cryptography, be found in the majority of fundamental
cryptography books, e.g., [1] and [34]. For the material regarding lattice-based cryptography, there
exist slightly more dedicated books such as [35].

2.2.1 Public-Key Cryptography
As indicated in Chapter 1, this thesis analyzes Saber’s PKE scheme, the core component of
Saber’s KEM. Both of these cryptographic constructions belong to the category of public-key
cryptography, i.e., they based on public-key primitives. In the imminent, we elaborate on the
general compositions of such schemes.

12 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.2. CRYPTOGRAPHY

Public-Key Encryption Scheme

A public-key encryption scheme, or PKE scheme, is a cryptographic construction enabling any
entity A to encrypt a message into a ciphertext for a specific entity B such that solely B can
decrypt this ciphertext and, hence, access the original message. Here, the encryption process is
carried out with B’s public key; the decryption process is performed with B’s private key (or secret
key). Indeed, these keys correspond to the public-key primitive on which the PKE scheme is based.
In particular, as addressed in Chapter 1, this implies that the public key may be distributed to
any entity, while the secret key must remain exclusively known to B. Furthermore, the security
of the PKE scheme is entirely reliant on the hardness of the mathematical problem that underlies
the scheme’s operations and the relationship between the keys.

Formally, a PKE scheme is a triple of algorithms that comprises a key generation algorithm,
an encryption algorithm, and a decryption algorithm. Furthermore, each PKE scheme defines
several domains: a key space, a message space, and a ciphertext space5. As its name suggests,
the former represents the domain of valid key pairs, i.e., (public key,private key) tuples; similarly,
the latter two respectively denote the domain of valid messages and ciphertexts. Given any
PKE = (KeyGen,Enc,Dec), key space K, message space M, and ciphertext space C, the general
specification of the scheme is as follows.

• Key Generation KeyGen()
Input: None.

Output: A key pair (pk, sk) from key space K.

• Encryption Enc(m, pk)
Input: A message m from message space M and, generated in accordance with KeyGen, a
public key pk.

Output: A ciphertext c, the encryption of m.

• Decryption Dec(c, sk)
Input: A ciphertext c from ciphertext space C and, generated in accordance with KeyGen, a
secret key sk.

Output: A message m′, the decryption of c, or ⊥, the explicit indication of a decryption
failure.

Naturally, a PKE scheme is perfectly correct if for anym ∈M and (pk, sk) generated by KeyGen(),
we have Dec(Enc(m, pk), sk) = m.

Albeit not explicitly indicated above, a PKE scheme operates with respect to some security para-
meter. This security parameter determines the level of the scheme’s security; typically, this security
level manifests itself in the length of the keys generated by the key generation algorithm.

Key Encapsulation Mechanism

A key encapsulation mechanism, or KEM, is a cryptographic construction that allows any entity
A to generate and encapsulate a symmetric key for a specific entity B such that only B can de-
capsulate the encapsulation and, thus, access the symmetric key6. Here, the process of generating
and encapsulating a symmetric key, i.e., encapsulation, is monolithic; that is, the encapsulation

5Frequently, one or more of these domains are defined implicitly through the specifications of the scheme’s
algorithms.

6A symmetric (secret) key is utilized in secret-key primitives which, in contrast to public-key primitives, use
the same key for both encryption and decryption.

Formal Verification of Saber 13

2.2. CRYPTOGRAPHY CHAPTER 2. BACKGR. KNOWLEDGE

procedure invariably produces both a symmetric key and the corresponding encapsulation. Ana-
logous to the encryption and decryption procedures of a PKE scheme, the KEM’s encapsulation
and decapsulation procedures are respectively carried out using B’s public key and B’s private
key.

Formally, a KEM is a triple of algorithms that comprises a key generation algorithm, an encap-
sulation algorithm, and a decapsulation algorithm. Moreover, each KEM defines several domains:
an asymmetric key space, a symmetric key space, and an encapsulation space7. Concerning these
domains, the former is directly analogous to the key space for PKE schemes; furthermore, the
latter two represent the domains of valid symmetric keys and encapsulations, respectively. For
any KEM = (KeyGen,Encaps,Decaps), asymmetric key space AK, symmetric key space K, and
encapsulation space C, the general specification of the scheme is as follows.

• Key Generation KeyGen()
Input: None.

Output: A key pair (pk, sk) from key space AK.

• Encapsulation Encaps(pk)
Input: A public key pk generated in accordance with KeyGen.

Output: A tuple (k, c) where k is a symmetric key and c is the encapsulation of k.

• Decapsulation Decaps(c, sk)
Input: A ciphertext c from encapsulation space C and, generated in accordance with KeyGen,
a secret key sk.

Output: A symmetric key k′, the decapsulation of c, or ⊥, the explicit indication of a
decapsulation failure.

Evidently, a KEM is perfectly correct if for any (pk, sk) generated by KeyGen() and (k, c) produced
by Encaps(pk), we have Decaps(c, sk) = k.

Although not explicitly denoted above, a KEM operates with respect to some security parameter
that determines the level of the scheme’s security; usually, this security level manifests itself in
the length of the keys generated by the key generation algorithm.

2.2.2 Provable Security
In cryptography, provable security is a paradigm used to formally argue for the supposed security
of cryptographic constructions. This paradigm relies on the formal definition of cryptographic con-
structions, security properties, relevant adversaries, and potential hardness assumptions; certainly,
the latter includes assumptions on the hardness of specific mathematical problems underlying the
considered cryptographic construction, a concept previously mentioned in Chapter 1. After their
formal definition, these artifacts are utilized in a rigorous proof showing that, provided the hardness
assumptions are veracious, the cryptographic construction possesses a certain security property,
i.e., the security of the construction cannot feasibly be compromised by any relevant adversary.
Generally, the set of “relevant adversaries” exclusively comprises adversaries sufficiently restricted
in their resource utilization; for instance, this set is frequently defined as the set of all probabilistic,
polynomial-time algorithms. The rationale for this is the confinement of the analysis to practically
relevant and meaningful scenarios; particularly, hardness assumptions are invariably contingent

7As for the analogous domains in the context of PKE schemes, these domains are often implicitly defined
through the specifications of the scheme’s algorithms.

14 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.2. CRYPTOGRAPHY

on the fact that certain problems cannot be solved efficiently (with sufficient success probabil-
ity). Here, “solved efficiently” essentially denotes “solved by a certain set of resource-restrained
adversaries”. Indeed, hardness assumptions are trivially invalid in the context of adversaries with
access to unlimited resources.

Multiple approaches to the provable security paradigm exist and, depending on the considered
context, some approaches might be more suitable than others [36, 37]. In this thesis, we employ
an approach in which security properties and hardness assumptions are formalized as probabilistic
programs defined with respect to an arbitrary relevant adversary; these programs are denominated
games and have a well-defined syntax and semantics. In these games, the adversary is tasked with
solving a particular problem: in the games modeling a security property, solving this problem
relates to compromising security; in the games formalizing a hardness assumption, solving this
problem relates to finding a solution to the underlying mathematical problem. More precisely, the
games are formulated in such a way that, if an adversary is capable of successfully solving the
presented problem with a greater probability than what is trivially achievable, then this excess
probability must originate from information obtained by, for security properties, (partially) com-
promising security or, for hardness assumptions, (partially) solving the underlying mathematical
problem. As a convention, correctly solving the problem presented in a game is referred to as
winning the game; furthermore, the difference between the trivially achievable winning probabil-
ity and the actual winning probability of an adversary is termed the advantage of that adversary
against the considered game.

Befittingly, the type of proof corresponding to the above-introduced games is called a game-based
proof or game-playing proof ; occasionally, to accentuate the fact that games are modeled as
probabilistic programs, this type of proof is referred to as a code-based, game-playing proof. In
such a proof, we show that a particular cryptographic construction satisfies the desired security
property by formally manipulating the corresponding game, i.e., the game that formalizes this
security property with respect to the considered construction. For each performed manipulation,
we provide a justification; more precisely, we formally argue that one of the following conditions is
satisfied8. Here, “original game” and “resulting game” refer to the game on which the manipulation
is performed and the game resulting from the manipulation, respectively.

• Winning the original game is at least as hard as winning the resulting game.

• The probability of a relevant adversary differentiating between (the problem presented in)
the original game and (the problem presented in) the resulting game is negligibly small9.
This type of justification might be based on the veracity of the hardness assumption(s).

Oftentimes, these justifications are formalized by means of a reduction which, given a relevant
adversary against one or multiple games, constructs a relevant adversary against another game.
For example, regarding the first type of justification in the list above, a reduction may utilize a
relevant adversary against the original game to create a relevant adversary against the resulting
game such that, between both these adversaries, the probability of winning their respective games
is identical; indeed, this implies that winning the original game is at least as hard as winning the
resulting game.

Ultimately, after performing a series of manipulations, we intend to reach a game for which we can
prove that no relevant adversary can win with a probability greater than what is trivially achiev-

8This is not intended to be an exhaustive list of potential justifications allowed in game-playing proofs; instead,
this list comprises some of the most customary types of justifications, including all types utilized throughout this
thesis.

9Technically, “negligibly small” is related to the mathematical definition of a negligible function; nevertheless,
for the discussion throughout this thesis, the linguistic interpretation of this phrase suffices and, hence, we disregard
the corresponding mathematical formality.

Formal Verification of Saber 15

2.2. CRYPTOGRAPHY CHAPTER 2. BACKGR. KNOWLEDGE

able. At this point, employing the sequence of formal justifications for the imposed manipulations,
we can bound the advantage of any relevant adversary against the initial game, i.e., the game rep-
resenting the desired security property of the considered construction, from above. In particular,
this bound is expressed in terms of the advantages of several other relevant adversaries against
the games modeling the hardness assumption(s). If the hardness assumptions are veracious, these
advantages are negligibly small irrespective of the considered adversaries; in turn, the established
bound and, hence, the advantage of any relevant adversary against the initial game are negligibly
small as well. Concluding, this proves that, in the context of the considered construction, no
relevant adversary can sufficiently compromise the desired security property, implying that the
considered construction indeed possesses this property.

2.2.3 Security Properties
Hitherto, we have primarily discussed the security of cryptographic constructions in an abstract
manner. Nevertheless, in the introduction of Saber, see Chapter 1, we briefly mentioned the
concrete security properties that the schemes of Saber intend to achieve. To reiterate, for Saber’s
PKE scheme, this property is ciphertext indistinguishability under chosen-plaintext attack. In the
following, we describe this property in more detail.

Indistinguishability under Chosen Plaintext Attack

Ciphertext indistinguishability under chosen-plaintext attack, or IND-CPA security, refers to a
security property commonly desired from cryptographic constructions that intend to provide con-
fidentiality, e.g., PKE schemes. Intuitively, the notion of IND-CPA security states that no rel-
evant adversary should be feasibly capable of distinguishing ciphertexts based on the messages
they encrypt; naturally, these ciphertexts are to be constructed per the considered construction’s
specification. Albeit IND-CPA security can apply to several classes of confidentiality providing
cryptographic constructions, we restrict the explication of this property to the context of PKE
schemes. This is because, in this thesis, we exclusively consider this property with respect to a
PKE scheme, viz., Saber’s PKE scheme.

Considering a particular PKE scheme, the IND-CPA security property is generally modeled by
the following game-like scenario, defined with respect to a relevant adversary. First, a key pair
is generated per the PKE scheme’s key generation algorithm. Then, provided with the generated
public key, the adversary selects two messages from the considered message space. Subsequently,
chosen uniformly at random and unbeknownst to the adversary, one of these messages is encrypted
with the PKE scheme’s encryption algorithm. Lastly, given the ciphertext resulting from this
encryption, the adversary attempts to determine which of the two messages was encrypted to
obtain this ciphertext. Based on this scenario, the PKE scheme is considered to be IND-CPA
secure if no relevant adversary can successfully make the final determination with a probability
that is non-negligibly different from 1

2 . Here, the adversary’s success probability is required to be
non-negligibly different from 1

2 because a success probability of 1
2 is trivially achievable. As such,

the difference between the attained success probability and 1
2 is what actually captures the extent

to which the adversary could extract information about the message from the ciphertext.

In the above scenario, the considered adversary is not limited in any regard apart from the general
restrictions imposed on the class of relevant adversaries. In particular, this implies that, within
the boundaries set by these imposed restrictions, the adversary is allowed to arbitrarily compute
and store data, including the encryption of arbitrary messages through the use of the provided
public key and the PKE scheme’s encryption algorithm10. Moreover, by allowing the adversary

10This insinuates that, in order for a PKE scheme to be IND-CPA secure, its encryption algorithm must be
probabilistic; that is, repeatedly encrypting the same message with the same public key should result in different
ciphertexts. Certainly, if this is not the case, the adversary can straightforwardly determine the message corres-
ponding to the provided ciphertext by encrypting both candidate messages and, subsequently, verifying which of

16 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.2. CRYPTOGRAPHY

to pick the messages itself, the scenario excludes the possibility of making the adversary’s success
probability dependent on the particular structure of the messages. As such, the scenario indeed
models the property that no relevant adversary should be capable of distinguishing ciphertexts
based on the messages they encrypt.

From the preceding, it is evident that IND-CPA security relates to the confidentiality that the
considered PKE scheme provides; however, the extent to which it does is less apparent. Nev-
ertheless, if modeled in accordance with the above scenario, IND-CPA security has been proved
equivalent to semantic security under chosen-plaintext attack. That is, no relevant adversary can
feasibly extract more than negligible information about a message from its encryption.

2.2.4 Lattice-Based Cryptography
Akin to groups and rings, lattices are algebraic structures; in fact, they constitute a specific class
of groups. Intuitively, lattices represent an infinite collection of evenly spread out vertices in a
multidimensional space. Utilizing these algebraic structures, lattice-based cryptography considers
cryptographic constructions contingent on hardness assumptions that are related to computational
problems in lattices; indeed, Saber’s schemes belong to this category. Crucially, according to
current understanding, the computational problems utilized for lattice-based cryptography are,
even considering quantum computation, not efficiently solvable. In the ensuing, we introduce the
computational problems and hardness assumptions relevant to Saber. However, since the material
related to these topics is quite mathematically intricate and beyond the scope of this thesis, we
primarily restrict the discussion to intuitive descriptions and definitions.

(Gap) Shortest Vector Problem and Shortest Independent Vector Problem

The Shortest Vector Problem (SVP) is among the most prevalent computational problems for
lattices. Intuitively, given a particular lattice, this problem concerns finding the shortest non-
zero vector in the lattice. A decisional version of this problem, the Gap Shortest Vector Problem
(GapSVP), involves deciding whether the shortest non-zero vector in a certain lattice is shorter
than some length d. Comparable to SVP, the Shortest Independent Vector Problem (SIVP) entails
finding a specific number of linearly independent lattice vectors such that the length of the longest
among these vectors is minimal. For each of these problems, any norm may be used as a measure of
vector length, although the Euclidean norm is the most common. Typically, within cryptography,
computational complexity analyses consider approximation variants of the above-introduced exact
SVP, GapSVP and SIVP problems. Indeed, rather than the exact solution, these variants involve
finding an approximate solution to the problems. Informally, these approximation variants are
defined as follows.

• SVPγ : Given a lattice, find a lattice vector with a length that is within a factor γ from the
length of the shortest lattice vector.

• GapSVPγ : Given a lattice and length d, decide whether the shortest lattice vector is shorter
than γ · d.

• SIVPγ : Given a lattice, find a specific number of linearly independent lattice vectors such
that the length of the longest among these vectors is within a factor γ from minimal.

At present, if γ is taken to be a polynomial in the rank of the lattice, no algorithm, classical or
quantum, exists for solving these problems efficiently.

the encrypted messages is identical to the provided ciphertext.

Formal Verification of Saber 17

2.2. CRYPTOGRAPHY CHAPTER 2. BACKGR. KNOWLEDGE

(Module-)Learning With Errors and (Module-)Learning With Rounding

Related to several of the aforementioned computational problems in lattices, the Learning With
Errors (LWE) problem and its variants constitute the basis of numerous contemporary post-
quantum cryptographic constructions [38,39]. Parameterized by a distribution χ over the integers
and two strictly positive integers n and q, the LWE problem is based on a specific distribution;
this distribution is uniquely determined by s, a n-dimensional vector over the ring of integers
modulo q, and χ [40]. Sampling from this distribution is accomplished through the following
procedure [39].

1. Sample a uniformly at random from the set of n-dimensional vectors over the ring of integers
modulo q.

2. Subsequently, sample e from χ and compute b = (aT · s + e) mod q. Here, b is interpreted
as an element from the ring of integers modulo q.

3. At last, output the tuple (a, b).

Customarily, this distribution and its samples are referred to as “LWE distribution” and “LWE
samples”, respectively. Furthermore, the contexts that employ the LWE distribution oftentimes
require multiple, saym, LWE samples; this includes the context of Saber. In these contexts, we can
leverage techniques from linear algebra to efficiently denote and perform the sampling procedure.
Namely, first, we sample A uniformly at random from the set of m× n-dimensional matrices over
the ring of integers modulo q; certainly, each row of such a matrix constitutes a uniformly random
n-dimensional vector over the same ring, i.e., a LWE sample. Second, we sample e from χm and
compute b = A · s + e. Here, χm denotes the distribution over m-dimensional vectors for which
the sampling procedure is equivalent to independently sampling each of the m vector entries from
χ; furthermore, each entry of b is interpreted as an element from the ring of integers modulo q. By
the definition of matrix multiplication, carrying out A · s + e is identical to computing aTi · s + ei
for 0 ≤ i ≤ m, where ai and ei respectively signify the i-th row of A and i-th entry of e. Lastly,
for the third step, we output the tuple (A,b), essentially comprising m LWE samples; specifically,
each pair (ai, bi), 0 ≤ i ≤ m, constitutes a single LWE sample.

Utilizing the above distribution, the search version of the LWE problem, search LWE, involves
finding s based on a particular number of given LWE samples; the decisional version of this
problem, decision LWE, concerns distinguishing the given LWE samples from the same number
of uniformly random samples over the same domain [39]. Intuitively, these problems are hard
due to the addition of e to the matrix multiplication aT · s; indeed, without the addition of this
error, i.e., when e = 0, the problems are trivial to solve [40]. In the quantum setting, considering
a suitable q, χ, and number of samples, both versions of the LWE problem have been shown to
be at least as hard as the GapSVPγ and SIVPγ problems on arbitrary n-dimensional (full-rank)
lattices; in the classical setting, a nearly identical result has been proved, yet merely with respect
to GapSVPγ [40–42]. Notably, in either setting, a suitable choice for χ is the discrete Gaussian
distribution [39].

Although the LWE problem is endowed with promising hardness proofs, the utilization of this
problem in cryptographic constructions inherently induces a considerable overhead and, hence,
significantly reduces the constructions’ efficiency [43]. In an attempt to reduce this problematic
overhead while preserving sufficient computational complexity, variants of the LWE problem were
developed. An initial such variant constitutes the Ring-Learning With Errors (RLWE) problem.
The only discrepancy between the versions of this variant and their LWE counterparts is that, in
places where the latter utilize (n-dimensional vectors with) elements of the ring of integers modulo
q, the former employ polynomials of degree at most n from a certain polynomial ring; as a result
of this difference, each RLWE sample can encode as much information as n LWE samples [43].

18 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.2. CRYPTOGRAPHY

This substantially reduces the key sizes required in cryptographic constructions, which is the
predominant performance issue with constructions based on versions of the LWE problem [38,43].
However, due to the structure leveraged by the versions of the RLWE problem, they can solely be
proved at least as hard as some of the above-discussed lattice problems in arbitrary ideal lattices, a
specific class of lattices [43,44]. These “ideal lattice problems” have been studied to a much lesser
extent than their general counterparts; moreover, particular problems that are hard in general
lattices are known to be easy in ideal lattices, e.g., the GapSVPγ problem [38, 45]. For these
reasons, the Module-Learning With Errors (MLWE) problem emerged, striking a balance between
the LWE and RLWE problems [46]. The versions of the MLWE problem are nearly identical to
their RLWE cognates, merely replacing certain individual polynomial elements with d-dimensional
vectors of such elements, where d is an additional parameter of the problem; indeed, this implies
that the versions of the MLWE problem with d = 1 are identical to their RLWE analogs [45, 47].
As with the RLWE problem, the versions of the MLWE problem can only be shown at least
as hard as particular computational problems in a specific class of lattices; in this case, this is
the class of module lattices. Due to the different, more complicated structure of these lattices
relative to ideal lattices, the strategies for solving some of the computational problems in ideal
lattices are not applicable; nevertheless, when utilized as the underlying mathematical problem for
cryptographic constructions, the versions of the MLWE problem still admit smaller key sizes than
their LWE counterparts [46, 47]. As an additional benefit, building cryptographic constructions
based on the MLWE problem allows for greater flexibility in the trade-off between efficiency and
security [23,47].

As previously mentioned in Chapter 1, Saber is based on the MLWR problem, a variant of the
LWR problem [14]. As their names suggest, these problems are closely related to the MLWE
problem and the LWE problem, respectively. Namely, the sole difference between the LWE and
LWR problems manifests itself in the procedure of sampling from their respective distributions [15].
More precisely, instead of introducing an error to the matrix multiplication aT · s via the addition
of a randomly sampled error e, this error is produced by scaling the matrix multiplication by a
factor 0 < p

q ≤ 1 and, subsequently, rounding the outcome to the nearest integer. The result of
this scaling and rounding is interpreted as an element from the ring of integers modulo p (rather
than q); as a result, the LWR problem is defined with respect to a (strictly) positive integer
parameter p for which p ≤ q [15]. Furthermore, the relation between the LWR and MLWR
problems is analogous to the relation between the LWE and MLWE problems [14]. Lastly, for
suitable parameters, both of the LWR and MLWR problems have respectively been shown to be
at least as hard as the LWE and MLWE problems [15,16,48]

2.2.5 Random Oracle Model
As indicated in the discussion on provable security, cryptographic proofs may rely on several
assumptions. These assumptions can, for instance, conjecture the intractability of a particular
problem or limit the set of relevant adversaries by imposing restrictions on the capabilities of an
adversary. Cryptographic proofs that solely depend on these types of assumptions are said to be
staged in the standard model. Nevertheless, frequently, cryptographic proofs additionally utilize
another type of assumption; namely, they often assume that every function aimed at generating
pseudorandomness, i.e., data that is intended to be computationally indistinguishable from truly
random data, is a random oracle. A random oracle is a mathematical function selected uniformly
at random from the set of all mathematical functions defined on a specific domain and codomain;
this function selection is equivalent to independently mapping each element from the domain to
an element from the codomain in a uniformly random manner. Suitably, cryptographic proofs
that employ this random oracle assumption are said to be staged in the Random Oracle Model
(ROM). In such proofs, random oracles are modeled as distinct black-box entities accessible by all
other entities considered in the proof. Accessing a random oracle constitutes querying the oracle
on some element from its domain, upon which the oracle (efficiently) computes and returns the
image of this value. Indeed, as directly implied by the definition of a random oracle, each domain

Formal Verification of Saber 19

2.3. COMPUTER-AIDED CRYPTOGRAPHY CHAPTER 2. BACKGR. KNOWLEDGE

element is invariably mapped to the same codomain element; furthermore, the output distribution
of a random oracle equals the uniform distribution over the codomain.

The rationale for performing cryptographic proofs in the ROM rather than the standard model
arises from the fact that most cryptographic constructions require the use of replicable random-
ness. That is, these constructions require mathematical functions of which the output distribution
is uniformly distributed over the codomain; indeed, such a function is a random oracle. Unfor-
tunately, it is impossible to practically implement a random oracle efficiently, i.e., in polynomial
space and time complexity; in turn, cryptographic constructions cannot utilize random oracles
without becoming impossible to implement efficiently as well. Alternatively stated, if a cryp-
tographic construction is ever to be practically implemented and deployed, it cannot employ
random oracles. For this reason, as suggested above, contemporary cryptography uses functions,
such as particular hash functions, that generate pseudorandomness instead of true (replicable)
randomness. Since the output of such functions is not truly random, the desired properties of
cryptographic constructions might be violated by virtue of the specific functions utilized to gen-
erate the necessary pseudorandomness; consequently, formally reasoning about these properties
becomes quite arduous. However, modeling these pseudorandomness-generating functions as ran-
dom oracles, i.e., staging the proofs in the ROM, eliminates all their potential flaws, facilitating
the formal validation of the overall cryptographic construction.

2.3 Computer-Aided Cryptography
2.3.1 EasyCrypt
As mentioned in the preceding chapter, EasyCrypt is the tool of choice for the computer-aided
verification effort effectuated in this thesis. Considering the context of this verification effort,
we presently discuss the conceptual approach, relevant features, and basic usage of this tool. In
this discussion, we remain relatively pragmatic because, as with several other subjects discussed
throughout this chapter, the underlying mathematical theory is quite esoteric and, as such, sur-
passes the scope of this thesis. Nevertheless, the covered material should be sufficient to readily
comprehend the discussion on the actual formal verification effort presented in Chapter 4.

Main Features and Approach

Albeit EasyCrypt’s vast set of features gives rise to numerous capabilities with considerable flexib-
ility, the tool’s principal objective is to facilitate the formal verification of cryptographic proofs that
follow the previously discussed approach to the provable security paradigm; that is, EasyCrypt
predominantly intends to provide support for the formal verification of code-based, game-playing
cryptographic proofs [18,49]. To this end, the tool accommodates two specification languages with
a well-defined syntax and semantics: an imperative language, primarily designed for the formal
specification of cryptographic constructions, security properties, and hardness assumptions; and a
functional language, predominantly used for the formal definition of the contexts associated with
cryptographic constructions. In addition to these specification languages, EasyCrypt provides an
higher-order ambient logic comprising several logics that enable reasoning about (probabilistic)
programs or pairs thereof; specifically, these logics include Hoare Logic (HL), probabilistic Hoare
Logic (pHL), and probabilistic Relational Hoare Logic (pRHL) [50, 51].

Utilizing the above features, we can realize the code-based, game-playing approach to the prov-
able security paradigm in the following manner. First, we formalize the relevant context of the
considered cryptographic construction in the functional specification language; among others, this
entails defining the necessary types and operators. Afterward, using the imperative specification
language, we formalize the considered construction, security properties, hardness assumptions,
and classes of relevant adversaries. Indeed, in accordance with the employed approach to provable
security, we model the security properties and hardness assumptions as probabilistic programs;

20 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.3. COMPUTER-AIDED CRYPTOGRAPHY

hence, they are specified in the imperative language. Moreover, the classes of relevant adversaries
are represented by abstract probabilistic programs, i.e., interfaces. This abstract formalization
conveys that, apart from the compliance to the input and output requirements, no restrictions
are imposed on the behavior of a relevant adversary. Subsequently, we individually formalize each
game of the proof’s game sequence; that is, in addition to the initial game, every manipulation-
induced game in the proof is separately formalized with the imperative language. Completing the
collection of proof-related artifacts, we formalize the reductions corresponding to the justifications
of the enacted manipulations; certainly, since these reductions are probabilistic programs, this is
accomplished by means of the imperative language. At last, using the functional language and
ambient logic, we formalize the claims related to the justifications of the manipulations and verify
their veracity.

Basic Usage

Concretizing several of the above-mentioned concepts, we illustrate the basic usage of EasyCrypt’s
relevant features through relatively trivial examples. Simultaneously, these examples serve as an
introduction to the notation utilized in the listings throughout this thesis; this notation directly
corresponds to EasyCrypt’s syntax.

Foremost, we demonstrate the utilization of the functional specification language for several funda-
mental, customary purposes; most notably, these purposes include the definition of types, operat-
ors, axioms, and lemmas. In EasyCrypt, axioms and lemmas are employed to formalize properties
regarding artifacts within the considered script; the difference between these two concepts is the
fact that axioms are assumed to be veracious, while lemmas must be proved to be veracious. List-
ing 2.1 presents the first example; for explanatory purposes, the code in this example is extensively
commented11.

1 (* Define abstract types t and u *)
2 type t.
3 type u.
4

5 (* Define abstract operators f and g mapping from t to u and from u to t,
respectively *)

6 op f : t -> u.
7 op g : u -> t.
8

9 (* State assumptions through axioms - f and g are each others' inverses *)
10 (* Note - Parameterizing an axiom (or a lemma) is equivalent to universally

quantifying over the type(s) of the parameter(s) *)
11 (* So, intuitively, axiom f_inv_g states "For all values x of type u, applying f on

the image of x under g returns x" *)
12 axiom f_inv_g (x : u) : f (g x) = x.
13 axiom g_inv_f (x : t) : g (f x) = x.
14

15 (* Define concrete operator h as f composed with g *)
16 op h (x : u) = f (g x).
17

18 (* State to-be-verified properties through lemmas - h is the identity function *)
19 lemma h_is_id (x : u) : h x = x.
20 proof. (*...*) qed.
21

22 (* Define concrete type p as the set of 2-tuples of integers and booleans *)
23 type p = int * bool.
24

11Comments have the following format: (* Text of comment *).

Formal Verification of Saber 21

2.3. COMPUTER-AIDED CRYPTOGRAPHY CHAPTER 2. BACKGR. KNOWLEDGE

25 (* Define concrete operator cextr that, given a value of type p, extracts the
integer (i.e., first element) from this value if its boolean (i.e., second
element) evaluates to true; else, cextr returns 0 *)

26 (* Note - "fun (x) => e" denotes an anonymous/lambda function taking an argument x
and computing expression e *)

27 (* Note - x.`1 and x.`2 respectively extract the first and second element from a
tuple x *)

28 (* Note - "if ... then ... else ..." signifies the ternary operator equivalent to an
if-else control structure *)

29 op cextr : p -> int = fun (x : p) => if x.`2 then x.`1 else 0.
30

31 (* Define abstract polymorphic operator pmop that maps from an arbitrary domain to
the integers; i.e., pmop can take an argument of any type and maps it to an
integer *)

32 op ['a] pmop : 'a -> int.

Listing 2.1: Basic Usage of the Functional Specification Language

Evidently, as indicated by (*...*), the proof of the lemma in this listing is omitted. This is because
proving lemmas involves the utilization of EasyCrypt’s proof engine and built-in logics, which is
quite technically intricate. Considering the more process-oriented nature of the formal verification
portion of this thesis’s discussion, an elaboration on the details of all of these technical endeavors
would not constitute a significant contribution. As such, throughout this thesis, we mostly leave
out the concrete proofs of the covered lemmas; instead, we provide an intuitive description of the
approaches these proofs employ. Nevertheless, to still give an idea of EasyCrypt’s (lemma-)proving
process and the corresponding concepts and mechanisms, we ultimately do explicate the proof of
one of the lemmas employed in the formal verification endeavor regarding Saber.PKE.

Albeit not mentioned above, an additional foundational feature of the functional specification lan-
guage regards the specification of discrete probability sub-distributions, or discrete sub-distribution,
over certain types [18, 49]. In contrast to proper discrete distributions, discrete sub-distributions
do not guarantee that the sum over all probabilities associated with the values from their do-
main equals 1; rather, this sum can be any value between 0 (including) and 1 (including) [49].
The functional specification language allows for the creation of such distributions by means of
the distr type constructor ; as its name suggests, a type constructor enables the construction of
types from other types. Furthermore, due to the commonality of sub-distributions with particular
properties, the functional specification language provides a convenient syntax for establishing such
sub-distributions. More precisely, this concerns the ensuing properties [18].

• Lossless
The sum of the probabilities associated with all values of the considered type equals 1. That
is, the discrete sub-distribution is a proper discrete distribution.

• Full
The probability associated with each value of the considered type is greater than 0. Al-
ternatively stated, sampling from the discrete sub-distribution may yield any value of the
considered type.

• Uniform
For some x between 0 (excluding) and 1 (including), the probability associated with any
value of the considered type equals either 0 or x.

Listing 2.2 exemplifies the specification of discrete sub-distributions, both with and without the
above-mentioned properties.

22 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.3. COMPUTER-AIDED CRYPTOGRAPHY

1 (* Define abstract type t *)
2 type t.
3

4 (* Define dist, a sub-distribution over t *)
5 op dist : t distr.
6

7 (* Define dist1, a lossless sub-distribution over t, i.e., dist1 is a proper
distribution over t *)

8 op [lossless] dist1 : t distr.
9

10 (* Define dist2, a lossless, full, and uniform sub-distribution over t; that is,
dist2 is a proper uniform distribution over t, associating all values of type t
with the same probability (not equal to 0, due to the ''full'' property) *)

11 op [lossless full uniform] dist2 : t distr.

Listing 2.2: Basic Specification of Distributions

As can be extracted from this listing, distributions are defined as operators with only a domain
type; that is, these operators have no range type. In EasyCrypt, this is equivalent to specifying a
constant of the considered (domain) type. Moreover, if no concrete value is assigned to such an
operator, the operator represents an arbitrary constant from its (domain) type. Indeed, in case
this type corresponds to the type of distributions over some other type, the operator represents
an arbitrary constant distribution over this other type. Naturally, despite its arbitrariness, this
constant distribution must still adhere to the relevant specified properties, e.g., uniformity.

Next, we illustrate the basic usage of the relevant features from the imperative specification lan-
guage; particularly, we do so in a manner that accentuates the utilization of these features in the
context of a formal verification effort effectuated for a cryptographic proof that follows the previ-
ously discussed approach to the provable security paradigm. Listing 2.3 contains the corresponding
example, copiously commented for explanatory purposes.

1 (* Context - Define necessary distribution and operator with functional
specification language *)

2 op [lossless full uniform] bdist : bool distr.
3 op f (x : int) = x + 1.
4

5 (* Define a module type, i.e., an interface that concrete modules can implement *)
6 (* In this case, we use the module type feature to represent a particular class of

adversaries *)
7 module type Adversary = {
8 proc determine(x : int, y : int) : bool
9 }.

10

11 (* Define a (parameterized) module, i.e., an encapsulating artifact comprising
(often related) probabilistic programs; indeed, each procedure of a module
constitutes a probabilistic program *)

12 (* Note - Modules can only be parameterized by modules with a module type;
subsequently, the encompassing module is able to call the procedures from the
parameter module that are defined by its module type *)

13 (* Here, we utilize the module feature to model a (dummy) cryptographic game that
considers adversaries from the above-defined class (i.e., module type) *)

14 module Game(A : Adversary) = {
15 (* Define a procedure taking a boolean argument and outputting a boolean return

value *)
16 proc main(u : bool) : bool = {
17 (* Declare necessary variables *)
18 var x, y : int;

Formal Verification of Saber 23

2.3. COMPUTER-AIDED CRYPTOGRAPHY CHAPTER 2. BACKGR. KNOWLEDGE

19 var u' : bool;
20 var b : bool;
21 var b1, b2 : bool;
22

23 x <- 1; (* Assign 1 to x *)
24

25 b1 <$ bdist; (* Sample b1 from bdist *)
26 b2 <$ bdist; (* Sample b2 from bdist *)
27

28 b <- b1 ^^ b2; (* Assign XOR of b1 and b2 to b *)
29

30 (* if u AND b evaluates to true, ... *)
31 if (u /\ b) {
32 (* then assign x to y, ... *)
33 y <- x;
34 } else {
35 (* else, assign image of x under f to y *)
36 y <- f x;
37 }
38

39 (* Call "determine" procedure of parameter module A with arguments x and y *)
40 (* Note - Since A has (module) type "Adversary", we know it implements the

"determine" procedure *)
41 u' <@ A.determine(x, y);
42

43 (* If u' equals u, return true, else return false *)
44 return (u' = u);
45 }
46 }.
47

48 (* Define a (parameterized) module of a previously defined module type *)
49 (* Conceptually, the following module models a (dummy) reduction that could be

utilized to justify a game step/manipulation in a game-playing cryptographic
proof *)

50 (* Concretely, this module represents an adversary from the above-defined class that
employs another adversary from this same class to carry out its procedure *)

51 module Reduction_Adversary(A : Adversary) : Adversary = {
52 (* Implement "determine" procedure to adhere to the "Adversary" module type *)
53 proc determine(x : int, y : int) : bool = {
54 var u' : bool;
55

56 x <- f y;
57 y <- x;
58

59 (* Employ other adversary (i.e., parameter module) *)
60 u' <@ A.determine(x, y);
61

62 return u';
63 }
64 }.

Listing 2.3: Basic Usage of the Imperative Specification Language

Frequently, games and adversaries in game-playing proofs merely comprise a single algorithm.
As such, when reasoning about these algorithms, we generally use the identifier of the game
or adversary to refer to them; that is, we do not employ a separate identifier for the algorithm.
Nevertheless, the EasyCrypt feature with which games and adversaries are predominantly modeled,
i.e., modules, cannot contain concrete, directly executable code themselves; instead, they must

24 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.4. NOTATION

define procedures that encapsulate such code for them [18]. Therefore, the module formalizations
invariably comprise a dedicated procedure representing the considered algorithm, even when the
corresponding conceptual artifacts, e.g., games and adversaries, do not specify a distinct identifier
for this algorithm.

Modularization Features

Concerning modularization of formal verification efforts, EasyCrypt provides several enabling fea-
tures. Certainly, among these are the above-discussed module and modules type, which allow for
the modular formalization of cryptographic constructions. Moreover, further facilitating modular-
ization, the theory feature permits the encapsulation of one or more related concepts in an abstract,
polymorphic manner [18]. For instance, the EasyCrypt library provides a theory that abstractly
defines the ring of integers modulo n, for all 1 < n. In particular, this theory specifies constants,
types, operators, axioms, and lemmas which, combined, formalize the fundamental structure of
these rings; indeed, this is solely possible due to the fact that this structure is identical across all
such rings. Then, by instantiating, or cloning, this theory with any modulus n that is greater than
1, we essentially define the complete fundamental structure of the corresponding ring of integers
modulo n with a single EasyCrypt command. Within an EasyCrypt script, we can instantiate any
theory ad infinitum.

Quantum Computation

At the time of writing, EasyCrypt does not yet allow for the consideration of (adversaries capable
of) quantum computation [52]. Nevertheless, a currently ongoing project strives to implement
features remedying this deficiency; hence, the tool will presumably support the consideration of
quantum computation in the near future.

Regarding this thesis, the inability to consider quantum computation does not constitute a hindrance.
Namely, the proofs concerning Saber’s PKE scheme abstractly define the class of relevant adversar-
ies; in particular, they do not exclude adversaries with access to quantum computation. Therefore,
the results of these proofs additionally apply to any relevant adversary that utilizes quantum com-
putation. Nevertheless, the proofs themselves never utilize any quantum-dependent reasoning. As
such, the corresponding formal verification effort does not require such reasoning as well.

One caveat to the above exists; namely, the security proof of Saber’s PKE scheme is indirectly
contingent on ROM proofs regarding the employed hardness assumptions. Generally, elevating
ROM proofs to the quantum setting engenders several unique challenges; hence, we cannot assume
that, since the proof is correct in the classical setting, it is straightforwardly correct in the quantum
setting. However, ROM proofs that solely utilize history-free reductions form an exception to this
rule [53]. Intuitively, a reduction is history-free if it answers each oracle query independently of
any preceding queries. Indeed, the ROM proofs on which the security proof of Saber’s PKE relies
exclusively employ history-free reductions; as such, this security proof remains valid when lifted
to the quantum setting.

2.4 Notation
Disregarding code listings, which utilize a distinct notation and typesetting, the discussion through-
out this thesis adheres to several notational guidelines and conventions; specifically, these are the
following.

• Identifiers of cryptographic schemes are typeset in roman. For example, Saber.PKE and
Saber.KEM could be identifiers of a cryptographic scheme.

• Identifiers of algorithms/procedures and cryptographic key material are typeset in sans serif.

Formal Verification of Saber 25

2.4. NOTATION CHAPTER 2. BACKGR. KNOWLEDGE

For example, Saber.KeyGen and Saber.Enc could be identifiers of an algorithm/procedure;
furthermore, pk and sk could be identifiers of a cryptographic key.

• Identifiers of adversaries constitute exactly one capital letter typeset in cursive; moreover, to
distinguish between adversaries represented by the same letter, these identifiers may contain
subscripts. For example, A and B1 could be identifiers of an adversary.

• Identifiers of cryptographic games (in the standard model) invariably adhere to the following
format: GameρA,λ. Here, A denotes the relevant adversary considered by the game, λ rep-
resents the cryptographic construction or the parameter set for which the game is defined,
and ρ indicates the property or hardness assumption formalized by the game12. In case the
game utilizes random oracles, this identifier format changes to GameROMρ

A,λ. Analogously,
identifiers of probabilistic programs in the standard model and random oracle model respect-
ively conform to the formats PProgρλ and PProgROMρ

λ, where λ and ρ may denote the same
artifacts as before.

• Identifiers of matrix elements constitute exactly one capital letter typeset in boldface. For
example, A and M could be identifiers of a matrix element.

• Identifiers of vector elements constitute exactly one lowercase letter typeset in boldface. For
example, a and v could be identifiers of a vector element.

• Identifiers of regular (i.e., non-matrix and non-vector) elements constitute exactly one lower-
case letter typeset in italics. For example, a and x could be identifiers of a regular element.

• Identifiers of sets constitute exactly one uppercase letter typeset in italics; furthermore, these
identifiers may contain subscripts13. For example, X and Sq could be identifiers of a set.
Sets that have a conventional notation within the field of mathematics form an exception to
this notational guideline. Relevant instances of such sets are the set of natural numbers N,
the set of integers Z, and the set of real numbers R.

• By abuse of notation, identifiers of algebraic structures are identical to the identifiers of the
sets on which they are defined.

• The binary representation of an unknown or variable integer is denoted by a sequence of
lowercase letters typeset in italics; indeed, each letter represents a single bit. Furthermore,
to differentiate between individual bits, each letter contains an index, i.e., a number in its
subscript. If it is evident from the context which indices are associated with the bits in
between the most and least significant bits, these intermediate bits may be replaced by
dots. For example, a4a3a2a1a0 and bn . . . b0 could be denotations of an integer’s binary
representation.

• A binary representation of an integer may contain sequences of bits for which the value is
known; usually, these bits are replaced by their concrete value. In such binary representa-
tions, each sequence of n zero bits is denoted by 0n; similarly, each sequence of n one bits is
denoted by 1n.

• The uniform distribution over set S is denoted by U(S).

• The centered binomial distribution with parameter µ is denoted by βµ. At times, it is
convenient to interpret the integer elements on which βµ is defined as elements from a

12Actually, ρ might also be the index of the game in the considered game sequence.
13Oftentimes, if present, the subscript denotes some structural property of the set.

26 Formal Verification of Saber

CHAPTER 2. BACKGR. KNOWLEDGE 2.4. NOTATION

different set, e.g., set S; if this is the case, the centered binomial distribution is instead
denoted by βµ(S).

• Sampling from a distribution χ and assigning the result to x is denoted by x←$ χ.

• Assigning the evaluation of an expression e to x is denoted by x ← e; likewise, assigning
the return value of a call to algorithm/procedure Proc(arg0, . . . , argn) to x is denoted by
x← Proc(arg0, . . . , argn).

• The probability of occurrence associated with an event E is denoted by Pr[E].

• Although PKE is technically an acronym of “public-key encryption”, we overload the ac-
ronym by occasionally employing it as an abbreviation of “public-key encryption scheme”.

Formal Verification of Saber 27

Chapter 3

Saber

Prior to engaging in any formal verification effort, it is convenient to have an adequate under-
standing of the cryptographic constructions in question. Specifically, this is because the formal
verification of cryptographic constructions entails formalizing the appropriate specifications and
properties; naturally, this formalization process necessitates a sufficient comprehension of the rel-
evant concepts. As such, preceding the chapter that discusses the effectuated formal verification
process, this chapter covers the relevant parts of the verified scheme from the Saber cipher suite.
In particular, this chapter elaborates on the specification and relevant properties of Saber’s PKE
scheme; moreover, for these relevant properties, this chapter provides hand-written proofs and
analyses that are closely resembled by the formal verification effort discussed in the subsequent
chapter.

The remainder of this chapter is structured as follows. First, Section 3.1 covers the preliminaries
required to apprehend the ensuing discussion. Afterward, Section 3.2 discusses and analyzes the
relevant aspects of Saber’s PKE scheme; these aspects include the scheme’s specification, security,
and correctness.

3.1 Preliminaries
This section goes over the preliminaries necessary to comprehend the subsequent discussion on
Saber’s PKE. For clarity purposes, these preliminaries are explicated rather minutely, paralleling
the meticulousness required for the corresponding formalization process in EasyCrypt.

First, for any natural number 0 < q, we denote the ring of integers modulo q by Zq; correspondingly,
Zq[X] represents the polynomial ring with coefficients in Zq. As a final extension, we define Rq
to be the polynomial quotient ring of Zq[X] modulo Xn + 1, where n is an integral power of two;
that is, Rq = Zq[X]/(Xn + 1) in which n = 2εn for some εn ∈ N.

Second, for any ring R (e.g., the Zq, Zq[X] or Rq introduced above), we let Rm×n stand for the
(additive) group of matrices with dimension m × n and entries in R. In other words, Rm×n is
the group of matrices with m rows, n columns, and where all matrices’ entries are elements of R.
If either m or n equals 1, Rm×n reduces to the group of, respectively, n-dimensional row vectors
or m-dimensional column vectors. In particular, we have R1×n = Rn, where the elements are
interpreted as row vectors; likewise, Rm×1 = Rm, in which the elements are interpreted as column
vectors. Along similar lines, if both m and n are equal to 1, then Rm×n reduces to the underlying
entry ring, i.e., R1×1 = R. Lastly, between groups of matrices with compatible dimensions,

Formal Verification of Saber 29

3.1. PRELIMINARIES CHAPTER 3. SABER

matrix multiplication is defined in accordance with its customary definition; analogously, scalar
multiplication of an element from R with an element from Rm×n is defined as per its regular
definition1.

Third, the specifications and proofs in the upcoming sections frequently utilize “modular scaling
and flooring” operators, extended coefficient-wise over polynomials and entry-wise over vectors
and matrices. Specifically, suppose p, q ∈ N such that 0 < p and 0 < q; moreover, let x ∈ Zq.
Then, the modular scaling and flooring operator b·cq→p : Zq → Zp computes the following.

bxcq→p = bp
q
· xc mod p

Here, although not explicitly denoted, p, q, and x are lifted to the field of real numbers prior
to the computation of the division and multiplication; as such, the argument to the (regular)
flooring function is, conform to its definition, an element of R. Similarly, the result of the modular
reduction is lifted to Zp; in consequence, the final result is an element of the defined range2. As
an example, if p = 4, q = 10, and x = 7, the modular scaling and flooring operator performs the
computation provided below.

b7c10→4 = b 4
10 · 7c mod 4

= b0.4 · 7c mod 4
= b2.8c mod 4
= 2 mod 4
= 2

In the context of a modular scaling and flooring operator b·cq→p, we occasionally refer to p as the
target modulus and q as the source modulus.

Regarding the discussion on Saber’s PKE scheme, we exclusively consider modular scaling and
flooring operators with integral power-of-two moduli, i.e., b·c2ε0→2ε1 for ε0, ε1 ∈ N. As a con-
sequence of this moduli structure, these operators possess several convenient properties. In partic-
ular, if ε0 > ε1, bbc2ε0→2ε1 is equivalent to performing a right bit-shift of ε0−ε1 bits on b; similarly,
if ε0 < ε1, the corresponding operator is equivalent to carrying out a left bit-shift of ε0− ε1 bits on
b. More precisely, denoting the binary representation of b by bε0−1 . . . b0, the imminent derivation
demonstrates the former case.

bbc2ε0→2ε1 =
⌊

2ε1

2ε0
· bε0−1 . . . b0

⌋
mod 2ε1

=
⌊

1
2ε0−ε1

· bε0−1 . . . b0

⌋
mod 2ε1

= bbε0−1 . . . bε0−ε1 .bε0−ε1−1 . . . b0c mod 2ε1

= bε0−1 . . . bε0−ε1 mod 2ε1

= bε0−1 . . . bε0−ε1

In this derivation, considering that ε0 > ε1 implies ε0 − ε1 > 0, the third equality follows from
the fact that multiplication by a factor of 1

2ε0−ε1 induces a left shift of the binary point by ε0 − ε1
1Actually, this implies that, in addition to an additive group, Rm×n is an R-module; nevertheless, for intelli-

gibility purposes, we disregard this technicality.
2Technically, if x ∈ Zq is represented by an integer in the range [0, q − 1], which is conventionally the case in

this thesis, the (regular) modular reduction performed in bxcq→p can never affect the final result of this operation;
indeed, this is due to the fact that if x ∈ [0, q − 1], then

⌊
p
q
· x
⌋
∈ [0, p − 1]. Nevertheless, we still incorporate

this reduction modulo p as it can serve as a convenient reminder that the eventual result of such a modular scaling
and flooring operation is lifted to Zp; furthermore, this modular reduction makes the modular scaling and flooring
operator more consistent with similar modular scaling operators, including the original operator on which it is
based [15].

30 Formal Verification of Saber

CHAPTER 3. SABER 3.1. PRELIMINARIES

places. Moreover, the last equality is a consequence of a property of modular reduction with an
integral power-of-two modulus. Namely, for any modulus 2ε with ε ∈ N, modular reduction is
equivalent to setting all bits more significant than the ε-th bit to 0; in turn, this is tantamount
to exclusively evaluating the ε least significant bits. Therefore, since bε0−1 . . . bε0−ε1 consists of
ε0− (ε0− ε1) = ε1 bits, the modular reduction with modulus 2ε1 effectively reduces to the identity
function.

Analogously, the following derivation shows that if ε0 < ε1, bbc2ε0→2ε1 practically performs a left
bit-shift of ε1 − ε0 bits on b.

bbc2ε0→2ε1 =
⌊

2ε1

2ε0
· bε0−1 . . . b0

⌋
mod 2ε1

=
⌊
2ε1−ε0 · bε0−1 . . . b0

⌋
mod 2ε1

=
⌊
bε0−1 . . . b00ε1−ε0

⌋
mod 2ε1

= bε0−1 . . . b00ε1−ε0 mod 2ε1

= bε0−1 . . . b00ε1−ε0

Here, because ε1−ε0 > 0, the third equality results from the fact that multiplication by a factor of
2ε1−ε0 induces a right shift of the binary point by ε1 − ε0 places; consequently, this multiplication
precisely introduces ε1 − ε0 least significant zero bits. Additionally, since bε0−1 . . . b00ε1−ε0 com-
prises exactly ε0 + (ε1 − ε0) = ε1 bits, the final equality holds due to the aforementioned property
of modular reduction with a power-of-two modulus.

Associated with each modular scaling and flooring operator, we straightforwardly define coefficient-
wise and entry-wise extensions for, respectively, polynomials and vectors/matrices. Specifically,
the coefficient-wise extension of such an operator independently applies the operator to each coef-
ficient of the considered polynomial; naturally, the coefficients of this polynomial must be elements
from the operator’s domain. Similarly, the entry-wise extension of such an operator individually
applies the operator to each entry of the vector/matrix in question; analogous to the coefficients
of a polynomial, the entries of this vector/matrix must be compatible with the operator. Further-
more, these extensions may be combined; in particular, a coefficient-wise extension of an operator
can have an entry-wise extension. As such, we also obtain modular scaling and flooring operators
applicable to polynomial vectors. A necessary consequence of the straightforward definitions of
these extensions is that, to determine the outcome of the application of an extended operator, it
suffices to compute the outcomes of the application of the underlying operator on each coefficient
or entry of, respectively, the considered polynomial or vector/matrix. Lastly, by abuse of notation,
these extensions are denoted identically to their underlying operators.

In addition to the above-introduced modular scaling and flooring operator, the remainder occa-
sionally refers to “modular scaling and rounding” operators of the form b·eq→p : Zq → Zp, where
p, q ∈ N such that 0 < p and 0 < q. For a certain p and q, this operator is identical to its modular
scaling and flooring counterpart, except that it uses rounding instead of flooring; moreover, this
operator is extended analogously to the modular scaling and flooring operator.

As a last preliminary related to operators, we cover the overloading and extending of the modulo
operator. Specifically, for any p, q ∈ N such that 0 < p, 0 < q, and p | q, we let “mod p”
denote a well-defined mapping from Zq to Zp. In terms of their computations, these mappings are
equivalent to the conventional modulo operator when lifting their operands and results to Z and
Zp, respectively. Furthermore, these mappings are extended similarly to the modular reduction
and flooring/rounding operators.

Fourth, we introduce coefficient-wise and entry-wise extensions of sampling; indeed, these exten-
sions are analogous to the extensions defined for the operators mentioned above. More precisely,

Formal Verification of Saber 31

3.1. PRELIMINARIES CHAPTER 3. SABER

while regular sampling involves sampling a single numerical value from the considered probability
distribution, extension sampling, coefficient-wise or entry-wise, entails repeatedly and independ-
ently sampling numerical values until the required number of values is obtained. For instance,
suppose we desire to sample a vector of polynomials from βµ(Rm×1

q), where 0 < m. Then, since
the desired element is an m-dimensional vector with entries from Rq, the sampling’s entry-wise
extension independently samples m elements from βµ(Rq). In turn, because Rq consists of poly-
nomial elements, the sampling’s coefficient-wise extension independently samples all necessary
coefficients from βµ(Zq). At last, these coefficients are obtained by (regularly) sampling from the
centered binomial distribution with parameter µ and lifting the sampled values to Zq.

Fifth, the Saber cipher suite defines a set of configuration parameters that determines the quotient
ring structure, moduli, distributions, vectors, and matrices utilized in the schemes [14]. Specific-
ally, this set comprises the exponent εn corresponding to the degree n = 2εn of the polynomial mod-
ulusXn+1; the exponents εt, εp, and εq associated with the moduli t = 2εt , p = 2εp , and q = 2εq ,
respectively; the centered binomial distribution’s parameter µ; and the dimension l for the vec-
tors and matrices3. The chosen parameter values influence multiple essential properties of Saber’s
schemes; particularly, these values impact the security level, failure probability, and required band-
width and storage. As such, assigning values to these parameters is a critical and delicate endeavor.
Nevertheless, technically, the parameters must merely satisfy the following list of requirements for
the schemes to conform to their specifications.

1. Moduli Exponent Ordering
The exponents of the moduli must adhere to 0 < εt + 1 < εp < εq or, equivalently, 1 ≤
εt + 1 ∧ εt + 2 ≤ εp ∧ εp + 1 ≤ εq. Consequently, 0 < 2 · t < p < q and 2 · t | p | q.

2. Valid Polynomial Degree
The exponent εn corresponding to the degree n of the polynomial modulus Xn + 1 must be
a natural number, i.e., εn ∈ N.

3. Valid Vector/Matrix Dimensions
The dimension of the employed vectors and matrices must be a strictly positive natural
number; that is, l ∈ N and 0 < l.

4. Small Centered Binomial Distribution Parameter
The parameter µ of the utilized centered binomial distribution must be strictly less than p,
i.e., µ < p.

Finally, Saber uses several predefined constants in its schemes [14]. In particular, these con-
stants are utilized with certain modular scaling and flooring operators to mimic modular scal-
ing and rounding operators, retaining the schemes’ desired security and correctness properties.
The rationale for employing modular scaling and flooring operators over their rounding counter-
parts is that the former facilitate the implementation process; specifically, this is because most
programming languages default to effectively flooring the result of computations with integers.
Concretely, the constants are denoted by h1, h2 ∈ Rq, and h ∈ Rl×1

q ; moreover, the former two
constants are defined as h1 =

∑n−1
i=0

q
2·p ·X

i =
∑n−1
i=0 2εq−εp−1 ·Xi and h2 =

∑n−1
i=0 (p4 −

p
4·t) ·Xi =∑n−1

i=0 (2εp−2 − 2εp−εt−2) ·Xi, while h is defined as the vector with all entries equal to h1. Here,
the q, p, t, and n are the aforementioned moduli and degree defined by the εq, εp, εt, and εn
parameters, respectively.

Elaborating on the above, we demonstrate the manner in which Saber’s schemes utilize particular
modular scaling and flooring operators in combination with the constants to mimic modular scaling
and rounding operators. Predominantly, considering an arbitrary element v ∈ Rl×1

q , the schemes
3The matrices in Saber are all square, so a single parameter suffices to specify their dimension.

32 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

mimic bveq→p by means of bv + hcq→p; indeed, bveq→p = bv + hcq→p. To see why this holds,
let xεq−1 . . . xεq−εpxεq−εp−1xεq−εp−2 . . . x0 be the binary representation of an arbitrary element
x ∈ Zq; then, we can distinguish two cases: xεq−εp−1 = 0 and xεq−εp−1 = 1. In the former case,
the addition of 2εq−εp−1 only affects the value of xεq−εp−1, changing it to 1; in particular, the
remainder of x’s bits are unaffected by this addition since it induces no carries. The derivation
below shows the equality between bx+ 2εq−εp−1cq→p and bxeq→p in this case.

bx+ 2εq−εp−1cq→p = bxεq−1 . . . xεq−εp0xεq−εp−2 . . . x0 + 0εp10εq−εp−1cq→p
= bxεq−1 . . . xεq−εp1xεq−εp−2 . . . x0cq→p
=
⌊
xεq−1 . . . xεq−εp .1xεq−εp−2 . . . x0

⌋
= xεq−1 . . . xεq−εp

= bxεq−1 . . . xεq−εp .0xεq−εp−2 . . . x0e
= bxεq−1 . . . xεq−εp0xεq−εp−2 . . . x0eq→p
= bxeq→p

In the other case, i.e., when xεq−εp−1 = 1, the addition of 2εq−εp−1 changes the value of xεq−εp−1
to 0 and produces a carry. Naturally, this carry is added to bit xεq−εp ; in turn, the addition of
this carry might affect the value of the εp most significant bits of x. Nevertheless, also in this case,
bx+ 2εq−εp−1cq→p is equal to bxeq→p. Namely, as can be extracted from the preceding derivation,
xεq−εp−1 is the first bit that follows the binary point after evaluating the multiplication of x
with p

q . In consequence, since xεq−εp−1 = 1, bxeq→p effectively drops the εq − εp least significant
bits of x and adds 1 to the remaining value. Certainly, because this remaining value equals
xεq−1 . . . xεq−εp , this addition is equivalent to the aforementioned carry addition that occurs when
adding 2εq−εp−1 to the initial value of x. Thus, albeit in a different order, bx+ 2εq−εp−1cq→p and
bxeq→p both essentially drop the εq − εp least significant bits of x and add 1 to xεq−εp ; as such,
even if xεq−εp−1 = 1, bx+ 2εq−εp−1cq→p equals bxeq→p.

From the above-derived equality, we can directly infer the analog equalities between the extensions
of the considered operators; particularly, this direct inference is possible due to the straightforward
definitions of the extensions, as explicated above. Naturally, regarding the extensions of the
modular scaling and flooring operator, the polynomial or vector/matrix that is added to their
operand must, respectively, solely comprise coefficients or entries equal to 2εq−εp−1. An analogous
argument holds for the combination of these extensions. Consequently, since each entry of h is
equal to h1 and, in turn, each coefficient of h1 is equal to 2εq−εp−1, we can derive the following
equality for all v ∈ Rl×1

q .
bv + hcq→p = bveq→p

3.2 Public-Key Encryption Scheme
As all PKE schemes, Saber’s PKE scheme comprises a triple of algorithms: a key generation
algorithm, an encryption algorithm, and a decryption algorithm. Throughout, these algorithms
are referred to as Saber.KeyGen, Saber.Enc, and Saber.Dec, respectively; moreover, Saber’s PKE
scheme is denoted by Saber.PKE. As such, we have Saber.PKE = (Saber.KeyGen, Saber.Enc,
Saber.Dec).

This section extensively discusses and analyzes Saber.PKE. Specifically, first, Section 3.2.1 dis-
cusses the specifications of Saber.PKE’s algorithms; subsequently, Section 3.2.2 and Section 3.2.3
respectively analyze the scheme’s security and correctness.

3.2.1 Specification
Proceeding in the logical order of execution, we present and elaborate on Saber.PKE’s algorithms;
that is, we cover Saber.KeyGen first, followed by Saber.Enc and, at last, Saber.Dec. For all of these

Formal Verification of Saber 33

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

algorithms, we adopt the specifications from the original paper [14].

Foremost, several of Saber.PKE’s algorithms are defined with respect to a publicly known and
efficiently evaluable algorithm gen. Given an input seed, i.e., a bit-string of a certain length,
gen generates an element of Rl×lq , where q and l respectively denote the modulus and dimension
introduced in Section 3.1. Furthermore, it is imperative that, on the same input, this algorithm
invariably produces the same output. In other words, gen must be a well-defined mathematical
function.

Addressing the first algorithm’s specification, Algorithm 1 contains the specification of Saber.KeyGen.
This algorithm takes no inputs and returns a key pair as output; specifically, this key pair is pro-
duced as follows. Initially, Saber.KeyGen samples seedA, a bit-string of length 256, uniformly at
random. Subsequently, the algorithm calls gen with input seedA and assigns the result, an ele-
ment of Rl×lq , to A; i.e., matrix A is obtained via a call to gen(seedA), giving A ∈ Rl×lq . Then,
the algorithm acquires the secret key s by sampling from βµ(Rl×1

q). Thereafter, Saber.KeyGen
computes the second and last part of the public key, i.e., b, by effectively modular scaling and
rounding the matrix-vector multiplication of A and s from modulo q to modulo p. Lastly, the
algorithm returns the generated public key pk, which constitutes the tuple (seedA,b), and secret
key sk, which equals s.

Algorithm 1 Saber’s Key Generation Algorithm
1: procedure Saber.KeyGen()
2: seedA←$ U({0, 1}256)
3: A← gen(seedA)
4: s←$ βµ(Rl×1

q)
5: b← bA · s + hcq→p
6: return pk := (seedA,b), sk := s
7: end procedure

Next, Algorithm 2 provides the specification of Saber.Enc. In contrast to Saber.KeyGen, this al-
gorithm does take inputs; more precisely, it takes a public key pk, which is a tuple generated in
accordance with Saber.KeyGen, and a message m, which is encoded as an element of R2. With
regards to the latter, the message space M of Saber.PKE is the set of bit-strings of length n,
where n is the parameter-induced value mentioned in Section 3.1; that is, M = {0, 1}n. This
conveys that both Saber.Enc and Saber.Dec are only capable of, respectively, encrypting and de-
crypting messages representable by bit-strings of length n. To use such messages in the algorithms’
computations, they are, as stated above, encoded as elements of R2. In particular, considering
any message mplain = m0m1 . . .mn−2mn−1 such that ∀0≤i<n : mi ∈ {0, 1}, the correspond-
ing encoded element equals mencoded =

∑n−1
i=0 mi ·Xi. Decoding an encoded message is trivially

accomplished by performing the inverse operation, i.e., through concatenation of the encoded mes-
sage’s coefficients. Provided with the input, Saber.Enc starts by generating matrix A and sampling
secret vector s′ in an identical manner to, respectively, the generation of A and sampling of s in
Saber.KeyGen. Furthermore, Saber.Enc’s subsequent computation of b′, which constitutes one of
two parts of the eventual ciphertext, is comparable to Saber.KeyGen’s computation of b; namely,
Saber.Enc computes b′ by effectively modular scaling and rounding the result of AT · s′ from
modulo q to modulo p. Afterward, Saber.Enc proceeds by constructing the ciphertext’s remaining
part. To this end, the algorithm first computes an intermediate value v′ from b, s′, and h1. In this
computation, s′ and h1 are reduced modulo p which, as discussed in the previous section, entails
reducing all coefficients (of each entry) modulo p. Indeed, since each coefficient is an element of Zq
and p | q, these modular reductions are well-defined; moreover, because the resulting coefficients
are elements of Zp, s′ mod p and h1 mod p are elements of Rl×1

p and Rp, respectively. Subsequent
to the computation of v′, the algorithm obtains the remaining part of the ciphertext, i.e., cm, by
adding a scaled version of the encoded input message to v′ and, thereafter, modular scaling and

34 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

flooring the result from modulo p to modulo 2 · t. As such, intuitively, (the most significant bits
of) the coefficients of v′ collectively serve as the key employed to encrypt the message m. At last,
Saber.Enc returns the ciphertext c, which is comprised of the tuple (cm,b′).

Algorithm 2 Saber’s Encryption Algorithm
1: procedure Saber.Enc(pk := (seedA,b), m)
2: A← gen(seedA)
3: s′←$ βµ(Rl×1

q)
4: b′ ← bAT · s′ + hcq→p
5: v′ ← bT · (s′ mod p) + (h1 mod p)
6: cm ← bv′ + bmc2→pcp→2·t
7: return c := (cm,b′)
8: end procedure

Finally, Algorithm 3 presents the specification of Saber.Dec. As input, this algorithm takes a
secret key sk, generated in accordance with Saber.KeyGen, and a ciphertext c, produced as per
Saber.Enc. Following, Saber.Dec computes v identically to the manner in which Saber.Enc computes
v′; however, instead of b and s′, Saber.Dec uses b′ and s. Subsequently, Saber.Dec attempts to
extract the encoded message from the given cm by subtracting a scaled version of this value from
v, adding h2 mod p, and, ultimately, modular scaling and flooring the result from modulo p to
modulo 2. Lastly, Saber.Dec returns the result of this extraction attempt, i.e., m′.

Algorithm 3 Saber’s Decryption Algorithm
1: procedure Saber.Dec(sk := s, c := (cm,b′))
2: v ← b′T · (s mod p) + (h1 mod p)
3: m′ ← bv − bcmc2·t→p + (h2 mod p)cp→2
4: return m′

5: end procedure

A comprehensive and minute analysis of Saber.PKE’s correctness, i.e., the probability that Saber.Dec
unerringly extracts a message from the corresponding encryption produced by Saber.Enc4, is car-
ried out in Section 3.2.3; nevertheless, we presently provide a concise, more cursory explication
of this property to demonstrate the relevant aspects and concepts. Foremost, recall that due to
Saber’s parameter requirements specified in Section 3.1, we have q > p > 2 · t. Consequently, the
b·eq→p and b·cp→2·t operators scale their operands to a smaller modulus, thereby introducing an
error; moreover, the b·c2·t→p operator effectively reduces to (real) multiplication of its operand
with p

2·t . Furthermore, as derived previously, for all v ∈ Rl×1
q , we have bv + hcq→p = bveq→p;

particularly, this holds for v = A · s and v = AT · s′, where A, s, and s′ denote the artifacts em-
ployed in Saber.KeyGen and Saber.Enc. As such, we can represent the b, b′, and cm computed in,
respectively, Saber.KeyGen, Saber.Enc, and Saber.Enc as follows. Here, eb, eb′ , and ecm represent
the errors introduced by the modular scaling and flooring operators.

b = bA · s + hcq→p = bA · seq→p = p

q
· (A · s) + eb

b′ = bAT · s′ + hcq→p = bAT · s′eq→p = p

q
· (AT · s′) + eb′

cm = bv′ + bmc2→pcp→2·t = 2 · t
p
· (v′ + bmc2→p) + ecm

In the above, for reasons of intelligibility, we slightly abuse notation by not explicitly denoting
the lifting of elements. In fact, this is additionally the case for the remaining derivations in this
correctness-related explication.

4Naturally, this is merely an intuitive description of Saber.PKE’s correctness; for the corresponding formal
definition(s), refer to Section 3.2.3.

Formal Verification of Saber 35

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

Employing the above-inferred expression for cm, we deduce an alternative expression for bcmc2·t→p;
indeed, this is one of the terms utilized in Saber.Dec to compute m′.

bcmc2·t→p = b2 · t
p
· (v′ + bmc2→p) + ecmc2·t→p

= p

2 · t · (
2 · t
p
· (v′ + bmc2→p) + ecm)

= v′ + bmc2→p + p

2 · t · ecm

Penultimately, as a useful intermediate step preceding the final derivation, we rewrite the expres-
sion v− v′, where v and v′ are the artifacts used in Saber.Dec and Saber.Enc. In this endeavor, we
utilize the previously derived expressions for b and b′.

v − v′ = (b′T · (s mod p) + (h1 mod p))− (bT · (s′ mod p) + (h1 mod p))

= b′T · (s mod p)− bT · (s′ mod p)

= (p
q
· (AT · s′) + eb′)T · (s mod p)− (p

q
· (A · s) + eb)T · (s′ mod p)

= (p
q
· (s′T ·A) + eTb′) · (s mod p)− (p

q
· (sT ·AT) + eTb) · (s′ mod p)

= p

q
· (s′T ·A · (s mod p)) + eTb′ · (s mod p)− (p

q
· (sT ·AT · (s′ mod p)) + eTb · (s′ mod p))

= eTb′ · (s mod p)− eTb · (s′ mod p)

Here, the initial five equalities follow from basic operator properties or trivial substitutions and
simplifications. Specifically, in order, these equalities are induced by the substitutions of v and
v′, the simplification that eliminates h1 mod p, the substitutions of b′ and b, the distributivity
of the transpose over matrix multiplication, and the distributivity of matrix multiplication over
matrix addition. Somewhat less evident, the last equality is a consequence of the fact that p

q ·
(s′T ·A · (s mod p)) = p

q · (sT ·AT · (s′ mod p)). In turn, this is implied by s′T ·A · (s mod p) =
(sT · AT · (s′ mod p))T = sT · AT · (s′ mod p); certainly, since sT · AT · (s′ mod p) evaluates to
a single value, i.e., not a matrix (nor a vector), the transpose effectively reduces to the identity
function.

Lastly, leveraging the expressions deduced for bcmc2·t→p and v − v′, we rewrite Saber.Dec’s com-
putation of m′ in the following manner.

m′ = bv − bcmc2·t→p + (h2 mod p)cp→2

= bv − (v′ + bmc2→p + p

2 · t · ecm) + (h2 mod p)cp→2

= b(v − v′)− bmc2→p −
p

2 · t · ecm + (h2 mod p)cp→2

= beTb′ · (s mod p)− eTb · (s′ mod p)− bmc2→p −
p

2 · t · ecm + (h2 mod p)cp→2

= bbmc2→p + eTb′ · (s mod p)− eTb · (s′ mod p)− p

2 · t · ecm + (h2 mod p)cp→2

= m+ beTb′ · (s mod p)− eTb · (s′ mod p)− p

2 · t · ecm + (h2 mod p)cp→2

Akin to the preceding derivation’s initial equalities, the first four equalities in this derivation are
induced by trivial substitutions and fundamental operator properties; contrarily, the legitimacy of
the latter two equalities is more difficult to discern. Namely, the penultimate equality is implied
by −bmcp→2 = bmcp→2; furthermore, the final equality follows from the fact that for all x ∈ Rp,
bbmc2→p + xcp→2 = m + bxcp→2. For reasons of conciseness and relevance, the validity of these
properties is not corroborated here; however, trivially extended to these properties, proofs for

36 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

analogous properties are provided by the correctness analysis in Section 3.2.3. Considering the
final expression, we see that m′ = m if and only if beTb′ · (s mod p) − eTb · (s′ mod p) − p

2·t ·
ecm + (h2 mod p)cp→2 = 0. In turn, this latter equality holds if and only if each coefficient of
eTb′ ·(s mod p)−eTb ·(s′ mod p)− p

2·t ·ecm+(h2 mod p) lies in the discrete range [0, 2εp−1), i.e., each of
these coefficients has its εp-th bit set to 0; certainly, this is due to the fact that the considered b·cp→2
operator effectively performs a right bit-shift of εp−1 bits on each coefficient (which has a total of
εp bits). Concluding, since the expression eTb′ · (s mod p)− eTb · (s′ mod p)− p

2·t · ecm + (h2 mod p)
is almost entirely contingent on the randomly sampled artifacts from Saber.PKE’s algorithms,
there exists a positive probability that at least one of its coefficients equals 1 and, hence, m′ 6= m;
surely, this indicates that Saber.PKE is not perfectly correct.

3.2.2 Security
As alluded to in Section 1.1, assuming the hardness of the MLWR problem, Saber.PKE is supposed
to be IND-CPA secure. In the ensuing, we carry out a manual analysis of Saber.PKE with respect
to this property; specifically, we devise a corresponding code-based, game-playing security proof.
This manual analysis differs from the presently established analyses of Saber.PKE’s security in
the particular scheme that the code-based, game-playing security proof considers. Namely, the
presently established analyses construct such a proof for the IND-RND security of Saber’s KE
scheme; subsequently, they essentially infer Saber.PKE’s IND-CPA security from this security
property of the KE scheme [14,33]. In contrast, we create a code-based, game-playing security proof
directly for Saber.PKE; this approach facilitates the corresponding formal verification endeavor
in EasyCrypt.

Concretely, the forthcoming manual analysis proceeds as follows. First, we define the relevant
security property and hardness assumptions as (code-based) security games. Second, in terms
of these security games, we formalize the security claim. Lastly, we prove this security claim by
means of a game-playing proof.

Security Property and Hardness Assumptions

As aforementioned, in a code-based, game-playing cryptographic proof, hardness assumptions and
security properties are formalized through games, i.e., probabilistic programs defined with respect
to a relevant adversary. Regarding the IND-CPA security property for PKE schemes, this game
straightforwardly formalizes the corresponding scenario explicated in Section 2.2. More precisely,
considering any relevant adversary A = (P,D) and PKE = (KeyGen, Enc, Dec), the general variant
of this game is defined in Figure 3.1.

GameIND-CPA
A,PKE

1 : u←$ U({0, 1})
2 : (pk, sk)← KeyGen()
3 : (m0,m1)← A.P(pk)
4 : c← Enc(pk,mu)
5 : u′ ← A.D(pk, c)
6 : return (u′ = u)

Figure 3.1: The General IND-CPA Game

The advantage of adversary A = (P,D) against GameIND-CPA
A,PKE denotes A’s nontrivial probability

of winning GameIND-CPA
A,PKE ; indeed, this captures the extent to which A is capable of extracting

information about a message from its encryption. Considering the trivially achievable probability

Formal Verification of Saber 37

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

of winning equals 1
2 , the advantage of A against GameIND-CPA

A,PKE is defined as follows.

AdvIND-CPA
PKE (A) =

∣∣∣∣Pr
[
GameIND-CPA

A,PKE = 1
]
− 1

2

∣∣∣∣
Adhering to (the stipulations of) the scenario described in Section 2.2, GameIND-CPA

A,PKE does not
impose any restrictions on the considered adversary, except that it should be a relevant adversary.
In this manner, GameIND-CPA

A,PKE implicitly conveys that the adversary may arbitrarily compute and
store data during the game’s execution5; particularly, in the call to A.D(pk, c), the adversary may
still have knowledge of m0, m1, and all computations performed in A.P(pk). In other words, the
adversary is capable of maintaining a state. Furthermore, GameIND-CPA

A,PKE allows the adversary to
pick the messages itself, which precludes the advantage from being dependent on the particular
construction of the messages. As such, if AdvIND-CPA

PKE (A) is negligible for all relevant adversaries,
PKE indeed is IND-CPA secure.

Concretizing the general IND-CPA game for Saber.PKE, we obtain the game depicted in Fig-
ure 3.2.

GameIND-CPA
A,Saber.PKE

1 : u←$ U({0, 1})
2 : (pk, sk)← Saber.KeyGen()
3 : (m0,m1)← A.P(pk)
4 : c← Saber.Enc(pk,mu)
5 : u′ ← A.D(pk, c)
6 : return (u′ = u)

Figure 3.2: The IND-CPA Game for Saber.PKE

Moreover, the corresponding advantage becomes the following.

AdvIND-CPA
Saber.PKE(A) =

∣∣∣∣Pr
[
GameIND-CPA

A,Saber.PKE = 1
]
− 1

2

∣∣∣∣
Technically, we could construct a more detailed description of GameIND-CPA

A,Saber.PKE by replacing the
calls to Saber.PKE’s algorithms with their actual specification; in fact, this is necessary to carry
out the scheme’s security proof properly. However, for reasons of conciseness, we do not yet
perform this replacement here.

Concerning the relevant hardness assumptions, we formalize the MLWR problem as the MLWR
game, which encapsulates the ability of an adversary to distinguish between a certain number
of MLWR samples and the same number of uniformly random samples (from the same domain).
Indeed, the assumption that no relevant adversary can successfully distinguish between these
cases with non-negligible probability is equivalent to the assumption that the MLWR problem is
hard. The description of the MLWR game is given in Figure 3.3, for adversary A and parameters
m, l, µ, q, and p.

In contrast to the IND-CPA game, which samples u uniformly at random, the MLWR game takes
this bit as input. As a result, the advantage of an adversary against the MLWR game can be
formulated in a way that simplifies several of the derivations carried out in the security proof.
Concretely, the advantage of an adversary A against GameMLWR

A,m,l,µ,q,p is defined as follows.

AdvMLWR
m,l,µ,q,p(A) =

∣∣∣Pr
[
GameMLWR

A,m,l,µ,q,p(1) = 1
]
− Pr

[
GameMLWR

A,m,l,µ,q,p(0) = 1
]∣∣∣

5Naturally, since the adversary must belong to the class of relevant adversaries, it is subject to the general
restrictions imposed on this class.

38 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

GameMLWR
A,m,l,µ,q,p(u)

1 : A←$ U(Rm×lq)
2 : s←$ βµ(Rl×1

q)
3 : b0 ← bA · seq→p
4 : b1 ←$ U(Rm×1

p)
5 : return A(A,bu)

Figure 3.3: The MLWR Game

As desired, AdvMLWR
m,l,µ,q,p(A) precisely captures the extent to which A is capable of distinguishing

between the case in which the game provides uniformly random samples, i.e., u = 1, and the case in
which the game provides MLWR samples, i.e., u = 0. Namely, any success A has in distinguishing
these cases is reflected in the difference between the probability of A returning a specific value in
the case that u = 1 and the probability of A returning this same value in the case that u = 0. In
AdvMLWR

m,l,µ,q,p(A), this specific value is arbitrarily chosen to be 1; indeed, altering this value to 0 for
both probabilities yields an equivalent definition.

In lieu of the MLWR game specified above, the security proof of Saber.PKE utilizes a variant
of this game; we refer to this variant as the “GMLWR game”. Essentially, the GMLWR game
deviates from the MLWR game in two aspects. First, instead of sampling A uniformly at random,
the GMLWR game generates this matrix by evaluating gen on a uniformly random seed; here, gen
is the same algorithm as the one employed in the specifications of Saber.KeyGen and Saber.Enc.
Second, rather than A, the GMLWR game gives the adversary the seed utilized to generate A.
Since gen is assumed to be publicly known and efficiently evaluable, the adversary is capable
of evaluating gen on this seed to generate A; this implies that passing the seed provides the
adversary with at least as much information as directly passing A. With respect to adversary A
and parameters l, µ, q, and p, the description of the GMLWR game is provided in Figure 3.46. For
clarity purposes, the naming of the parameters between the MLWR and GMLWR games is kept
consistent; in particular, in both cases, the q and l parameters respectively denote the modulus
in Rq and the dimension of the vectors/matrices. However, as opposed to the MLWR game, the
GMLWR game is not defined with respect to the parameter m. The reason for this is that, as
aforementioned, gen generates elements of Rl×lq ; because these elements are square matrices, only
a single parameter is needed to specify their dimension. Consequently, this indicates that the
GMLWR game is actually a variant of the MLWR game with m = l, i.e., the MLWR game in
which the number of samples equals the number of polynomial entries per sample.

GameGMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← bA · seq→p
5 : b1 ←$ U(Rl×1

p)
6 : return A(seedA,bu)

Figure 3.4: The GMLWR Game

6Technically, the GMLWR game would be valid for any seed length that gen could (be instantiated to) accept;
however, the seed has a fixed length of 256 bits since this is the seed length used in Saber.PKE’s algorithms.

Formal Verification of Saber 39

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

Correspondingly, the advantage of an adversaryA against GameGMLWR
A,l,µ,q,p is defined as follows.

AdvGMLWR
l,µ,q,p (A) =

∣∣∣Pr
[
GameGMLWR

A,l,µ,q,p(1) = 1
]
− Pr

[
GameGMLWR

A,l,µ,q,p(0) = 1
]∣∣∣

In addition to the GMLWR game, the security proof of Saber.PKE utilizes a game which we
refer to as the “XMLWR game”; basically, this game is a mixture of the MLWR and GMLWR
games. More precisely, the XMLWR game constructs A and bu similarly to the GMLWR game;
however, the XMLWR game additionally creates a pair (a, du) in the same manner as the MLWR
game creates its samples. Ultimately, the adversary is given the seed utilized to generate A,
bu, a, and du. For adversary A and parameters l, µ, q, and p, the XMLWR game is defined in
Figure 3.57.

GameXMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← bAT · seq→p
5 : b1 ←$ U(Rl×1

p)
6 : a←$ U(R1×l

q)
7 : d0 ← ba · seq→p
8 : d1 ←$ U(Rp)
9 : return A(seedA,bu,a, du)

Figure 3.5: The XMLWR Game

Accordingly, the advantage of an adversary A against GameXMLWR
A,l,µ,q,p game is defined below.

AdvXMLWR
l,µ,q,p (A) =

∣∣∣Pr
[
GameXMLWR

A,l,µ,q,p(1) = 1
]
− Pr

[
GameXMLWR

A,l,µ,q,p(0) = 1
]∣∣∣

Lastly, due to the similarity between the MLWR game and the GMLWR/XMLWR game, the
hardness of the GMLWR/XMLWR game is related to the hardness of the MLWR game. Intuit-
ively, if the output distribution of gen (closely) resembles U(Rl×lq) and gen has no structure that
can be exploited to predict its output values, the GMLWR/XMLWR game is (nearly) as hard as
the MLWR game. The subsequent discussion further elaborates on this intuition and, afterward,
formalizes this intuition through ROM proofs.

Security Theorem

The following security theorem relates the IND-CPA security of Saber.PKE to the problems asso-
ciated with the GMLWR and XMLWR games. Specifically, the theorem provides an upper bound
on the advantage that an adversary can achieve against GameIND-CPA

A,Saber.PKE; this upper bound is
expressed in terms of advantages against instances of the GMLWR and XMLWR games, each
concretized with the parameters from Saber. That is, although l, µ, q, and p denote generic formal
parameters in the definitions of the GMLWR game, the XMLWR game, and the advantages of
adversaries against these games, the parameters used in the security theorem below directly cor-
respond to the parameters of Saber; indeed, for reasons of consistency and clarity, these happen
to have the same identifiers.

7For the XMLWR game, the same comments hold regarding the naming of the parameters and the seed length
as for the GMLWR game. Likewise, the XMLWR game is not defined with respect to the parameter m for reasons
identical to the ones provided for the GMLWR game.

40 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

Security Theorem. Let q
p ≤

p
2t . Then, for any adversary A, there exist adversaries B0 and B1,

each with approximately the same8 running time as A, such that

AdvIND-CPA
Saber.PKE(A) ≤ AdvGMLWR

l,µ,q,p (B0) + AdvXMLWR
l,µ,q,p (B1)

Notably, this theorem does not impose any resource-related restrictions on A, nor does it specify
any requirements for the instantiation of gen; as such, the theorem essentially claims that its
statement is veracious for any A with an arbitrary amount of resources and any instantiation of
gen. Albeit we show this is indeed the case, the theorem is meaningful in practice only if the
sum of AdvGMLWR

l,µ,q,p (B0) and AdvXMLWR
l,µ,q,p (B1) is guaranteed to be negligibly small for all relevant

adversaries A against GameIND-CPA
A,Saber.PKE. For instance, in case there exists a relevant adversary A

against GameIND-CPA
A,Saber.PKE such that AdvGMLWR

l,µ,q,p (B0) + AdvXMLWR
l,µ,q,p (B1) = α for some non-negligibly

small α, the theorem’s inequality reduces to AdvIND-CPA
Saber.PKE(A) ≤ α; this does not ensure that

AdvIND-CPA
Saber.PKE(A) is negligibly small. Consequently, in this case, the theorem does not sufficiently

limit the potential advantage of this relevant adversary against GameIND-CPA
A,Saber.PKE and, hence, we

cannot conclude that Saber.PKE is IND-CPA secure. Conversely, suppose that for any relevant
adversary A against GameIND-CPA

A,Saber.PKE, we have AdvGMLWR
l,µ,q,p (B0) + AdvXMLWR

l,µ,q,p (B1) ≤ ε such that
ε is negligibly small; then, from the theorem’s inequality, it follows that AdvIND-CPA

Saber.PKE(A) ≤ ε for
any relevant adversary A. That is, in this situation, the theorem’s inequality guarantees that the
advantage of any relevant adversary A against GameIND-CPA

A,Saber.PKE is negligibly small; indeed, this
implies the IND-CPA security of Saber.PKE.

For AdvGMLWR
l,µ,q,p (B0) + AdvXMLWR

l,µ,q,p (B1) to be negligibly small, AdvGMLWR
l,µ,q,p (B0) and AdvXMLWR

l,µ,q,p (B1)
must individually be negligibly small as well; in turn, this requires the corresponding GMLWR
and XMLWR games to be hard to win9. The hardness of these games is an assumption that we
make and corroborate for appropriate parameters and instantiations of gen. Namely, intuitively,
given that the MLWR game (with m = l) is conjectured to be hard for suitable parameter choices,
it seems reasonable to assume that the GMLWR and XMLWR games are hard for comparable
parameter choices if gen is adequately instantiated. Specifically, if the output distribution of
gen (closely) resembles U(Rl×lq) and gen has (practically) no structure that can be exploited to
predict its output values, i.e., gen is (effectively) a random oracle, GameGMLWR

B0,l,µ,q,p is essentially
equal to GameMLWR

B0,l,l,µ,q,p. Moreover, the XMLWR game is similar to the GMLWR game with one
additional sample generated as in the MLWR game; consequently, for a satisfactory instantiation
of gen, GameXMLWR

B1,l,µ,q,p is virtually the same as GameMLWR
B1,l+1,l,µ,q,p.

Hardness of GMLWR and XMLWR

Albeit the preceding intuitive substantiation for the hardness of the GMLWR and XMLWR games
might seem correct and convincing, we formalize the presented arguments by means of ROM proofs;
in essence, these proofs show that if gen is a random oracle and the MLWR game is hard, then
the GMLWR and XMLWR games are hard. Specifically, assuming gen is a random oracle, we
show that any instance of the MLWR game efficiently reduces to corresponding instances of the
GMLWR and XMLWR games. Alternatively stated, given an adversary A against any instance of
the GMLWR/XMLWR game in which gen is a random oracle, we construct an adversary against a
corresponding instance of the MLWR game such that this constructed adversary has the same ad-
vantage in (the instance of) the MLWR game as A has in (the instance of) the GMLWR/XMLWR

8Generally, “approximately the same” and (correspondingly) “efficient” are formally defined depending on the
employed approach to provable security; for example, “within a polynomial factor” and, respectively, “polynomial
running time” are common such definitions. Nevertheless, in this thesis, the discussions and reasoning that utilize
these terms are trivially valid for any customary definitions. As such, we refrain from fixing a specific definition
and merely refer to the abstract concepts.

9Recall that, as suggested in Section 2.2, “hard” and “hardness” are invariably defined with respect to a class
of efficient or resource-restrained adversaries, i.e., adversaries that do not have an arbitrary amount of resources.

Formal Verification of Saber 41

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

game; moreover, this constructed adversary has approximately the same running time as A. Then,
the hardness of the GMLWR and XMLWR games follows from the conjectured hardness of the
MLWR game. Namely, according to this hardness assumption, no relevant adversary against the
MLWR game can achieve a non-negligible advantage10; nevertheless, if gen is a random oracle,
we show that we can create such an adversary from an adversary that achieves a non-negligible
advantage against the GMLWR/XMLWR game. Therefore, such adversaries against the GMLWR
and XMLWR games must also not exist, i.e., the GMLWR and XMLWR games must be hard
(assuming gen is a random oracle).

GameROMGMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← Gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← bA · seq→p
5 : b1 ←$ U(Rl×1

p)
6 : return AGen(seedA,bu)

GameROMXMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← Gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← bAT · seq→p
5 : b1 ←$ U(Rl×1

p)
6 : a←$ U(R1×l

q)
7 : d0 ← ba · seq→p
8 : d1 ←$ U(Rp)
9 : return AGen(seedA,bu,a, du)

Figure 3.6: The GMLWR (Left) and XMLWR (Right) Games in the Random Oracle Model

Foremost, to differentiate between the standard model and random oracle model, we introduce
separate identifiers and descriptions for the GMLWR and XMLWR games in the ROM; moreover,
in these descriptions, to distinguish between the standard gen and its idealized counterpart, we
denote the latter by Gen. For adversary A and parameters l, µ, q, and p, Figure 3.6 provides the
descriptions of these GMLWR and XMLWR games in the ROM.

As above-mentioned, for the reductions from MLWR to GMLWR and XMLWR, we aspire to con-
struct an adversary against the MLWR game from a given adversary against the GMLWR game
and, respectively, the XMLWR game; additionally, in both cases, this constructed reduction ad-
versary must have a running time that is approximately the same as the given adversary’s running
time. An essential component in these reductions is the reduction adversary’s ability to employ
the given adversary’s algorithms as well as monitor and control all of the corresponding inputs
and outputs. Particularly, a reduction adversary can monitor and manipulate each random oracle
query issued by the given adversary. Nevertheless, to guarantee that the given adversary behaves
identically between the reduction and a regular run of its own game, the reduction adversary
must ensure that the given adversary cannot distinguish between these cases. In this context,
this comes down to ensuring that the input provided to the given adversary in the reduction is
indistinguishable from the input in a run of its own game; moreover, the distribution of the ma-
nipulated random oracle query results must be indistinguishable from the regular distribution of
these query results, i.e., the uniform distribution.

Regarding the reduction from MLWR to GMLWR, consider an adversaryA against GameROMGMLWR
A,l,µ,q,p.

Given this adversary, we can straightforwardly construct an adversary RA (i.e., R can use A as
a black box sub-procedure) against GameMLWR

RA,l,l,µ,q,p. Namely, comparing these two games, we
see that they are nearly identical; indeed, the sole differences between these games concern the
manner in which A is obtained and the information passed to the adversary. However, since Gen
is a random oracle, the A in GameROMGMLWR

A,l,µ,q,p is uniformly distributed over Rl×lq , similarly to
10Technically, as alluded to before, the MLWR game is only considered hard for suitable instances of the game.

However, we construct abstract reductions covering all possible instances; indeed, this encompasses practically
appropriate instances for which the game is actually considered hard.

42 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

its counterpart in GameMLWR
A,l,l,µ,q,p. Consequently, the way in which A is acquired is equivalent

between these two games. Following, the only actual difference between the games is that, while
GameMLWR

A,l,l,µ,q,p directly gives A to its adversary, GameROMGMLWR
A,l,µ,q,p provides the seed with which

Gen is queried to obtain A. Combining these observations, we construct the above-mentioned
adversary RA against GameMLWR

RA,l,l,µ,q,p as follows.

1. Upon being called by GameMLWR
RA,l,l,µ,q,p, RA stores the given parameters A and bu.

2. Afterward, RA samples a seed uniformly at random from U({0, 1}256); that is, RA performs
seedA←$ U({0, 1}256).

3. Then, RA calls A(seedA,bu) and proceeds to monitor all random oracle queries. If A queries
the random oracle on seedA, RA blocks the query and returns A; otherwise, RA allows the
random oracle to answer the query.

4. Lastly, RA directly returns the value retrieved from A(seedA,bu).

Naturally, fixing the response for a single random oracle query with a uniformly distributed value,
as is done by RA, does not alter the distribution of the random oracle query results. As a result,
RA perfectly simulates a run of A’s game, i.e., GameROMGMLWR

A,l,µ,q,p, using the values provided by
its own game, i.e., GameMLWR

RA,l,l,µ,q,p. Hence, A is guaranteed to behave as in a run of its own
game; additionally, A attempts to solve the same problem as RA. In turn, this means that the
reduction adversary successfully employs A to obtain an advantage against GameMLWR

RA,l,l,µ,q,p that
is equal to the advantage of A against GameROMGMLWR

A,l,µ,q,p. Furthermore, excluding the call to
A(seedA,bu), RA solely performs sequential operations that can trivially be executed efficiently;
as such, it is evident that the running time of RA is approximately the same as the running time
of A. Concluding, the preceding constitutes a correct and efficient reduction from the MLWR
game to the GMLWR game in the ROM; that is, if gen is a random oracle and the MLWR game
is hard, then the GMLWR game is hard as well.

Finally, concerning the reduction from MLWR to XMLWR, we construct an adversary RA against
GameMLWR

RA,l+1,l,µ,q,p from an adversary A against GameROMXMLWR
A,l,µ,q,p. In this reduction, we utilize

the following two mathematical observations. First, a matrix-vector multiplication essentially
computes a series of inner products, orderly storing the results in a vector. Specifically, the vector
resulting from a matrix-vector multiplication comprises the inner products of the matrix’s row
vectors with the multiplication’s operand vector. Second, if a matrix is uniformly distributed,
each of its rows is also uniformly distributed; moreover, removing a row from a uniformly dis-
tributed matrix gives another uniformly distributed matrix. Applying these observations to the
current context, we deduce that extracting a row from the matrix A in GameMLWR

RA,l+1,l,µ,q,p, which
is uniformly distributed over Rl+1×l

q , produces a matrix and a vector that are uniformly distrib-
uted over Rl×lq and R1×l

q , respectively. Utilizing this result, we construct adversary RA against
GameMLWR

RA,l+1,l,µ,q,p as follows.

1. Upon being called by GameMLWR
RA,l+1,l,µ,q,p, RA respectively extracts the last row and entry

from the given parameters A and bu; subsequently, it stores the four resulting artifacts. For
convenience, we accordingly refer to the matrix and vector produced by the row extraction
as A′ and b′u; similarly, we denote the vector and polynomial resulting from the entry
extraction by, respectively, a and du.

2. Afterward, RA samples a seed uniformly at random from U({0, 1}256); that is, RA performs
seedA′ ←$ U({0, 1}256).

Formal Verification of Saber 43

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

3. Then, RA calls A(seedA′ ,b′u,a, du) and continues to monitor all random oracle queries. In
caseA queries the random oracle on seedA′ , RA blocks the query and returns A′T ; otherwise,
RA allows the random oracle to answer the query.

4. Lastly, RA directly returns the value retrieved from A(seedA′ ,b′u,a, du).

Here, when A queries the random oracle on seedA′ , RA returns A′T instead of A′ in order
to compensate for the deviating computations of bu between the MLWR and XMLWR games.
Namely, since A is an adversary against the XMLWR game, it expects the reduction’s b′u to be
computed with the transposed of the matrix obtained by querying Gen on seedA′ . As such, since
this b′u is actually computed with A′, RA must return A′T to match A’s expectations. Combining
this with the previously discussed observations, we see that RA perfectly simulates a run of A’s
game using the values from its own game. Moreover, akin to before, fixing the response for a single
random oracle query with a uniformly distributed value, as is done in this reduction, does not alter
the distribution of the random oracle query results. Hence, similarly to the preceding reduction,
it follows that RA successfully utilizes A to achieve an advantage against GameMLWR

RA,l+1,l,µ,q,p that
is identical to the advantage of A against GameROMGMLWR

A,l,µ,q,p. Furthermore, apart from the call
to A(seedA,bu), RA exclusively performs sequential operations that can straightforwardly be
executed efficiently; consequently, the running time of RA is approximately the same as that of A.
In conclusion, the preceding constitutes a correct and efficient reduction from the MLWR game
to the XMLWR game in the ROM; as a result, if gen is a random oracle and the MLWR game is
hard, then the XMLWR game is hard as well.

IND-CPA Security of Saber.PKE

Leveraging the defined IND-CPA, GMLWR, and XMLWR games, we presently prove the above-
discussed security theorem through a code-based, game-playing security proof.

In total, the game-playing proof of the security theorem comprises five games. The initial
game, Game0

A, is identical to the aforementioned GameIND-CPA
A,Saber.PKE after replacing the calls to

Saber.KeyGen and Saber.Enc by their actual specification. As such, Game0
A exactly captures the

IND-CPA security of Saber.PKE. Figure 3.7 provides the definition of Game0
A extended with com-

ments (i.e., lines starting with ‘//’) highlighting the different phases of the IND-CPA game.

Starting from Game0
A, the proof advances in incremental steps until it reaches the final game,

Game4
A. In each of these steps, we make a slight adjustment to the currently considered game,

producing the next game in the sequence. The differences between the original and resulting game
of a step are employed as the basis of a reduction; specifically, for a step from GameiA to Gamei+1

A ,
we show one of the following.

• Any adversary against GameiA can be utilized to construct an adversary against Gamei+1
A .

• Any adversary distinguishing between GameiA and Gamei+1
A can be utilized to construct

an adversary against an instance of the GMLWR or XMLWR game. Here, “distinguishing”
refers to the ability of an adversary to achieve a different winning probability between the con-
sidered games; more formally, considering adversary A, GameiA, and Gamei+1

A , the adversary
is said to distinguish between the two games if

∣∣Pr
[
GameiA = 1

]
− Pr

[
Gamei+1

A = 1
]∣∣ > 0.

Moreover, since all GameiA in the proof are variants of GameIND-CPA
A,Saber.PKE, their advantage is simil-

arly defined as follows.
Advi(A) =

∣∣∣∣Pr
[
GameiA = 1

]
− 1

2

∣∣∣∣
Figure 3.8 depicts the definition of the complete game sequence (i.e., Game0

A to Game4
A); in

44 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

Game0
A := GameIND-CPA

A,Saber.PKE

1 : u←$ U({0, 1})
2 : // — Key Generation (Saber.KeyGen) —

3 : seedA ←$ U({0, 1}256)
4 : A← gen(seedA)
5 : s←$ βµ(Rl×1

q)
6 : b← bA · s + hcq→p
7 : // Key Pair: (pk = (seedA,b), sk = s)

8 : // — Adversary Message Selection —

9 : (m0,m1)← A.P((seedA,b))
10 : // — Encryption (Saber.Enc) —

11 : s′ ←$ βµ(Rl×1
q);

12 : b′ ← bAT · s′ + hcq→p
13 : v′ ← bT · (s′ mod p) + (h1 mod p)
14 : ĉ← bv′ + bmuc2→pcp→2·t

15 : // Ciphertext: c = (ĉ,b′)

16 : // — Adversary Guess —

17 : u′ ← A.D((seedA,b), (ĉ,b′))
18 : return (u′ = u)

Figure 3.7: Initial Game in the Game-Playing Proof of Saber.PKE

addition, for each game, the lines that differ from the preceding game are highlighted with a gray
background.

Step 1: Game0
A - Game1

A In the first step, we alter the way in which b is obtained. Specifically,
rather than computing b by bA · s + hcq→p, as Game0

A does, Game1
A samples b uniformly at

random from its domain. As a side-effect of this change, Game1
A does not utilize s anymore; for

this reason, s is completely removed from Game1
A.

Considering the difference between Game0
A and Game1

A, we see that the pair (A,b) comprises l
GMLWR samples in Game0

A; contrarily, in Game1
A, this pair is uniform over its domain. Con-

sequently, an adversary A that is able to distinguish between these two games can be used to
construct an adversary BA0 against the GMLWR game. Figure 3.9 provides such a reduction.
To make the connection with Game0

A more explicit, the fourth line in this reduction differs from
the corresponding line in the original description of the GMLWR game (see Figure 3.4); particu-
larly, instead of the b0 ← bA · seq→p statement from the original description, the reduction uses
b0 ← bA·s+hcq→p. Nevertheless, as shown in Section 3.1, these two computations are equivalent,
making them interchangeable.

Based on the reduction given in Figure 3.9, we can determine that for any given adversary A
against Game1

A and Game2
A, there exists an adversary BA0 against the corresponding instance of the

GMLWR game such that
∣∣Pr
[
Game0

A = 1
]
− Pr

[
Game1

A = 1
]∣∣ = AdvGMLWR

l,µ,q,p (BA0). Specifically,
this result can be deduced as follows.

∀A∃BA0 : AdvGMLWR
l,µ,q,p (BA0) =

∣∣∣Pr
[
GameGMLWR

BA0 ,l,µ,q,p
(1) = 1

]
− Pr

[
GameGMLWR

BA0 ,l,µ,q,p
(0) = 1

]∣∣∣
= |Pr[w′ = w | u = 1]− Pr[w′ = w | u = 0]|
=
∣∣Pr
[
Game1

A = 1
]
− Pr

[
Game0

A = 1
]∣∣

=
∣∣Pr
[
Game0

A = 1
]
− Pr

[
Game1

A = 1
]∣∣

Formal Verification of Saber 45

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

Game0
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : s←$ βµ(Rl×1

q)
5 : b← bA · s + hcq→p
6 : (m0,m1)← A.P((seedA,b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← bAT · s′ + hcq→p
9 : v′ ← bT · (s′ mod p) + (h1 mod p)

10 : ĉ← bv′ + bmuc2→pcp→2·t

11 : u′ ← A.D((seedA,b), (ĉ,b′))
12 : return (u′ = u)

Game1
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

p)
6 : (m0,m1)← A.P((seedA,b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← bAT · s′ + hcq→p
9 : v′ ← bT · (s′ mod p) + (h1 mod p)

10 : ĉ← bv′ + bmuc2→pcp→2·t

11 : u′ ← A.D((seedA,b), (ĉ,b′))
12 : return (u′ = u)

Game2
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

p)
6 : (m0,m1)← A.P((seedA,b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← bAT · s′ + hcq→p
9 : v′ ← bT · (s′ mod p) + (h1 mod p)

10 : ĉ← bv′ + bmuc2→pcp→p2/q

11 : u′ ← A.D((seedA,b), (ĉ,b′))
12 : return (u′ = u)

Game3
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

q)
6 : (m0,m1)← A.P((seedA,b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← bAT · s′ + hcq→p
9 : v′ ← bbT · s′ + h1cq→p

10 : ĉ← v′ + (bmuc2→p2/q mod p)
11 : u′ ← A.D((seedA,b), (ĉ,b′))
12 : return (u′ = u)

Game4
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

q)
6 : (m0,m1)← A.P((seedA,b))
7 : Skip
8 : b′ ←$ U(Rl×1

p)
9 : v′ ←$ U(Rp)

10 : ĉ← v′ + (bmuc2→p2/q mod p)
11 : u′ ← A.D((seedA,b), (ĉ,b′))
12 : return (u′ = u)

Figure 3.8: Game Sequence in the Game-Playing Proof of Saber’s PKE

46 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

GameGMLWR
BA0 ,l,µ,q,p

(u)
1 : seedA ←$ U({0, 1}256)
2 : A← gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← bA · s + hcq→p
5 : b1 ←$ U(Rl×1

p)

6 : return BA0 (seedA,bu)

1 : w←$ U({0, 1})
2 : A← gen(seedA)
3 : (m0,m1)← A.P((seedA,bu))

4 : s′ ←$ βµ(Rl×1
q)

5 : b′ ← bAT · s′ + hcq→p
6 : v′ ← bTu · (s′ mod p) + (h1 mod p)
7 : ĉ← bv′ + bmwc2→pcp→2·t

8 : w′ ← A.D((seedA,bu), (ĉ,b′));
9 : return w′ = w;

Figure 3.9: Reduction from GameGMLWR
BA0 ,l,µ,q,p

to Distinguishing Game0
A and Game1

A

In this derivation, the third equality follows from the fact that BA0 (seedA,bu) perfectly simulates
Game0

A when u = 0 and Game1
A when u = 1.

Step 2: Game1
A - Game2

A For the second step, we introduce a modification that results in an
adversary against Game2

A always acquiring at least as much information as an adversary against
Game1

A. Consequently, given an adversary A against Game1
A, we can construct an adversary RA

against Game2
RA such that Adv1(A) = Adv2(RA). Specifically, assuming the ĉ from Game2

RA
provides at least as much information as the ĉ from Game1

A, the rationale behind this is the
following. Foremost, because Game1

A and Game2
RA are identical in terms of their operations

(apart from the computation of ĉ), adversary A against Game1
A attempts to solve the exact

same problem as adversary RA against Game2
RA , except that RA potentially has access to more

information through the given ĉ. Following, if RA disposes of this additional information relative
to Game1

A, calls A with the remaining information, and directly returns the values obtained from
these calls to A, RA achieves an advantage in Game2

RA that is precisely equal to the advantage of
A in Game1

A. Evidently, as with the previously discussed reductions from MLWR to GMLWR and
XMLWR, this reasoning is only valid if A behaves identically between the reduction, i.e., when
used as a sub-procedure by RA in Game2

RA , and a regular run of its own game, i.e., Game1
A. Since

A is a black box and may be any feasible algorithm, this can only be guaranteed if A is unable to
distinguish between these cases; concretely, this means that the adversary can not differentiate the
information given in the reduction from the information given in a regular run of its own game.
Figure 3.10 presents a reduction concerning Game1

A and Game2
RA .

To prove that Game2
A provides at least as much information as Game1

A and the reduction in
Figure 3.10 is correct, it suffices to show the two points below. Specifically, this is because the
only difference between Game1

A and Game2
A regards the computation of ĉ.

1. The ĉ given to the adversary in Game1
A can always be computed from the ĉ given to the

adversary in Game2
A.

2. In the reduction of Figure 3.10, RA exactly computes (and calls A with) the ĉ from Game1
A;

Formal Verification of Saber 47

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

Game2
RA

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

p)

6 : (m0,m1)← RA.P((seedA,b))

1 : return A.P((seedA,b))

7 : s′ ←$ βµ(Rl×1
q)

8 : b′ ← bAT · s′ + hcq→p
9 : v′ ← bT · (s′ mod p) + (h1 mod p)

10 : ĉ← bv′ + bmuc2→pcp→p2/q

11 : u′ ← RA.D((seedA,b), (ĉ,b′))

1 : ĉ′ ← bĉcp2/q→2·t

2 : return A.D((seedA,b), (ĉ′,b′))

Figure 3.10: Reduction from Game2
RA to Game1

A

in particular, RA does so based on the ĉ provided in Game2
RA .

Certainly, both of these points are guaranteed by the q
p ≤

p
2t assumption from the security theorem,

the construction of the games, and the construction of the reduction.

Commencing with the analysis of the two above-mentioned points, consider x = v′ + bmuc2→p,
where v′ and mu are as in Game1

A and Game2
A. Then, because v′ + bmuc2→p is an element of

Rp, x is as well; notably, this implies that each coefficient of x is an element of Zp. Denoting the
binary representation of a coefficient of x by aεp−1 . . . a0, the derivation below particularizes the
modular scaling and flooring operation performed on x in Game1

A. Here, we utilize the assumption
εt + 1 < εp to infer that this operation effectively performs a right bit-shift.

baεp−1 . . . a0cp→2·t = aεp−1 . . . aεp−(εt+1)

= aεp−1 . . . aεp−εt−1

Thus, for each coefficient aεp−1 . . . a0 of x, the corresponding coefficient of ĉ equals aεp−1 . . . aεp−εt−1.

In contrast to Game1
A, Game2

A constructs ĉ by applying a modular scaling and flooring operation
with target modulus p2

q ; as such, for each coefficient aεp−1 . . . a0 of x, the modular scaling and
flooring operation in Game2

A computes the corresponding coefficient of ĉ as follows.

baεp−1 . . . a0cp→p2/q = aεp−1 . . . aεp−(2·εp−εq)

= aεp−1 . . . aεq−εp

In this derivation, the first equality holds due to the fact that p = 2εp and p2

q = 22·εp−εq . Namely,
these imply that p2

q < p if and only if 2 · εp − εq < εp; in turn, this latter inequality follows from
εp < εq, one of Saber’s parameter requirements (see Section 3.1). In consequence, the considered
modular scaling and flooring operation is equivalent to a right bit-shift of εp− (2 · εp− εq) = εq− εp
bits.

48 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

Comparing the corresponding coefficients of ĉ between the two games, we see that they are equal
in their most significant bits; however, depending on the value of εp− εt− 1 and εq − εp, they may
differ in their least significant bits. Specifically, if εq−εp ≤ εp−εt−1, the coefficients of the ĉ from
Game2

A contain at least the same bits as their counterparts from Game1
A; hence, provided this

inequality holds, the ĉ from Game2
A would provide the adversary with at least as much information

as the ĉ from Game1
A. Employing the assumption stipulated by the security theorem, i.e., qp ≤

p
2·t ,

the ensuing derivation confirms that this indeed the case.

q

p
≤ p

2 · t ⇔
2εq
2εp ≤

2εp
2εt+1

⇔ 2εq−εp ≤ 2εp−(εt+1)

⇔ εq − εp ≤ εp − (εt + 1)
⇔ εq − εp ≤ εp − εt − 1

As such, Game2
A provides at least as much information to the adversary as Game1

A; moreover,
given the information from Game2

A, we can exactly replicate the corresponding information of
Game1

A. More precisely, because εq − εp ≤ εp − εt − 1, each coefficient a of the ĉ from Game2
A is

constructed as follows.
a = aεp−1 . . . aεp−εt−1 . . . aεq−εp

Naturally, in case εq − εp = εp − εt − 1, this reduces to a = aεp−1 . . . aεp−εt−1.

In consequence of the above, replicating the ĉ from Game1
A merely requires, for each coefficient,

discarding the bits that are less significant than aεp−εt−1; indeed, this is exactly what transpires
in the reduction of Figure 3.10. Subsequently, the result, ĉ′, is given as input to the adversary
against Game1

A. The imminent derivation proves that this is indeed the case.

baεp−1 . . . aεp−εt−1 . . . aεq−εpcp2/q→2·t = aεp−1 . . . a(εq−εp)+((2·εp−εq)−(εt+1))

= aεp−1 . . . aεp−εt−1

As before, the modular scaling and flooring operator effectively acts as a right bit-shift; neverthe-
less, here, the number of shifted bits might equal 0. Namely, if εq − εp = εp − εt − 1, then the
argument to the operator reduces to aεp−1 . . . aεp−εt−1. Certainly, this argument already equals
the final result, implying that the operator’s application has no effect; in other words, the operator
performs a bit-shift of 0 bits.

Having shown that the two points provided at the beginning of this step are satisfied by the
considered games and reduction, we conclude that Game2

A indeed provides its adversary with at
least as much information as Game1

A does. Furthermore, the reduction depicted in Figure 3.10 is
correct; hence, for all adversaries A against Game1

A, there exists an adversaryRA against Game2
RA

such that Pr
[
Game1

A = 1
]

= Pr
[
Game2

RA = 1
]
. Utilizing this latter fact, we can trivially derive

the desired result as follows.

∀A∃RA : Pr
[
Game1

A = 1
]

= Pr
[
Game2

RA = 1
]

⇒

∀A∃RA :
∣∣∣∣Pr
[
Game1

A = 1
]
− 1

2

∣∣∣∣ =
∣∣∣∣Pr
[
Game2

RA = 1
]
− 1

2

∣∣∣∣
⇒

∀A∃RA : Adv1(A) = Adv2(RA)

Step 3: Game2
A - Game3

A In this step, similarly to the preceding step, we exclusively introduce
alterations that provide an adversary against Game3

A with at least as much information as an

Formal Verification of Saber 49

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

adversary against Game2
A. Therefore, given any adversary A against Game2

A, we can construct
an adversary RA against Game3

RA such that Adv2(A) = Adv3(RA). Figure 3.11 provides such a
reduction.

Game3
RA

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

q)

6 : (m0,m1)← RA.P((seedA,b))

1 : bp ← b mod p
2 : return A.P((seedA,bp))

7 : s′ ←$ βµ(Rl×1
q)

8 : b′ ← bAT · s′ + hcq→p
9 : v′ ← bbT · s′ + h1cq→p

10 : ĉ← v′ + (bmuc2→p2/q mod p)

11 : return RA.D((seedA,b), (ĉ,b′))

1 : bp ← b mod p

2 : ĉ′ ← ĉ mod p2/q

3 : return A.P((seedA,bp), (ĉ′,b′));

Figure 3.11: Reduction from Game3
RA to Game2

A

To show that Game3
A provides at least as much information as Game2

A and the reduction presented
in Figure 3.11 is correct, we argue the following two points.

1. Sampling b from U(Rl×1
q) and, subsequently, reducing it modulo p is well-defined; moreover,

this process is equivalent to sampling b directly from U(Rl×1
p). Here, “equivalent” refers to

the fact that both processes produce identically distributed outcomes.

2. The ĉ from Game3
A provides at least as much information as the ĉ from Game2

A. Furthermore,
in the reduction of Figure 3.11, RA precisely computes (and calls A with) the ĉ from Game2

A;
particularly, RA does so based on the ĉ given in Game3

RA . Crucially, the computed value
must be consistent with the other artifacts that RA provides to A; that is, the combination
of values that RA provides as input to A must constitute a valid run of Game2

A.

The rationale behind proving these points is analogous to before. That is, we can only expect an
adversary to behave identically between a reduction and a regular run of its own game if it cannot
distinguish between these cases. Alternatively stated, the information given to the adversary in
a reduction and a regular run of its own game must be indistinguishable to this adversary. The
above two points are necessary and sufficient to show this for the considered games and reduction;
in particular, this is because b and ĉ are the only artifacts given to the adversary that differ
between these two games.

Regarding the first point, consider b from Game3
A; this vector is sampled uniformly at random

from Rl×1
q . As such, since all coefficients of the polynomials in this vector are elements of Zq

and p | q, reduction modulo p is well-defined for these coefficients. In turn, the extension of
this modular reduction to the complete vector, i.e., b mod p, is a well-defined operation as well.

50 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

Furthermore, the resulting vector, i.e., bp in Figure 3.11, is an element of Rl×1
p .

Next, deriving the uniformity of bp over Rl×1
p involves the ensuing observations. First, each

element of Rl×1
q comprises l polynomials of which each has n coefficients. Following, because

each coefficient can be any of the q elements in Zq, the total number of elements in Rl×1
q equals

(qn)l = qn·l. As a result, the probability of sampling any particular element of Rl×1
q uniformly at

random is 1
qn·l

; that is, if x is a fixed element of Rl×1
q and b←$ U(Rl×1

q), then Pr[b = x] = 1
qn·l

.
A similar line of reasoning applies to the probability of sampling an element of Rl×1

p uniformly
at random; specifically, if y is a fixed element of Rl×1

p and d←$ U(Rl×1
p), then Pr[d = y] = 1

pn·l
.

Second, since p = 2εp , reducing an integer modulo p is equivalent to setting all bits more significant
than the εp-th bit to 0. Moreover, as q = 2εq , any element of Zq and Zp can be represented by
εq and εp bits, respectively. Therefore, reducing an element of Zq modulo p is equivalent to
setting the εq − εp most significant bits of this element to 0. Certainly, this implies that for
any element a ∈ Zp, a total of 2εq−εp = q

p elements of Zq map to a when reduced modulo p.
Applying this reasoning to each coefficient of every polynomial in b, we deduce that the number
of elements in Rl×1

q that, when reduced modulo p, map to a particular element in Rl×1
p equals qn·l

pn·l
.

Lastly, combining the above observations, we conclude that if b is sampled from U(Rl×1
q), then

bp = b mod p is uniformly distributed over Rl×1
p . More formally, let y be a fixed element of Rl×1

p ,
X = {x | x ∈ Rl×1

q ∧ x mod p = y} = {x1, . . . ,x qn·l

pn·l
} the set of all elements in Rl×1

q that equal y

after reduction modulo p, b←$ U(Rl×1
q), and d←$ U(Rl×1

p); then, the following holds.

Pr[b mod p = y] = Pr[b ∈ X]

= Pr
[
b = x1 ∨ . . . ∨ b = x qn·l

pn·l

]
= Pr[b = x1] + . . .+ Pr

[
b = x qn·l

pn·l

]
= 1
qn·l

+ . . .+ 1
qn·l

= 1
qn·l
· q

n·l

pn·l

= 1
pn·l

= Pr[d = y]

Concerning the second point, consider the computation of bT ·s′+h1 in Game3
A, with b, s′ ∈ Rl×1

q

and h1 ∈ Rq. Since its result is an element of Rq, this computation may equivalently be denoted
as (bT · s′ + h1) mod q. Employing this equivalent notation, the ensuing derivation shows that
additionally reducing this computation modulo p produces an identical outcome to carrying out
the same computation with each artifact individually reduced modulo p (in addition to reducing
the result modulo p). Here, the initial equality follows from the fact that p | q.

((bT · s′ + h1) mod q) mod p = ((bT · s′ + h1) mod p
= ((bT mod p) · (s′ mod p) + (h1 mod p)) mod p

Certainly, this implies that the reduction modulo p of bT · s′ + h1 in Game3
A would lead to

the same (distribution of the) result as the computation that Game2
A carries out and assigns to

v′. Namely, the sole difference between these computations concerns the manner in which b is
obtained. Nevertheless, as can be extracted from the above derivation, the reduction modulo p
of bT · s′ + h1 in Game3

A effectively leads to the reduction modulo p of b. As per the previous
point, this reduced b, i.e., an element originally sampled from U(Rl×1

q) and then reduced modulo

Formal Verification of Saber 51

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

p, is well-defined and identically distributed to the b utilized in Game2
A, viz., uniformly over Rl×1

p .
Consequently, in essence, reducing the result of bT ·s′+h1 in Game3

A modulo p would produce the
same result as the analogous computation in Game2

A; equivalently, the εp least significant bits of the
corresponding coefficients of bT ·s′+h1 are identical between the two games. In consequence of this
equality, if aεq−1 . . . aεp−1 . . . a0 denotes the binary representation of a coefficient of bT · s′ + h1
in Game3

A, then aεp−1 . . . a0 denotes the binary representation of the corresponding coefficient
of the analogous computation in Game2

A. Although Game2
A immediately assigns the result of

this computation to v′, Game3
A precedes this assignment by modular scaling and flooring from

modulo q to modulo p. That is, for each coefficient, Game3
A computes baεq−1 . . . aεp−1 . . . a0cq→p =

aεq−1 . . . aεp−1 . . . aεq−εp , the result of which it assigns to v′. Comparing the values of v′ between
the two games, we see that the εp−(εq−εp) = 2 ·εp−εq least significant bits of the coefficients of v′
from Game3

A are precisely equal to the same number of most significant bits of their counterparts
from Game2

A.

After the computation of v′, both games compute ĉ by adding a scaled version of mu to v′ and,
in the case of Game2

A, subsequently modular scaling and flooring the result. More precisely, in
Game2

A, ĉ is computed as bv′ + bmuc2→pcp→p2/q. The following derivation unfolds this opera-
tion for arbitrary (corresponding) coefficients of v′ and mu, denoted by their respective binary
representations aεp−1 . . . a0 (as above) and b0.

baεp−1 . . . a0 + bb0c2→pcp→p2/q = baεp−1 . . . a0 + b00εp−1cp→p2/q

= b(aεp−1 + b0) . . . a0cp→p2/q

= (aεp−1 + b0) . . . aεq−εp

In this derivation, (aεp−1 + b0) represents the (single) bit value resulting from the addition of the
aεp−1 and b0 bits (modulo 2). Nevertheless, because the addition of aεp−1 . . . a0 and b00εp−1 is
performed in Zp, it is not possible for the addition of the aεp−1 and b0 bits to create an (εp+ 1)-th
bit through their potential carry; namely, since Zp implicitly induces a reduction modulo p = 2εp ,
any bits more significant than the εp-th bit are effectively discarded.

Concerning Game3
A, ĉ is computed as v′+(bmuc2→p2/q mod p). In this computation, the reduction

modulo p is merely used to accentuate the interpretation of bmuc2→p2/q as an element of Rp; that
is, instead of an element of Rp2/q, which is the range of the b·c2→p2/q operator. Certainly, since
p2

q < p, this modular reduction cannot affect the value of bmuc2→p2/q. The ensuing derivation
serves a similar purpose to the analogous derivation for the ĉ of Game2

A; moreover, it utilizes
the same denotation for the binary representation of a coefficient of mu. However, to emphas-
ize the relation between the v′ values from the different games, the subsequent derivation uses
aεq−1 . . . aεp−1 . . . aεq−εp to denote a coefficient of v′. Indeed, this representation is consistent with
the preceding computations, indicating the value of such a coefficient relative to its counterpart
from Game2

A. As a consequence, based on the utilized representations, we can directly deduce
which bits are equal by their matching index.

aεq−1 . . . aεp−1 . . . aεq−εp + (bb0c2→p2/q mod p) = aεq−1 . . . aεp−1 . . . aεq−εp + (b002·εp−εq−1 mod p)
= aεq−1 . . . aεp−1 . . . aεq−εp + 0εq−εpb002·εp−εq−1

= dεq−1 . . . dεp(aεp−1 + b0)aεp−2 . . . aεq−εp

Here, (aεp−1 +b0) is used in the same manner as in the preceding derivation and each di represents
a bit that might be influenced by potential carries. Moreover, the last equality follows from the fact
that both aεp−1 and b0 are exactly the (2 · εp − εq)-th bit of their respective values. In particular,
for aεp−1, this is implied by εp − (εq − εp) = 2 · εp − εq; for b0, this is a direct consequence of the
b·c2→p2/q operator. Furthermore, as before, because the final addition is carried out in Zp, any
potential (εp + 1)-th bit resulting from the addition is effectively discarded through the implicit
reduction modulo p. Lastly, comparing the outcomes of the previous two derivations, we see that

52 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

the 2 · εp − εq least significant bits of the (coefficients of the) ĉ from Game3
A are identical to their

analogs from Game2
A.

As a result of the above, the ĉ from Game3
A provides at least as much information as its counterpart

from Game2
A. Additionally, the latter can be constructed by discarding the εq−εp most significant

bits of the coefficients of the former; certainly, this is exactly what happens in the reduction of
Figure 3.11. Specifically, given the ĉ from Game3

RA , RA constructs ĉ′ by computing ĉ mod p2

q =
ĉ mod 22·εp−εq . Since this modular reduction effectively discards all bits that are more significant
than the (2 · εp − εq)-th bit, this produces the corresponding ĉ from Game2

A. In particular, as can
be extracted from the preceding discussion, this ĉ would result from the specific run of Game2

A in
which b equals the bp computed (and provided to A) in the reduction; indeed, this implies that
the combination of values provided to A by RA constitute a valid run of Game2

A.

Finally, having shown that the requirements specified at the beginning of this step hold, we
conclude that Game3

A provides at least as much information to its adversary as Game2
A does.

Moreover, the reduction depicted in Figure 3.11 is correct and, thus, for any adversary A against
Game2

A, there exists an adversaryRA against Game3
RA such that Pr

[
Game2

A = 1
]

= Pr
[
Game3

RA = 1
]
.

At last, the desired result can be deduced through the derivation below.

∀A∃RA : Pr
[
Game2

A = 1
]

= Pr
[
Game3

RA = 1
]

⇒

∀A∃RA :
∣∣∣∣Pr
[
Game2

A = 1
]
− 1

2

∣∣∣∣ =
∣∣∣∣Pr
[
Game3

RA = 1
]
− 1

2

∣∣∣∣
⇒

∀A∃RA : Adv2(A) = Adv3(RA)

Step 4: Game3
A - Game4

A In the final step, we change the manner in which b′ and v′ are
obtained. Namely, instead of computing these values by bAT · s′ + hcq→p and bbT · s′ + h1cq→p,
as is done in Game3

A, they are sampled uniformly at random from their respective domains in
Game4

A. As a consequence of this adjustment, s′ becomes redundant and, hence, is removed from
Game4

A.

In Game3
A, the pair (A,b′) comprises l GMLWR samples with respect to secret s′, and the pair

(b, v′) constitutes a single MLWR sample for the same secret; contrarily, in Game4
A, these two

pairs are sampled uniformly at random from their respective domains. As such, any adversary
A distinguishing between Game3

A and Game4
A can be used to construct an adversary against the

corresponding XMLWR game. Figure 3.12 contains such a reduction. Similarly to the reduction
in the first step, the b·cq→p operations from the XMLWR game’s specification are replaced by the
equivalent modular scaling and flooring operations under the addition of a constant exclusively
consisting of (entries with only) 2εq−εp−1 coefficients.

With regards to the reduction in Figure 3.12, we derive a result analogous to the result of
the first step. That is, for any adversary A distinguishing between Game3

A and Game4
A, there

exists an adversary BA1 against the corresponding instance of the XMLWR game such that∣∣Pr
[
Game3

A = 1
]
− Pr

[
Game4

A = 1
]∣∣ = AdvXMLWR

l,µ,q,p (BA1). Specifically, following an identical line
of reasoning to that of the first step, we deduce this result as follows.

∀A∃BA1 : AdvXMLWR
l,µ,q,p (BA1) =

∣∣∣Pr
[
GameXMLWR

BA1 ,l,µ,q,p
(1) = 1

]
− Pr

[
GameXMLWR

BA1 ,l,µ,q,p
(0) = 1

]∣∣∣
= |Pr[w′ = w | u = 1]− Pr[w′ = w | u = 0]|
=
∣∣Pr
[
Game4

A = 1
]
− Pr

[
Game3

A = 1
]∣∣

=
∣∣Pr
[
Game3

A = 1
]
− Pr

[
Game4

A = 1
]∣∣

Formal Verification of Saber 53

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

GameXMLWR
BA1 ,l,µ,q,p

(u)
1 : seedA ←$ U({0, 1}256)
2 : A← gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← bAT · s + hcq→p
5 : b1 ←$ U(Rl×1

p)
6 : a←$ U(R1×l

q)
7 : d0 ← ba · s + h1cq→p
8 : d1 ←$ U(Rp)

9 : return BA1 (seedA,bu,a, du)

1 : w←$ U({0, 1});

2 : (m0,m1)← A.P((seedA,aT));
3 : ĉ← du + (bmwc2→p2/q mod p)

4 : w′ ← A.D((seedA,aT), (ĉ,bu));
5 : return w = w′;

Figure 3.12: Reduction from GameXMLWR
BA1 ,l,µ,q,p

to Distinguishing Game3
A and Game4

A

Indeed, the third equality in this derivation follows from the fact that BA1 (seedA,bu,a, du) perfectly
simulates Game3

A when u = 0 and Game4
A when u = 1.

Analysis of Game4
A Examining Game4

A, we observe that all artifacts given to the adversary are
uniformly distributed over their domain; particularly, ĉ is uniformly distributed over Rp because
the uniformity of v′ is maintained under addition with (the scaled) mu. Certainly, in this game,
v′ essentially constitutes a generalization of the one-time pad to the (additive) group of Rp. As
such, the computed ciphertext is uniformly distributed and completely independent of all other
information. This implies that an adversary against Game4

A must randomly guess the bit u; as a
result, for any adversary A, we have Pr

[
Game4

A = 1
]

= 1
2 .

Final Derivation Aggregating all results, we derive the security theorem formulated in Sec-
tion 3.2.2. For intelligibility purposes, an intermediate result is established preceding the deriva-
tion of the security theorem.

Considering any adversary A and some adversaries A′′ and B1, the imminent derivation demon-
strates a relation between, on the one hand, the difference in winning probabilities of A against
Game1

A and A′′ against Game4
A′′ , and, on the other hand, the advantage of B1 against an instance

of the XMLWR game.

∀A∃A′,A′′,B1 :
∣∣Pr
[
Game1

A = 1
]
− Pr

[
Game4

A′′ = 1
]∣∣ = 〈Pr

[
Game4

A′′ = 1
]

= 1
2 〉∣∣∣∣Pr

[
Game1

A = 1
]
− 1

2

∣∣∣∣ = 〈Definition〉

Adv1(A) = 〈Step 2〉
Adv2(A′) = 〈Step 3〉
Adv3(A′′) = 〈Definition〉∣∣∣∣Pr
[
Game3

A′′ = 1
]
− 1

2

∣∣∣∣ = 〈Pr
[
Game4

A′′ = 1
]

= 1
2 〉

54 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

∣∣Pr
[
Game3

A′′ = 1
]
− Pr

[
Game4

A′′ = 1
]∣∣ = 〈Step 4〉

AdvXMLWR
l,µ,q,p (B1)

Utilizing this intermediate result, we derive the final result in the following manner.

∀A∃A′,B0,B1 : AdvIND-CPA
Saber.PKE(A) = 〈Initial Game〉

Adv0(A) = 〈Definition〉∣∣∣∣Pr
[
Game0

A = 1
]
− 1

2

∣∣∣∣ = 〈Pr
[
Game4

A′ = 1
]

= 1
2 〉∣∣Pr

[
Game0

A = 1
]
− Pr

[
Game4

A′ = 1
]∣∣ ≤ 〈Triangle Inequality〉∣∣Pr

[
Game0

A = 1
]
− Pr

[
Game1

A = 1
]∣∣ +∣∣Pr

[
Game1

A = 1
]
− Pr

[
Game4

A′ = 1
]∣∣ = 〈Step 1〉

AdvGMLWR
l,µ,q,p (B0) +

∣∣Pr
[
Game1

A = 1
]
− Pr

[
Game4

A′ = 1
]∣∣ = 〈Intermediate Result〉

AdvGMLWR
l,µ,q,p (B0) + AdvXMLWR

l,µ,q,p (B1)

Naturally, compressing this derivation gives the desired result.

∀A∃B0,B1 : AdvIND-CPA
Saber.PKE(A) ≤ AdvGMLWR

l,µ,q,p (B0) + AdvXMLWR
l,µ,q,p (B1)

As a final remark, although no formal analysis is provided, it is evident that the running time
for each of B0 and B1 is approximately equal to that of A. In particular, excluding the calls to
A’s abstract algorithms, all employed reductions exclusively perform sequential operations that
can straightforwardly be executed efficiently. As such, the proof additionally satisfies the running
time requirement of the theorem.

3.2.3 Correctness
Proceeding from the discussion on security, we analyze the correctness of Saber.PKE. Intuitively,
in this context, correctness refers to the probability that decrypting the encryption of a message
returns this message. Here, the employed encryption and decryption procedures should respect-
ively correspond to the considered PKE’s encryption and decryption algorithms; moreover, the
utilized keys should be generated with the PKE’s key generation algorithm. For many public-key
encryption schemes, this probability equals 1; that is, decryption of an encrypted message is guar-
anteed to return the original message. Nevertheless, due to the errors introduced by the modular
scaling and flooring operations, this is not the case for Saber.PKE.

Concretely, in the subsequent discussion, we consider Saber.PKE’s correctness with respect to two
subtly different definitions: the definition utilized in Saber.PKE’s original correctness proof and the
definition employed by the relevant variant of the FO transformation through which Saber.KEM11

is constructed [14, 25]. In particular, we show that these definitions are equivalent in the context
of Saber.PKE; that is, a correctness analysis of Saber.PKE that utilizes one of these definitions
invariably produces identical results to an analysis that uses the other definition. Furthermore,
in proving the equivalence between these correctness definitions, we derive an expression that
entirely determines Saber.PKE’s correctness. More precisely, given a particular parameter set, it
is feasible to compute the distribution of this expression exhaustively; in turn, knowledge of this
distribution allows for the determination of Saber.PKE’s correctness. In fact, there exists a script,
designed by the authors of Saber, that does exactly this [14]. Throughout the remainder, we will
refer to this script as “Saber’s script”.

As with any PKE scheme, determining the correctness of Saber.PKE is imperative to validate
that the scheme’s algorithms sufficiently conform to the desired relation with respect to the pos-
sible inputs; indeed, as alluded to above, this relation intuitively denotes whether encrypting and,

11As its name suggests, Saber.KEM refers to Saber’s KEM.

Formal Verification of Saber 55

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

subsequently, decrypting any valid message through the scheme’s algorithms returns this message
with sufficient probability. However, in the case of Saber.PKE, there exists an additional rationale
for determining its correctness. Namely, in consequence of (the variant of) the FO transforma-
tion utilized to construct Saber.KEM from Saber.PKE, the security and correctness properties
of Saber.KEM are entirely contingent on the correctness property of Saber.PKE, i.e., under the
definition employed by this FO transformation [14, 25]. For these reasons, it is crucial to analyze
Saber.PKE’s correctness with respect to both relevant definitions.

The discussion on Saber.PKE’s correctness ensues as follows. First, we provide an alternative spe-
cification of Saber.PKE and prove it equivalent to the original specification given in Section 3.2.1.
Then, with regards to the relevant context, we elaborate on the two above-mentioned correct-
ness definitions. Subsequently, utilizing the alternative specification of Saber.PKE, we show the
equivalence between these correctness definitions and, moreover, derive the expression with which
Saber’s script exhaustively computes Saber.PKE’s correctness. Lastly, we mention the implications
of the performed correctness analysis and present some concrete correctness values of Saber.PKE
and Saber.KEM for several customary parameter sets.

Before advancing, it is helpful to recollect Saber’s parameter-related definitions and requirements
specified in Section 3.1. In particular, recall that t = 2εt , p = 2εp , and q = 2εq , where 0 < εt + 1 <
εp < εq; consequently, 0 < 2 · t < p < q and 2 · t | p | q.

Alternative Specification of Saber.PKE

Prior to the actual correctness analysis, we define an alternative specification of Saber.PKE and
prove it equivalent to the original specification provided in Section 3.2.1. The motive for con-
structing this alternative specification is the simplification of both the manual analysis and the
corresponding formal verification effort. Specifically, while the original specification performs
computations in several different polynomial quotient rings (e.g., Rq and Rp), the alternative
specification exclusively operates in Rq12. Concretely, we accomplish this by lifting the relevant
computations to Rq through the (modular) scaling of the appropriate values. This alteration
makes the manual correctness analysis more comprehensible by reducing the need to be mindful
of the interpretation of the considered elements, allowing for a less involved definition and analysis
of the induced errors and their consequences; furthermore, this change simplifies the corresponding
formal verification effort by decreasing the number of necessary types and type conversions in the
operations. Despite these benefits concerning the correctness analysis, the alternative specification
is not employed as the standard specification of Saber.PKE; the principal reason for this is that,
relative to the customary (i.e., the original) specification, the alternative specification is slightly
more intricate. Throughout, the alternative specification of the scheme and its algorithms are
referred to as Saber.PKEA = (Saber.KeyGenA,Saber.EncA,Saber.DecA).

In the current context, two schemes are equivalent if each algorithm in one of the schemes is
equivalent to exactly one algorithm of the other scheme. In turn, two algorithms are equivalent
if their input and output domains are equal and, given the same input, they return identical
output. Here, in case the collated algorithms are probabilistic, “identical output” refers to “an
equal probability of producing the same output”. As such, if the analysis of a certain property
merely regards the input and output behavior of a scheme’s algorithms, substituting the considered
algorithms with equivalent ones does not influence the analysis’s result. Indeed, the subsequent
correctness analysis of Saber.PKE belongs to this category; that is, this analysis only considers
the input and output behavior of Saber.PKE’s algorithms. Hence, if Saber.PKE and Saber.PKEA
are equivalent, Saber.PKEA’s algorithms may replace Saber.PKE’s algorithms in the correctness
analysis of Saber.PKE without invalidating the result.

12Actually, several morphisms between different algebraic structures form exceptions to this exclusive operation
in Rq ; primarily, this concerns the modular scaling and flooring operators.

56 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

Regarding the actual specification of Saber.PKEA, Algorithm 4 provides the specification of
Saber.KeyGenA. As we can see, this algorithm is identical to its original counterpart specified
in Algorithm 1. Certainly, this is because Saber.KeyGen already performs all relevant compu-
tations in Rq. Nevertheless, for reasons of completeness, Saber.KeyGenA is presented separately
here.

Algorithm 4 Alternative Specification of Saber’s Key Generation Algorithm
1: procedure Saber.KeyGenA()
2: seedA←$ U({0, 1}256)
3: A← gen(seedA)
4: s←$ βµ(Rl×1

q)
5: b← bA · s + hcq→p
6: return pk := (seedA,b), sk := s
7: end procedure

Next, Algorithm 5 provides the specification of Saber.EncA. Comparing this specification to the
specification of Saber.Enc given in Algorithm 2, we see that both algorithms have an identical
input and output domain. Furthermore, the only differences between these algorithms are the
following.

• Before the computation of v′, Saber.EncA performs a modular scaling of b from modulo p
to modulo q, i.e., bbcp→q. Saber.Enc does not perform this operation.

• In the computation of v′, Saber.EncA does not reduce s′ and h1 modulo p, while Saber.Enc
does.

• In the computation of v′, Saber.EncA multiplies h1 with the constant polynomial q
p ∈ Rq,

while Saber.Enc does not.

• In the computation of cm, Saber.EncA utilizes q as the target and source modulus for,
respectively, the modular scaling of m and the modular scaling and flooring of v′+ bmc2→q.
Contrarily, in these instances, Saber.Enc uses p instead of q.

As a consequence of the first, second and last difference, Saber.EncA performs the computation
of v′ and cm (before the modular scaling and flooring) in Rq. Additionally, the third difference
ensures that the eventual output of Saber.EncA is identical to that of Saber.Enc; in particular,
it guarantees that Saber.EncA’s cm is identical to the cm of Saber.Enc. Namely, since none of
the above-mentioned differences consider the other part of the output, i.e., b′, the manner in
which both specifications compute this vector is exactly the same; as such, this part of the output
is trivially equal between Saber.Enc and Saber.EncA. For this reason, the imminent discussion
and derivations merely show the equality between the algorithms’ initial part of the output, i.e.,
cm.

As a convenient intermediate step to proving the equality of the cm from Saber.EncA and Saber.Enc,
we show that the εp most significant bits of the computed v′ are identical between these specifica-
tions. To see why this is true, consider Saber.EncA’s computation of v′ without the multiplication
of h1 with q

p ; moreover, replace bq with b, interpreted as an element of Rq. In other words,
consider the computation of bT · s′+h1 in Rq. Then, following the same reasoning as in the third
step of the security proof presented in Section 3.2.2, performing this computation in Rp produces
a result of which each coefficient’s εp (total) bits are identical to the εp least significant bits of its
counterpart in Rq. Consequently, multiplying the result in Rq with q

p ∈ Rq yields a value of which
each coefficient’s εp most significant bits precisely equal the corresponding coefficient’s εp (total)
bits in Rp. More precisely, let aεq−1 . . . aεp−1 . . . a0 denote the binary representation of a coefficient

Formal Verification of Saber 57

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

Algorithm 5 Alternative Specification of Saber’s Encryption Algorithm
1: procedure Saber.EncA(pk := (seedA,b), m)
2: A← gen(seedA)
3: s′←$ βµ(Rl×1

q)
4: b′ ← bAT · s′ + hcq→p
5: bq ← bbcp→q
6: v′ ← bTq · s′ + q

p · h1
7: cm ← bv′ + bmc2→qcq→2·t
8: return c := (cm,b′)
9: end procedure

from (the result of) bT · s′ + h1 in Rq; accordingly, aεp−1 . . . a0 denotes the binary representation
of the corresponding coefficient in Rp. Then, the multiplication of a coefficient from the result in
Rq by q

p ∈ Zq is computed as follows.

q

p
· aεq−1 . . . aεp−1 . . . a0 mod q = 2εq−εp · aεq−1 . . . aεp−1 . . . a0 mod 2εq

= aεq−1 . . . aεp−1 . . . a00εq−εp mod 2εq

= aεp−1 . . . a00εq−εp

As elaborated on before in the context of similar computations, the second equality is a consequence
of the fact that multiplication by an integral power-of-two induces a left bit-shift by a number of
bits that is equal to the exponent’s value, i.e., εq − εp in this case. Moreover, reduction modulo
q = 2εq effectively discards all bits more significant than the εq-th bit, giving rise to the last
equality.

Reconsidering the above-discussed multiplication of bT · s′+h1 with q
p in Rq, i.e., qp · (bT · s′+h1),

we rewrite this as follows.
q

p
· (bT · s′ + h1) = q

p
· (bT · s′) + q

p
· h1

= (q
p
· bT) · s′ + q

p
· h1

= (q
p
· b)T · s′ + q

p
· h1

Recall that, since b is the result of a modular scaling and flooring operation with target modulus
p, this vector is entirely comprised of polynomials with coefficients in the discrete range [0, 2εp−1].
Consequently, qp · b = 2εq−εp · b consists of polynomials with coefficients in the set {0 · 2εq−εp , 1 ·
2εq−εp , 2 ·2εq−εp , . . . , (2εp −1) ·2εq−εp}. As such, because each coefficient is an integer, the flooring
function reduces to the identity function; moreover, since the set in which each coefficient resides is
a subset of the discrete range [0, 2εq−1], reduction modulo q = 2εq similarly reduces to the identity
function. Utilizing these observations, we rewrite the above (qp · b)T · s′ + q

p · h1 even further, as
shown below.

(q
p
· b)T · s′ + q

p
· h1 = (

⌊
q

p
· b
⌋

mod q)T · s′ + q

p
· h1

= (bbcp→q)T · s′ +
q

p
· h1

= bTq · s′ +
q

p
· h1

Patently, the final result, i.e., bTq · s′ + q
p · h1, precisely corresponds to the computation of v′ in

Saber.EncA. Thus, by transitivity, we deduce that q
p · (bT · s′+h1) = bTq · s′+ q

p ·h1 = v′, where v′

58 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

refers to the v′ from Saber.EncA. Furthermore, incorporating the preceding result, we see that the
εp most significant bits of a coefficient from q

p ·(bT ·s′+h1) in Rq are identical to the εp (total) bits
of the corresponding coefficient from bT · s′ + h1 in Rp. Following, since this latter computation
corresponds to the v′ in Saber.Enc, we conclude that the εp most significant bits of each coefficient
of the v′ in Saber.EncA are equal to the εp (total) bits of the corresponding coefficient of the v′ in
Saber.Enc.

Employing the results obtained thus far, we derive the value of cm’s coefficients for both spe-
cifications. Specifically, using b0 to denote the binary representation of a coefficient from m, this
derivation is as follows for Saber.EncA.

baεp−1 . . . a00εq−εp + bb0c2→qcq→2·t = baεp−1 . . . a00εq−εp + b00εq−1cq→2·t

= b(aεp−1 + b0) . . . a00εq−εpcq→2·t

= (aεp−1 + b0) . . . aεp−εt−1

As in Section 3.2.2, (aεp−1 + b0) represents the bit value resulting from the addition of bits aεp−1
and b0 (modulo 2); moreover, because the complete addition of aεp−1 . . . a00εq−εp and b00εq−1 is
carried out in Zq, the implicit reduction modulo q effectively removes the (εq + 1)-th bit that may
be produced through a potential carry. The final equality holds because (aεp−1 + b0) . . . a00εq−εp
consists of εq bits and the b·cq→2·t operator induces a right bit-shift of εq − (εt + 1) bits; hence,
after the application of this operator, only the εq − (εq − (εt + 1)) = εt + 1 most significant bits
remain.

Utilizing the same notation as above, the analogous derivation for Saber.Enc is given below.

baεp−1 . . . a0 + bb0c2→pcp→2·t = baεp−1 . . . a0 + b00εp−1cp→2·t

= b(aεp−1 + b0) . . . a0cp→2·t

= (aεp−1 + b0) . . . aεp−εt−1

Evidently, this derivation is nearly identical to the previous one, only differing in the number of
trailing zero bits in the elements’ binary representation and in one of the moduli for the modular
scaling and flooring operators. Nevertheless, these differences are precisely such that the resulting
values of both derivations are exactly equal. This implies that each coefficient of the cm from
Saber.Enc is equal to its counterpart of the cm from Saber.EncA; in turn, it follows that the cm
from both specifications are equal. Combining this with the formerly acquired results, we conclude
that Saber.Enc and Saber.EncA are equivalent.

Finally, Algorithm 6 contains the specification of Saber.DecA. As is trivially confirmed, the input
and output domains of both Saber.Dec and Saber.DecA are identical. Furthermore, the differences
between these specifications are quite similar to the differences between Saber.Enc and Saber.EncA;
specifically, the differences between Saber.Dec and Saber.DecA are the following.

• Before the computation of v, Saber.DecA performs a modular scaling of b′ from modulo p
to modulo q, i.e., bb′cp→q. Saber.Dec does not perform this operation.

• Before the computation of m′, Saber.DecA performs a modular scaling of cm from modulo
2 · t to modulo q, i.e., bcmc2·t→q. Saber.Dec does not perform this operation.

• In the computations of v and m′, Saber.DecA does not reduce s′, h1, and h2 modulo p, while
Saber.Dec does.

• In the computations of v and m′, respectively, Saber.DecA multiplies h1 and h2 with the
constant polynomial qp ∈ Rq, while Saber.Dec does not.

Formal Verification of Saber 59

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

• In the computation of m′, Saber.DecA utilizes q as the source modulus for the modular
scaling and flooring of v − bcmc2·t→q + q

p · h2. Contrarily, Saber.Dec uses p as the source
modulus for its analogous operation.

As a consequence of the resemblance between these differences and the ones for Saber.Enc and
Saber.EncA, the output analysis of Saber.Dec and Saber.DecA is comparable to that of the en-
cryption algorithms. Particularly, due to the similarities between the computations of cm and m′,
showing that m′ is identical between Saber.Dec and Saber.DecA is tantamount to showing cm is
identical between Saber.Enc and Saber.EncA. As such, in the subsequent discussion on the equality
between the outputs of Saber.Dec and Saber.DecA, we will frequently refer back to the analogous
discussion on the outputs of Saber.Enc and Saber.EncA.

Algorithm 6 Alternative Specification of Saber’s Decryption Algorithm
1: procedure Saber.DecA(sk := s, c := (cm,b′))
2: b′q ← bb′cp→q
3: v ← b′Tq · s + q

p · h1
4: cmq ← bcmc2·t→q
5: m′ ← bv − cmq + q

p · h2cq→2
6: return m′

7: end procedure

First, we rearrange the computation of m′ in Saber.Dec as follows.

bv − bcmc2·t→p + (h2 mod p)cp→2 = b(v + (h2 mod p))− bcmc2·t→pcp→2

Similarly, we rewrite the computation of m′ in Saber.DecA as illustrated below.

bv − cmq + q

p
· h2cq→2 = b(v + q

p
· h2)− cmqcq→2

= b(v + q

p
· h2)− bcmc2·t→qcq→2

Then, letting aεp−1 . . . a0 denote the binary representation of a coefficient of (v + (h2 mod p))
from Saber.Dec, we extend the reasoning applied to v′ in the output analysis of Saber.Enc and
Saber.EncA to also consider the addition of h2. From this reasoning extension, we derive that the
binary representation of a coefficient of v+ q

p ·h2 from Saber.DecA equals aεp−1 . . . a00εq−εp .

Utilizing the above-derived binary representation, the ensuing derivation shows how Saber.DecA
computes a coefficient of m′; in this derivation, the binary representation of a coefficient of cm is
denoted by dεt . . . d0.

baεp−1 . . . a00εq−εp − bdεt . . . d0c2·t→qcq→2 = baεp−1 . . . a00εq−εp − dεt . . . d00εq−εt−1cq→2

= b(10εq + aεp−1 . . . a00εq−εp)− dεt . . . d00εq−εt−1cq→2

= b1aεp−1 . . . a00εq−εp − dεt . . . d00εq−εt−1cq→2

= bfεpfεp−1 . . . fεp−εt(aεp−εt−1 − d0) . . . a00εq−εpcq→2

= bfεp−1 . . . fεp−εt(aεp−εt−1 − d0) . . . a00εq−εpcq→2

= fεp−1

Here, the second equality follows from the fact that any element x ∈ Zq is congruent to q + x; in
particular, aεp−1 . . . a00εq−εp is congruent to q+aεp−1 . . . a00εq−εp . Consequently, aεp−1 . . . a00εq−εp
may be substituted by q+aεp−1 . . . a00εq−εp without altering the outcome13. The rationale for this

13Since q = 2εq , the binary representation of q is 10εq ; to remain consistent with the representation of the other
elements, the derivation utilizes this binary representation.

60 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

replacement is the prevention of a potential underflow, i.e., modular wrap-around, in the case that
aεp−1 . . . a00εq−εp < dεt . . . d00εq−εt−1. Certainly, explicitly accounting for such underflow would
require a significantly more intricate derivation and explanation. Furthermore, in the above deriv-
ation, the fi represent bits that result from the subtraction 1aεp−1 . . . a00εq−εp − dεt . . . d00εq−εt−1

and are potentially affected by borrows. For reasons of clarity, the index of each fi matches the
index of the corresponding ai that it replaced after the subtraction; e.g., after the subtraction,
fεp−1 has the same position as aεp−1 had before the subtraction. The only exception to this is
fεp , the (εq + 1)-th bit of the subtraction result; indeed, this bit signifies the result of a potential
borrow from the 1 at the (εq + 1)-th position in 1aεp−1 . . . a00εq−εp . In contrast to the fi bits,
(aεp−εt−1 − d0) denotes a (single) bit value arising from the same subtraction, but which can not
be affected by borrows; in fact, considering the position of this bit in the subtraction result, we
see that its value must be equal to the subtraction of d0 from aεp−εt−1 (modulo 2). Lastly, due
to the earlier substitution of aεp−1 . . . a00εq−εp with the congruent q + aεp−1 . . . a00εq−εp , which is
not fully reduced, the subtraction result is not fully reduced either. To preclude an unnecessary
elaboration regarding the application of modular scaling and flooring operators on elements that
are not fully reduced, we replace the subtraction result by a congruent value that is (fully) reduced
modulo q, i.e., a canonical representative, before applying the b·cq→2 operator. Since reduction
modulo q effectively discards all bits more significant than the εq-th bit, this congruent value is
identical to the original subtraction result without the (εq + 1)-th bit, i.e. the fεp bit.

Retaining the same notation for the binary representation of a coefficient of cm, we particularize
the computation of a coefficient of m′ in Saber.Dec. For this derivation, remark that aεp−1 . . . a0 is
congruent to p+aεp−1 . . . a0 = 10εp +aεp−1 . . . a0; certainly, this is because aεp−1 . . . a0 ∈ Zp

baεp−1 . . . a0 − bdεt . . . d0c2·t→pcp→2 = baεp−1 . . . a0 − dεt . . . d00εp−εt−1cp→2

= b(10εp + aεp−1 . . . a0)− dεt . . . d00εp−εt−1cp→2

= b1aεp−1 . . . a0 − dεt . . . d00εp−εt−1cp→2

= bfεpfεp−1 . . . fεp−εt(aεp−εt−1 − d0) . . . a0cp→2

= bfεp−1 . . . fεp−εt(aεp−εt−1 − d0) . . . a0cp→2

= fεp−1

As we can see, Saber.Dec’s computation of (each coefficient of) m′ differs in a few aspects from
the analogous computation of Saber.DecA. Despite these differences however, both Saber.Dec and
Saber.DecA subtract the values constituted by the variable bits in an identical manner; that is, they
both essentially subtract dεt . . . d0 from 1aεp−1 . . . a0, albeit with a deviating number of trailing
zero bits. Consequently, the results of these subtractions are also precisely equal in their variable
bits, i.e., fεpfεp−1 . . . fεp−εt(aεp−εt−1−d0) . . . a0, and solely vary in the number of trailing zero bits.
Eventually, the difference in trailing zero bits is exactly compensated for by the different modular
scaling and flooring operators; as a result, the final values produced for each coefficient of m′, and
hence m′ itself, are identical between Saber.Dec and Saber.DecA. Ergo, given the same input, both
specifications produce identical output. At last, we conclude that Saber.Dec and Saber.DecA are
equivalent.

In conclusion, since the key generation, encryption, and decryption algorithms of Saber.PKE and
Saber.PKEA are all pair-wise equivalent, the schemes themselves are also equivalent.

Correctness Definitions

As aforementioned, we analyze the correctness of Saber.PKE with respect to two slightly different
definitions: the definition employed by Saber.PKE’s original correctness proof and the definition
utilized in the relevant variant of the FO transformation [14,25]. Throughout the remainder, these
definitions are referred to as “standard correctness” and “FO-correctness”, respectively.

Formal Verification of Saber 61

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

First, standard correctness intuitively refers to the minimal probability that encrypting and, sub-
sequently, decrypting a message from the message space gives back this original message. Nat-
urally, in the context of Saber.PKE, the encrypting and decrypting procedures must accordingly
adhere to the specifications of Saber.Enc and Saber.Dec; additionally, the public and secret key
utilized by these procedures must be produced in accordance with Saber.KeyGen. More formally,
regarding Saber.PKE, standard correctness refers to the 1 − δ ∈ [0, 1] such that for any m ∈ M,
the following probability statement holds.

Pr[Saber.Dec(sk,Saber.Enc(pk,m)) = m | (pk, sk)← Saber.KeyGen()] ≥ 1− δ

In agreement with the preceding intuitive description of standard correctness, this statement essen-
tially encompasses that for any messagem ∈M, sequentially executing (pk, sk)← Saber.KeyGenA(),
c ← Saber.EncA(pk,m), and m′ ← Saber.DecA(sk, c) results in m′ = m with a probability of at
least 1 − δ. As such, this correctness definition allows for a convenient formalization in terms of
a probabilistic program; Figure 3.13 provides this formalization on its left side. In terms of this

PProgSTDCOR
Saber.PKE(m)

1 : (pk, sk)← Saber.KeyGen()
2 : c← Saber.Enc(pk,m)
3 : m′ ← Saber.Dec(sk, c)
4 : return (m′ = m)

PProgSTDCOR
Saber.PKEA(m)

1 : (pk, sk)← Saber.KeyGenA()
2 : c← Saber.EncA(pk,m)
3 : m′ ← Saber.DecA(sk, c)
4 : return (m′ = m)

Figure 3.13: Formalization of Standard Correctness for Saber.PKE (Left) and Saber.PKEA
(Right)

probabilistic program, we can rewrite the above probability statement to the following equivalent
statement.

Pr
[
PProgSTDCOR

Saber.PKE(m) = 1
]
≥ 1− δ

As elaborated on before, the algorithms of Saber.PKE may, in the correctness analysis, be used
interchangeably with their counterparts from Saber.PKEA; particularly, these algorithms are in-
terchangeable in PProgSTDCOR

Saber.PKE(m). Replacing each algorithm of Saber.PKE in this program by
its equivalent counterpart from Saber.PKEA gives rise to the probabilistic program presented on
the right side of Figure 3.13; accordingly, the corresponding probability statement changes to the
statement below.

Pr
[
PProgSTDCOR

Saber.PKEA(m) = 1
]
≥ 1− δ

Finally, FO-correctness is quite similar to standard correctness; in particular, FO-correctness
merely differs from standard correctness with respect to the selection of the considered message.
Akin to standard correctness, FO-correctness can be formalized through either a single probab-
ility statement or a probabilistic program combined with a probability statement. Nevertheless,
since the subsequent correctness analysis only uses the latter formalization, we solely discuss the
formalization in terms of the probabilistic program. In contrast to its counterpart from standard
correctness, this formalization employs an adversary and, as such, is considered a game. Moreover,
this adversary is unrestricted with regards to its resources and, given a public key and secret key
as input, produces a message. Considering any such adversary A, Figure 3.14 defines the FO-
correctness game for both Saber.PKE and Saber.PKEA; indeed, due to the equivalence between
Saber.PKE and Saber.PKEA, these games are also equivalent and may be used interchangeably.
Lastly, analogously to Saber.PKE’s standard correctness, the FO-correctness of Saber.PKE refers
to the 1 − δ ∈ [0, 1] such that for any valid adversary A, the following probability statement
holds.

Pr
[
GameFOCOR

A,Saber.PKE = 1
]
≥ 1− δ

Naturally, replacing GameFOCOR
A,Saber.PKE with GameFOCOR

A,Saber.PKEA, we obtain the equivalent probability
statement corresponding to the FO-correctness of Saber.PKEA.

62 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

GameFOCOR
A,Saber.PKE

1 : (pk, sk)← Saber.KeyGen()
2 : m← A(pk, sk)
3 : c← Saber.Enc(pk,m)
4 : m′ ← Saber.Dec(sk, c)
5 : return (m′ = m)

GameFOCOR
A,Saber.PKEA

1 : (pk, sk)← Saber.KeyGenA()
2 : m← A(pk, sk)
3 : c← Saber.EncA(pk,m)
4 : m′ ← Saber.DecA(sk, c)
5 : return (m′ = m)

Figure 3.14: Formalization of FO-Correctness for Saber.PKE (Left) and Saber.PKEA (Right)

Correctness Equivalence and Error Expression

Having introduced the relevant correctness definitions, we proceed by proving their equivalence
with respect to Saber.PKE; moreover, in this endeavor, we derive the aforementioned expression
that allows for the exhaustive computation of Saber.PKE’s concrete correctness value for a certain
parameter set.

Foremost, concerning PProgSTDCOR
Saber.PKEA and GameFOCOR

A,Saber.PKEA, we reiterate that both programs
essentially verify whether, after the sequential execution of (pk, sk) ← Saber.KeyGenA(), c ←
Saber.EncA(pk,m), and m′ ← Saber.DecA(sk, c), m′ is equal to m. As such, given some m ∈ M,
we can derive the expression that determines whether m′ = m by considering the specifications of
Saber.PKEA’s algorithms. Nevertheless, before the derivation of this expression, we define several
error terms. These error terms capture the errors introduced by the modular scaling and flooring
operations in Saber.PKEA’s algorithms. Ultimately, as the remainder will show, the expression
derived for the verification of m = m′ exclusively depends on these error terms; henceforth, we
refer to this expression as “error expression”.

The first error term relates to A · s and bq; in particular, this error term, errbq , represents the
error of bq relative to A · s, as defined below.

errbq = bq −A · s = bbA · s + hcq→pcp→q −A · s

Here, since both bq and A · s are elements of Rl×1
q , so is errbq . Furthermore, the coefficients of

(the entries of) this error term all lie in the discrete range (− q
2·p ,

q
2·p], centered around zero14; this

can be deduced as follows. First, because bA · s + hcq→p is equivalent to bA · seq→p, performing
bA · s + hcq→p potentially adds 2εq−εp to the coefficients of (the entries of) A · s depending on a
coefficient’s εq−εp least significant bits. Specifically, if these εq−εp least significant bits correspond
to a value that is closer to 0 than to 2εq−εp , nothing is added to the coefficient; otherwise, i.e., if
these bits correspond to a value that is as close or closer to 2εq−εp than to 0, 2εq−εp is added to
the coefficient. Then, the operation effectively discards the εq − εp least significant bits of each
coefficient of (the entries of) A · s, after which the result is assigned to b. Subsequently, bbcp→q
reintroduces these discarded bits, albeit all with value 0; the result of this operation is assigned
to bq. As such, each coefficient of (the entries of) bq is effectively obtained by, starting from the
corresponding coefficient of A · s, setting the εq − εp least significant bits to 0 and, depending on
the original value of these εq−εp least significant bits, adding 2εq−εp . Indeed, the former induces a
decrease of each coefficient’s value by exactly the amount corresponding to its original εq−εp least
significant bits; in contrast, the latter potentially causes an increase of this value by 2εq−εp . More
precisely, if the εq − εp least significant bits of a coefficient of (an entry of) A · s correspond to a
value x ∈ [0, 2εq−εp−1), then nothing is added to this coefficient; consequently, in this instance, the

14A common property of the considered correctness-related ranges is that they are centered around zero. To
emphasize this property, the ranges are denoted with opposite boundaries, e.g., (−a, a], implying that the lower
bound is negative. Nevertheless, the elements contained within these ranges are still elements of Zq . As such,
whenever convenient or desired, we might use the (positive) canonical, i.e., reduced modulo q, representatives that
are congruent to these negative elements (instead of the negative elements themselves).

Formal Verification of Saber 63

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

resulting coefficient of bq is exactly x less than its counterpart from A·s. Alternatively, if the εq−εp
least significant bits of a coefficient of (an entry of) A · s evaluate to a value x ∈ [2εq−εp−1, 2εq−εp),
then 2εq−εp is added to this coefficient; hence, in this case, the resulting coefficient of bq is
2εq−εp−x greater than its counterpart from A ·s. Naturally, since x ∈ [2εq−εp−1, 2εq−εp), it follows
that 2εq−εp − x ∈ (0, 2εq−εp−1]. At last, combining all of these observations, we conclude that the
difference between the corresponding coefficients of (the entries of) bq and A · s, and hence each
coefficient of (the entries of) errbq , lies in (−2εq−εp−1, 2εq−εp−1] = (− q

2·p ,
q

2·p].

The second error term is analogous to the previous one, except that it relates to AT · s′ and b′q
instead of A · s and bq. Specifically, the definition of this error term is given below.

errb′q = b′q −AT · s′ = bbAT · s′ + hcq→pcp→q −AT · s′

Due to the vast similarity with the preceding error term, this error term possesses the same
properties for similar reasons. That is, following the same line of reasoning as above, errb′q is
an element of Rl×1

q ; moreover, each coefficient of its entries lies in the discrete range (− q
2·p ,

q
2·p],

centered around zero.

The final error term captures the error related to v′ + bmc2→q and cmq; this error term is defined
below.

errcmq = cmq − (v′ + bmc2→q) + q

4 · t = bbv′ + bmc2→qcq→2·tc2·t→q − (v′ + bmc2→q) + q

4 · t

In contrast to the other error terms, errcmq is an element of Rq rather than of Rl×1
q . Moreover,

errcmq is the only error term which adds a constant that is not present in the related modular
scaling and flooring operations. The rational behind this is that the added constant, i.e., q

4·t ∈ Rq,
ensures that the coefficient range of errcmq is centered around zero, which is a property that is used
in the exhaustive correctness computation performed by Saber’s script. Without the addition of
q

4·t , this coefficient range is not centered around zero because the q
p · h1 term does not warrant

an equivalence between the b·cq→2·t and b·eq→2·t operators. Indeed, as can be extracted from the
preceding discussion, the coefficient ranges for the previous two error terms are centered around
zero due to the fact that bA · s + hcq→p and bAT · s′ + hcq→p are equivalent to bA · seq→p and
bAT ·s′eq→p, respectively. Nevertheless, to see why the addition of q

4·t compensates for this lack of
equivalence, consider the error term without this addition, i.e., cmq−(v′+bmc2→q). Then, because
cmq = bcmc2·t→q = bbv′ + bmc2→qcq→2·tc2·t→q, the computation of cmq commences by effectively
discarding the q

2·t = εq − εt − 1 least significant bits of each coefficient of v′ + bmc2→q, the result
of which is assigned to cm. Subsequently, bcmc2·t→q essentially reinserts these εq − εt − 1 bits,
although with value 0, after which the result is assigned to cmq. As such, each coefficient of cmq
equals its counterpart from v′+bmc2→q with respect to the εq−(εq−εt−1) = εt+1 most significant
bits. Nonetheless, for a coefficient of v′+ bmc2→q, the εq− εt−1 least significant bits can evaluate
to any value x ∈ [0, 2εq−εt−1); contrarily, for a coefficient of cmq, the εq−εt−1 least significant bits
invariably evaluate to 0. Hence, each coefficient of cmq− (v′+bmc2→q) is computed as 0−x, lying
in the range (−2εq−εt−1, 0]. Evidently, this range is not centered around zero. However, adding the
term q

4·t to cmq−(v′+bmc2→q), producing the original error term errcmq = cmq−(v′+bmc2→q)+ q
4·t ,

changes the computation of each coefficient to 0− x+ q
4·t . Following, since 0− x ∈ (−2εq−εt−1, 0],

the result of this latter computation lies in (−2εq−εt−2, 2εq−εt−2] = (− q
4·t ,

q
4·t]. Consequently, we

can conclude that the coefficients of errcmq lie in (− q
4·t ,

q
4·t], centered around zero.

Utilizing the above-introduced error terms, we presently derive the error expression. Recall the
considered context and objective: given some m ∈M, verify whether, after sequentially executing
(pk, sk) ← Saber.KeyGenA(), c ← Saber.EncA(pk,m), and m′ ← Saber.DecA(sk, c), m′ is equal to
m, i.e., m′ = m. Performing this sequential execution in accordance with the specifications of these
algorithms, we deduce the following for v−cmq+ q

p ·h2. Indeed, this is the value that, after modular

64 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

scaling and flooring, is assigned to m′ by Saber.DecA; that is, m′ = bv − cmq + q
p · h2cq→2.

v − cmq + q

p
· h2 = v − (errcmq + v′ + bmc2→q −

q

4 · t) + q

p
· h2

= (b′Tq · s + q

p
· h1)− (errcmq + (bTq · s′ +

q

p
· h1) + bmc2→q −

q

4 · t) + q

p
· h2

= b′Tq · s− bTq · s′ − errcmq − bmc2→q + q

4 · t + q

p
· h2

= (AT · s′ + errb′q)
T · s− (A · s + errbq)T · s′ − errcmq − bmc2→q + q

4 · t + q

p
· h2

= ((AT · s′)T + errTb′q) · s− ((A · s)T + errTbq) · s
′ − errcmq − bmc2→q + q

4 · t + q

p
· h2

= (s′T ·A + errTb′q) · s− (sT ·AT + errTbq) · s
′ − errcmq − bmc2→q + q

4 · t + q

p
· h2

= s′T ·A · s + errTb′q · s− (sT ·AT · s′ + errTbq · s
′)− errcmq − bmc2→q + q

4 · t + q

p
· h2

= errTb′q · s− errTbq · s
′ − errcmq − bmc2→q + q

4 · t + q

p
· h2

= −bmc2→q + errTb′q · s− errTbq · s
′ − errcmq + q

4 · t + q

p
· (p4 −

p

4 · t)

= −bmc2→q + errTb′q · s− errTbq · s
′ − errcmq + q

4
= bmc2→q + q

4 + errTb′q · s− errTbq · s
′ − errcmq

In this derivation, most equalities follow from trivial substitutions, reorderings, and simplifications;
nevertheless, a few exceptions require the use of some more intricate properties and reasoning.
Specifically, the fifth and seventh equality respectively follow from the distributivity property of
the transpose and matrix multiplication over matrix addition. In between these equalities, the
sixth equality holds due to the relation that exists between the transpose and matrix multiplication.
More precisely, for all matrices X and Y such that X·Y is well-defined, we have (X·Y)T = YT ·XT ;
naturally, since vectors are matrices with a single dimension equal to 1, this relation also applies
when one or both of X and Y are vectors. Additionally, this property extends to an arbitrary
number of matrices which, in combination with the involutive property of the transpose, allows
for the derivation of the eighth equality. Namely, as a consequence of these properties, the terms
s′T · A · s and sT · AT · s′ are equal and, as such, cancel each other out. More specifically, the
equality between these terms can be deduced as follows.

s′T ·A · s = ((s′T ·A · s)T)T

= (sT ·AT · s′)T

= sT ·AT · s′

Here, since sT ·AT ·s′ is an element of Rq and, hence, no vector or matrix, the transpose effectively
reduces to the identity function. Lastly, the final equality in the preceding derivation follows from
the fact that bmc2→q = −bmc2→q. In particular, because each coefficient of m has value 0 or
1, each coefficient of its scaled counterpart bmc2→q has value 0 · q2 = 0 or 1 · q2 = q

2 ; in turn,
each coefficient of −bmc2→q has value −0 = 0 or − q2 . However, since these latter coefficients
are elements of Zq, − q2 is congruent to q − q

2 = q
2 ; consequently, each coefficient of −bmc2→q is

congruent to its counterpart from bmc2→q. Concluding, bmc2→q = −bmc2→q, from which the last
equality follows.

Additionally considering the modular scaling and flooring operation that Saber.DecA applies to
v− cmq + q

p ·h2, we utilize the above-derived expression as illustrated below to determine the final

Formal Verification of Saber 65

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

value Saber.DecA assigns to m′.

m′ = bv − cmq + q

p
· h2cq→2

= bbmc2→q + q

4 + errTb′q · s− errTbq · s
′ − errcmqcq→2

= m+ bq4 + errTb′q · s− errTbq · s
′ − errcmqcq→2

Although the first two equalities in this derivation follow from trivial substitutions, the final
equality is contingent on slightly more complex reasoning; as such, we explicitly demonstrate the
validity of the latter equality. Specifically, let aεq−1 . . . a0 and b0 denote the binary representations
of a coefficient of q4 +errTb′q ·s−errTbq ·s

′−errcmq and the corresponding coefficient ofm, respectively.
Then, the following derivation shows the validity of the third equality at the coefficient-level.

bbb0c2→q + aεq−1 . . . a0cq→2 = bb00εq−1 + aεq−1 . . . a0cq→2

= b(aεq−1 + b0) . . . a0cq→2

= (aεq−1 + b0)
= b0 + aεq−1

= b0 +
⌊
aεq−1.aεq−2 . . . a0

⌋
= b0 + (

⌊
aεq−1.aεq−2 . . . a0

⌋
mod 2)

= b0 + (
⌊

2
q
· aεq−1aεq−2 . . . a0

⌋
mod 2)

= b0 + baεq−1aεq−2 . . . a0cq→2

As in previous derivations, (aεq−1 + b0) represents the bit value resulting from the addition of the
bits aεq−1 and b0 (modulo 2); moreover, since the addition of b00εq−1 and aεq−1 . . . a0 is carried out
in Zq, the implicit reduction modulo q effectively removes the (εq+1)-th bit that may be produced
through a potential carry. Furthermore, due to the fact that each equality collates elements from
Z2, the reduction modulo 2 of these elements is implied; indeed, this ratifies equalities such
as (aεq−1 + b0) = b0 + aεq−1. Lastly, because b0 and aεq−1aεq−2 . . . a0 respectively represent any
coefficient ofm and the corresponding coefficient of q4 +errTb′q ·s−errTbq ·s

′−errcmq , lifting the above
result to R2 proves the validity of the previously obtainedm+b q4 +errTb′q ·s−errTbq ·s

′−errcmqcq→2,
as desired.

Employing the above-derived equality form′, i.e.,m′ = m+b q4 +errTb′q ·s−errTbq ·s
′−errcmqcq→2, we

can directly infer that m′ = m if and only if b q4 +errTb′q ·s−errTbq ·s
′−errcmqcq→2 = 0. Evaluating

the modular scaling and flooring operation of the latter, it follows that b q4 + errTb′q · s− errTbq · s
′−

errcmqcq→2 = 0 if and only if the εq-th bit of each coefficient of q4 + errTb′q · s− errTbq · s
′ − errcmq

equals 0. In turn, since each coefficient consists of εq bits, the εq-th bit of a coefficient can be 0 if
and only if this coefficient lies in the discrete range [0, 2εq−1) = [0, q2). Then, subtracting q

4 from
q
4 +errTb′q ·s−errTbq ·s

′−errcmq , we obtain the error expression for which Saber’s script exhaustively
computes the distribution, i.e., errTb′q · s − errTbq · s

′ − errcmq ; accordingly, the aforementioned
coefficient range also shifts in the negative direction by a constant q

4 . Lastly, we conclude that
m′ = m if and only if each coefficient of errTb′q · s − errTbq · s

′ − errcmq lies in the discrete range
[0− q

4 ,
q
2 −

q
4) = [− q4 ,

q
4).

As a last endeavor preceding the conclusion of this discussion, we prove that the error term errcmq is
independent of the message m. As a result, since the other error terms do not contain m, it follows
that the complete error expression is independent of the message as well. Initiating the proof,
the imminent derivation performs a trivial substitution to acquire a convenient representation of

66 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

errcmq .

errcmq = cmq − (v′ + bmc2→q) + q

4 · t
= bbv′ + bmc2→qcq→2·tc2·t→q − (v′ + bmc2→q) + q

4 · t

Subsequently, we extract bmc2→q from the modular scaling and flooring operations. In particu-
lar, respectively denoting the binary representations of a coefficient of v′ and the corresponding
coefficient of m by aεq−1 . . . a0 and b0, the ensuing derivation illustrates this extraction on the
coefficient-level. Here, because the right part of the formula remains untouched, (v′+bmc2→q)+ q

4·t
is replaced by dots.

bbaεq−1 . . . a0 + bb0c2→qcq→2·tc2·t→q − . . . = bbaεq−1 . . . a0 + b00εq−1cq→2·tc2·t→q − . . .
= bb(aεq−1 + b0) . . . a0cq→2·tc2·t→q − . . .
= b(aεq−1 + b0) . . . aεq−εt−1c2·t→q − . . .
= (aεq−1 + b0) . . . aεq−εt−10εq−εt−1 − . . .
= b00εq−1 + aεq−1 . . . aεq−εt−10εq−εt−1 − . . .
= bb0c2→q + baεq−1 . . . aεq−εt−1c2·t→q − . . .
= bb0c2→q + b

⌊
aεq−1 . . . aεq−εt−1.aεq−εt−2 . . . a0

⌋
c2·t→q − . . .

= bb0c2→q + bbaεq−1 . . . a0cq→2·tc2·t→q − . . .

As before, because the above holds for arbitrary (corresponding) coefficients of v′ and m, lift-
ing this result to R2 gives (bmc2→q + bbv′cq→2·tc2·t→q) − (v′ + bmc2→q) + q

4·t . Naturally, this
straightforwardly reduces to bbv′cq→2·tc2·t→q − v′ + q

4·t , an expression that does not depend on
m.

Finally, utilizing the preceding observations and results, we can reach the desired conclusion.
Namely, according to the previously obtained results, given some m ∈ M, after sequentially
executing (pk, sk) ← Saber.KeyGenA(), c ← Saber.EncA(pk,m), and m′ ← Saber.DecA(sk, c),
verifying whether m′ = m is equivalent to verifying whether all coefficients of the error expression
errTb′q ·s−errTbq ·s

′−errcmq lie in the discrete range [− q4 ,
q
4). Furthermore, since this error expression

is completely independent of m, the particular choice for m can not affect the outcome of this
latter verification effort; in turn, due to the equivalence, this also holds for the former verification
effort, i.e., the verification of m′ = m after the above-mentioned sequential execution. In fact,
completely unfolding the error expression, we see that, excluding any constants, it solely depends
on A, s, and s′ produced as in Saber.KeyGenA, Saber.KeyGenA, and Saber.EncA, respectively. As
such, we can formalize the corresponding verification effort as a probabilistic program; Figure 3.15
defines this probabilistic program. Here, err_expression(A, s, s′) represents the error expression
errTb′q · s − errTbq · s

′ − errcmq , accordingly using the provided arguments as the values for A, s,
and s′; moreover, for x ∈ Rq, coeffs_in_correctness_rng(x) denotes the predicate that evaluates
to true if and only if each of x’s coefficients lies in [− q4 ,

q
4).

PProgCOR

1 : seedA ←$ U({0, 1}256)
2 : A← gen(seedA)
3 : s←$ U(Rl×1

q)
4 : s′ ←$ U(Rl×1

q)
5 : return coeffs_in_correctness_rng(err_expression(A, s, s′))

Figure 3.15: Probabilistic Program Formalizing Correctness Probability Based on Error Expression

Formal Verification of Saber 67

3.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 3. SABER

Recalling that both PProgSTDCOR
Saber.PKEA and GameFOCOR

A,Saber.PKEA formalize the verification of m′ = m
after the sequential execution of Saber.PKEA’s algorithms, we notice that both of these programs
are equivalent to PProgCOR. In particular, the independence of m in this verification effort
nullifies the only difference between PProgSTDCOR

Saber.PKEA and GameFOCOR
A,Saber.PKEA, i.e., the selection

of m, and enables the (equivalence-preserving) transformations of both programs to PProgCOR.
From these equivalences, it follows that for any m ∈ M, Pr

[
PProgSTDCOR

Saber.PKEA(m) = 1
]
is equal

to Pr
[
PProgCOR = 1

]
; similarly, for any valid adversary A, Pr

[
GameFOCOR

A,Saber.PKEA = 1
]
equals

Pr
[
PProgCOR = 1

]
. Then, since PProgCOR does not depend on m, Pr

[
PProgCOR = 1

]
remains

constant for any choice of message (or adversary that produces such a message). Consequently,
we can deduce that there exists a 1 − δ ∈ [0, 1] such that for any message m ∈ M and any valid
adversary A, the following holds.

Pr
[
PProgCOR = 1

]
= Pr

[
PProgSTDCOR

Saber.PKEA(m) = 1
]

= Pr
[
GameFOCOR

A,Saber.PKEA = 1
]

= 1− δ

Thus, by computing Pr
[
PProgCOR = 1

]
, we obtain the correctness of Saber.PKEA with re-

spect to both considered definitions; naturally, due to the equivalence between Saber.PKEA
and Saber.PKE, this correctness result is identical for Saber.PKE. Certainly, given a partic-
ular parameter set, this is precisely the probability that Saber’s script exhaustively computes,
albeit under the assumption that matrix A is uniformly distributed; alternatively stated, the
script assumes gen is a random oracle15. With this assumption, PProgCOR essentially becomes
PProgδCOR, the probabilistic program specified in Figure 3.16. Furthermore, in the above sequence
of equalities, the initial probability should therefore technically be Pr

[
PProgδCOR = 1

]
instead of

Pr
[
PProgCOR = 1

]
. Combining these final observations, we derive the following concluding se-

quence of equalities, completing the correctness analysis of Saber.PKE. Indeed, as before, these
equalities hold for any m ∈M and any valid adversary A.

Pr
[
PProgδCOR = 1

]
= Pr

[
PProgSTDCOR

Saber.PKE(m) = 1
]

= Pr
[
GameFOCOR

A,Saber.PKE = 1
]

= 1− δ

PProgδCOR

1 : A← U(Rl×lq)
2 : s←$ U(Rl×1

q)
3 : s′ ←$ U(Rl×1

q)
4 : return coeffs_in_correctness_rng(err_expression(A, s, s′))

Figure 3.16: Probabilistic Program Formalizing Correctness Probability Computed by Saber’s
Script

Implications and Concrete Correctness Values

As mentioned in the beginning of the correctness analysis, determining the correctness of Saber.PKE
is imperative for two primary purposes. First, as for any PKE scheme, the (sufficient) correctness
of Saber.PKE validates that the scheme’s algorithms (adequately) satisfy the desired relation with
respect to the valid inputs; in essence, this relation expresses that encrypting and, subsequently,
decrypting any valid message through the scheme’s algorithms returns this message with sufficient

15This suggests that Saber’s script merely approximates the actual correctness value. Nevertheless, if gen is
adequately instantiated, i.e., its output distribution (closely) resembles the uniform distribution over Rl×lq , this
approximation is (almost) accurate.

68 Formal Verification of Saber

CHAPTER 3. SABER 3.2. PUBLIC-KEY ENCRYPTION SCHEME

probability. Second, due to (the variant of) the FO transformation used to obtain Saber.KEM
from Saber.PKE, the security and correctness properties of Saber.KEM are predicated on the
correctness property of Saber.PKE; in particular, the correctness of Saber.KEM is identical to the
correctness of Saber.PKE [14, 25]. Therefore, determining the correctness of Saber.PKE is also
necessary to evaluate the properties of Saber.KEM.

Although the above-mentioned purposes technically employ slightly different correctness defini-
tions, these definitions are equivalent in the context of Saber.PKE. As such, considering a partic-
ular parameter set and a proper instantiation of gen, Saber’s script (almost) accurately computes
the correctness of Saber.PKE with respect to either definition and, hence, purpose. Certainly,
this implies that, for a certain parameter set and an adequate instantiation of gen, the correctness
value computed by Saber’s script can directly be employed to evaluate Saber.KEM’s security and
correctness properties; most notably, this correctness value additionally (approximately) denotes
Saber.KEM’s correctness.

Finally, to give an impression of the envisioned correctness of Saber.PKE and Saber.KEM, we
provide the concrete correctness values induced by the parameter sets advertised in the original
paper; these sets are denominated LightSaber, (regular) Saber, and FireSaber and instantiate the
parameters as follows [14].

• For LightSaber, εt = 2, εp = 10, εq = 13, εn = 8, l = 2, and µ = 10.

• For (regular) Saber, εt = 3, εp = 10, εq = 13, εn = 8, l = 3, and µ = 8.

• For FireSaber, εt = 5, εp = 10, εq = 13, εn = 8, l = 4, and µ = 6.

With respect to these parameter sets, Table 3.1 presents the corresponding concrete correctness
values of Saber.PKE and Saber.KEM, computed per Saber’s script.

Parameter Set Correctness of Saber.PKE and Saber.KEM
LightSaber 1− 2−120

(Regular) Saber 1− 2−136

FireSaber 1− 2−165

Table 3.1: Correctness of Saber.PKE and Saber.KEM for Customary Parameter Sets

Formal Verification of Saber 69

Chapter 4

Formal Verification

Closely resembling the extensive and detailed discussion provided in the previous chapter, this
chapter covers the formal verification effort carried out for Saber.PKE. Specifically, this chapter
describes the process of formally verifying Saber.PKE, elaborating on the critical aspects, de-
cisions, and difficulties. Although this does not encompass a comprehensive walkthrough of the
code, one can independently access and examine the entire codebase in my GitHub repository,
located at the following URL.

https://github.com/MM45/Saber-Security-EasyCrypt

Introduced in Chapter 1 and further expanded on in Chapter 2, EasyCrypt is the sole tool utilized
for the formal verification of Saber.PKE. As such, the corresponding formal verification process
is entirely discussed from the perspective of this tool; in particular, this discussion provides ample
examples from the actual code or slightly adjusted variants thereof. In order to facilely interpret
and understand the material of this discussion, acquaintance with the information on EasyCrypt
presented in the initial two chapters is strongly recommended.

This chapter follows a similar structure to that of the preceding chapter. Namely, foremost, Section
4.1 covers the preliminary formalizations; more precisely, this section regards the formalization of
the considered context, i.e., fundamental definitions and properties, in EasyCrypt. Indeed, these
definitions and properties predominantly correspond to those introduced in Section 3.1. Afterward,
Section 4.2 discusses the formalization and (formal) verification of the analyses provided in Section
3.2. Finally, to give an impression of EasyCrypt’s (lemma-)proving process and its underlying
concepts and mechanisms, Section 4.3 explicates the concrete proof of one of the lemmas employed
in the formal verification endeavor for Saber.PKE.

4.1 Preliminaries
Before formalizing any concrete schemes, security properties, hardness assumptions, or proofs,
we must formalize the setting in which they manifest themselves. Particularly, this includes
introducing the necessary types, operators, constants, distributions, and axioms; certainly, in
the formal verification effort performed for Saber.PKE, these artifacts primarily formalize the
definitions, requirements, and concepts introduced in Section 3.1. In the ensuing, we discuss this
initial endeavor.

Formal Verification of Saber 71

https://github.com/MM45/Saber-Security-EasyCrypt

4.1. PRELIMINARIES CHAPTER 4. FORMAL VERIFICATION

4.1.1 Saber Parameters and Axioms
Foremost, we formalize Saber’s parameters and the corresponding requirements. The rationale
behind formalizing these artifacts first is that they constitute the most fundamental part of the
considered context; indeed, (nearly) the entire remainder of the context is contingent on these
artifacts. For instance, the utilized algebraic structures, e.g., Rq, modular scaling and flooring
operators, e.g., b·cq→p, and distributions, e.g. βµ(Rl×1

q), are all defined with respect to the para-
meters.

The parameters of Saber are formalized by the integer constants defined in Listing 4.1.

1 (* Exponents *)
2 const eq: int.
3 const ep: int.
4 const et: int.
5 const en: int.
6

7 (* Moduli (q, p, and t) and Polynomial Degree (n) *)
8 const q: int = 2^eq.
9 const p: int = 2^ep.

10 const t: int = 2^et.
11 const n: int = 2^en.
12

13 (* Vector/Matrix Dimension *)
14 const l: int.

Listing 4.1: Saber’s Parameters

As we can see, the moduli and polynomial degree are assigned integral power-of-two values based
on their exponent, conforming to the definitions provided in Section 3.1. As an example, eq
denotes exponent εq; accordingly, q, representing modulus q, is given the value 2^eq, i.e., 2εq . The
remaining constant, l, corresponds to parameter l; that is, l determines the dimensions of the
vectors and matrices utilized in Saber.PKE.

In Listing 4.1, the parameter of Saber’s centered binomial distribution, i.e., µ, is not formalized.
This is because we do not explicitly consider the centered binomial distribution in this formal
verification effort. Instead, we analyze a more general, abstract distribution, yielding a broader
verification effort with stronger guarantees. Particularly, the guarantees of this broader verifica-
tion effort are valid for any concrete distribution compatible with the more general distribution,
including the centered binomial distribution employed in Saber.PKE.

Following the formalization of the parameters, we specify the associated axioms. These axioms
encompass the most rudimentary restrictions by which the parameters must abide; that is, in
this case, they correspond to the parameter requirements presented in Section 3.1. The concrete
specifications of these axioms are shown in Listing 4.2.

1 (* Requirements/Assumptions on Parameters *)
2 axiom ge1_et1: 1 <= et + 1.
3 axiom geet2_ep: et + 2 <= ep.
4 axiom geep1_eq: ep + 1 <= eq.
5

6 axiom ge0_en: 0 <= en.
7

8 axiom ge1_l: 1 <= l.

Listing 4.2: Saber’s Parameter Requirements

72 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.1. PRELIMINARIES

Here, the first three axioms concern the relation between the moduli exponents. Specifically, in
order, they ensure 1 ≤ εt + 1, εt + 2 ≤ εp, and εp + 1 ≤ εq; hence, in conjunction, these axioms
imply the desired relation between the moduli exponents. The fourth axiom in this listing ensures
that 0 ≤ εn; as a consequence, n = 2εn is an integral power-of-two. At last, the final axiom
guarantees that 1 ≤ l or, equivalently, 0 < l; in other words, this axiom guarantees the validity of
the vector and matrix dimensions. In conclusion, combined, these axioms precisely formalize the
list of parameter requirements described in Section 3.1. Naturally, this is with the exception of the
requirement on µ, since this parameter is not considered in this formal verification effort.

4.1.2 Types, Operators, and Distributions
Building on the most rudimentary context, i.e., the parameters and their axioms, we formalize the
remaining concepts required to model Saber.PKE and its algorithms; in particular, these concepts
involve the necessary algebraic structures, operators, and distributions.

Polynomial Quotient Ring Theory

As is apparent from the discussion in Chapter 3, Saber.PKE utilizes several polynomial quotient
rings with a nearly identical structure, e.g., Rq, Rp, and R2·t. As such, to prevent unneces-
sary, error-prone code duplication, a theory defining the general structure of such rings would
be conducive. Unfortunately, at present, EasyCrypt’s standard library does not provide such a
theory. For this reason, we devise a theory for polynomial quotient rings of the relevant form,
i.e., K[X]/(Xn + 1) where K is a ring. Moreover, as a concretization of this theory, we create
a separate theory for polynomial quotient rings with the exact shape of the ones employed in
Saber.PKE, i.e., Za[X]/(Xn + 1) where a ∈ N and 1 < a.

In essence, the foundation of the general polynomial quotient ring theory is predominantly based
on the definitions, properties, and structure provided in preexisting theories. Specifically, we
utilize the polynomial, ideal, and ring quotient theories to establish the foundation of the general
polynomial quotient ring theory. Namely, first, the polynomial theory provides the representation
of polynomials as well as the definitions and properties of related concepts, e.g., the degree of a
polynomial. Second, the ideal theory enables the construction of the desired ideal, i.e., 〈Xn + 1〉;
furthermore, it defines the properties associated with this ideal. Lastly, the ring quotient theory
describes the structure of the quotient ring induced by the constructed ideal.

Leveraging this foundation, we further develop the general polynomial quotient ring theory to
include the definitions and properties regarding polynomial quotient rings of the considered form.
These additional definitions and properties primarily concern the canonical, i.e., (fully) reduced
modulo Xn + 1, representatives of the congruence classes in such rings, as well as the operators
on these congruence classes.

Finally, we construct the more concrete polynomial quotient ring theory, i.e., the theory for rings of
the form Za[X]/(Xn+1), by cloning the above-discussed general theory and replacing the general
coefficient ring with the ring of integers modulo a, where a ∈ N and 1 < a; this replacement uses
the predefined theory for such integer rings. Based on the uniform distribution supplied in this
predefined theory, the concrete polynomial quotient ring theory specifies a uniform distribution
on Za[X]/(Xn + 1). Apart from the added structure from the more specific coefficient ring, this
distribution is the only additional feature of the concrete polynomial quotient ring theory relative
to its general counterpart.

Types

Types are used to capture the origin of a certain value, indicating the associated structure and
compatible operators. In the formal verification effort regarding Saber.PKE, types are mainly

Formal Verification of Saber 73

4.1. PRELIMINARIES CHAPTER 4. FORMAL VERIFICATION

utilized to represent the necessary algebraic structures from which the considered elements origin-
ate. Nonetheless, several supplementary types are employed to denote (the domain of) abstract
cryptographic artifacts such as plaintexts, ciphertexts, public keys, and secret keys.

First, exemplifying the formalization of the most prevalent algebraic structures employed in
Saber.PKE, i.e., the polynomial quotient rings and their coefficient rings, Listing 4.3 considers the
definition of the types corresponding to Rq = Zq[X]/(Xn + 1) and its coefficient ring Zq.

1 (* Rq = Z/qZ[X] / (X^n + 1) *)
2 type Zq, Rq.
3

4 clone include PolyZ with
5 type Zmod.zmod <- Zq,
6 type Rmod.polyXnD1 <- Rq,
7 op Zmod.p <- q.

Listing 4.3: Types for Polynomial Quotient Ring Rq and Corresponding Coefficient Ring Zq

In this listing, Zq and Rq respectively represent Zq and Rq. However, line 2 merely defines abstract
types with identifiers Zq and Rq; that is, from EasyCrypt’s perspective, no structure or properties
are yet associated with these types. The subsequent cloning of the PolyZ theory remedies this
deficiency. Namely, PolyZ corresponds to the previously discussed concrete polynomial quotient
ring theory. Indeed, this suggests that the cloning process depicted in Listing 4.3 creates an
instance of the concrete polynomial quotient ring theory for which Zq and Rq constitute the types
of the coefficient ring elements and polynomial quotient ring elements, respectively. As a result of
this cloning process, both Zq and Rq have the intended structure and properties associated with
them. Although this example solely covers Zq and Rq, an analogous process is carried out for each
necessary coefficient ring and corresponding polynomial quotient ring; more precisely, a similar
process is carried out for Zp and Rp, Zp2/q and Rp2/q, Z2·t and R2·t, and Z2 and R2.

Second, based on the types for polynomial quotient rings, we formalize the algebraic structures that
consider vectors and matrices over these polynomial quotient rings; indeed, as can be extracted
from Chapter 3, Saber.PKE heavily relies on the use of such vectors and matrices. Specifically,
Saber.PKE utilizes l-dimensional vectors over Rq and Rp, and l × l-dimensional matrices over
Rq. Fortunately, EasyCrypt’s standard library contains the Matrix theory, which provides the
fundamental definitions and properties regarding vectors and square matrices1. Among these
definitions is a type for vectors and matrices of a particular dimension over some entry type.
As such, instantiating this theory with dimension l and entry type Rq yields types for the l-
dimensional vectors and l×l-dimensional matrices over Rq, along with the corresponding structure,
definitions, and properties. Naturally, instantiating this theory anew with dimension l and entry
type Rp gives an analogous type for the l-dimensional vectors over Rp. Albeit slightly simplified,
Listing 4.4 depicts this instantiation process. The (*...*) comments indicate places where the
listing abstracts away from some initialization details.

1 clone Matrix as Mat_Rq with
2 type R <- Rq,
3 op size <- l.
4

5 (*...*)
6

7 type Rq_vec = Mat_Rq.vector.
8 type Rq_mat = Mat_Rq.Matrix.matrix.
9

10

1Indeed, at the time of writing, the Matrix theory exclusively considers square matrices.

74 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.1. PRELIMINARIES

11 clone Matrix as Mat_Rp with
12 type R <- Rp,
13 op size <- l.
14

15 (*...*)
16

17 type Rp_vec = Mat_Rp.vector.

Listing 4.4: Types for Vectors and Matrices over Rq and Rp

Contrariwise to the cloned instance of PolyZ presented earlier, the cloned instances of Matrix are
renamed. Specifically, the instance with entry type Rq is renamed to Mat_Rq; the instance with
entry type Rp is renamed to Mat_Rp. Subsequently, the instances’ content may be accessed through
their respective identifiers. Furthermore, for readability purposes, we define aliases for the relevant
vector and matrix types that these instances provide.

Lastly, the types representing abstract cryptographic artifacts are shown in Listing 4.5. From
top to bottom, the listed types formalize (the domain of) seeds, public keys, secret keys, plain-
texts, and ciphertexts. Technically, these types are not necessary for the formal verification to
succeed; however, as will become apparent throughout the remainder, they considerably simplify
the formalization of the security proof.

1 (* Cryptographic Types *)
2 type seed.
3 type pkey.
4 type skey.
5 type plaintext.
6 type ciphertext.

Listing 4.5: Types Representing Abstract Cryptographic Artifacts

Operators

Utilizing the defined types, we specify the remainder of the necessary operators; notably, this
remainder does not include the operators that are inherent to the utilized algebraic structures.
Namely, albeit not explicitly presented here, such operators are among the artifacts (abstractly)
specified within the theories that formalize the corresponding algebraic structures. Indeed, this
means that the above-discussed instantiations of the PolyZ and Matrix theories with the desired
types automatically concretize and provide the inherent operators of the corresponding algebraic
structures for these types.

Besides the operators that are inherent to the utilized algebraic structures, Saber.PKE predomin-
antly requires two additional categories of operators: modular reduction (and conversion) operators
and modular scaling and flooring operators. Although EasyCrypt’s standard library provides most
of the fundamental definitions and properties necessary to formalize these operators, the exact op-
erators employed in Saber.PKE are not predefined and, hence, must still be formalized. In addition
to these two categories of operators, we employ several encoding and decoding operators related
to the above-introduced cryptographic types; in fact, for each of these types (excluding the seed
type), we define both a monomorphic and a polymorphic encoding/decoding operator pair. Here,
the monomorphic operators are utilized in the formalizations of Saber.PKE and Saber.PKEA; the
polymorphic operators are employed in the formalization of the game-playing security proof. The
rationale behind the manner in which these operators are used is bipartite: the formal verification
of the equivalence proof regarding Saber.PKE and Saber.PKEA requires explicitly referring to
the concrete types of the considered algorithms’ input and output, necessitating monomorphic
operators; and the formal verification of the game-playing security proof warrants managing the
deviating adversary interfaces, an endeavor significantly simplified by the polymorphic operators.

Formal Verification of Saber 75

4.1. PRELIMINARIES CHAPTER 4. FORMAL VERIFICATION

Exemplifying the latter part of this rationale, consider Game2
A and Game3

A of the security proof’s
game sequence (see Figure 3.8). Certainly, the values passed to the adversary in Game2

A, i.e.,
(seedA,b) and (cu,b′), respectively belong to the domains U({0, 1}256)×Rl×1

p and Rp2/q ×Rl×1
p ;

contrarily, in Game3
A, these values respectively belong to the domains U({0, 1}256) × Rl×1

q and
Rp × Rl×1

p . As such, because each domain has a distinct type in EasyCrypt, the formal verific-
ation of the game-playing security proof would require several different adversary definitions or
complex and cumbersome type conversions; this is circumvented through the above-mentioned
polymorphic encoding and decoding operators. Naturally, to preserve the equivalence between
the IND-CPA game for Saber.PKE and the initial game in the game sequence of the security
proof, the polymorphic operators are defined to be equal to their monomorphic analogs for the
corresponding concrete domain and range types. Finally, a single additional operator models the
gen function. This operator is left rather abstract, merely mapping a seed to an element of Rl×lq

without further properties or requirements.

Modular Reduction and Conversion Concerning the first additional category of operators,
Listing 4.6 provides the formalizations of a modular reduction (and conversion) operator and
its extensions. Although this listing exclusively considers operators that convert from modulo q
to modulo p, the actual formal verification effort comprises more of such operators for different
moduli. Furthermore, facilitating their identification, all (formalizations of the) modular reduction
and conversion operators adhere to the same identifier format. Specifically, if such an operator
converts a value of type X to a value of type Y, the operator is identified by X2Y.

1 (* Modular Reduction/Modulus Conversion *)
2 op Zq2Zp (z : Zq) : Zp = Zp.inzmod (Zq.asint z).
3

4 (* Extend Modular Reduction/Modulus Conversion to Polynomials *)
5 op Rq2Rp (y : Rq) : Rp =
6 BigRp.XnD1CA.bigi predT (fun (i : int) => Zq2Zp y.[i] ** exp Rp.iX i) 0 n.
7

8 (* Extend Modular Reduction/Modulus Conversion to Polynomial Vectors *)
9 op Rqv2Rpv (v : Rq_vec) : Rp_vec =

10 Mat_Rp.Vector.offunv (fun (i : int) => Rq2Rp v.[i]).

Listing 4.6: Modular Reduction and Conversion Operator with Extensions

Here, the first operator, i.e., Zq2Zp, is designed to convert a value from type Zq to type Zp, implicitly
reducing the value modulo p. Particularly, it performs this reduction and conversion by interpreting
the given value as an integer and, subsequently, reinterpreting it as a value of type Zp. Indeed,
this operator formalizes the (overloaded) mod p operator that maps from Zq to Zp, defined in
Section 3.1. The second operator, i.e., Rq2Rp, extends the Zq2Zp operator to polynomials of type Rq.
Dissecting this operator’s definition, first and foremost, BigRp.XnD1CA.bigi denotes a summation
operator for values of type Rp. This summation operator takes a predicate, function, and two
integers as arguments. Generally, the predicate argument is used to exclude certain values from
the summation. However, in this case, the predicate equals predT, which invariably evaluates to
true; consequently, the summation does not exclude any values. The function argument defines the
function from which the summation terms originate. More precisely, each summation term results
from evaluating this function on a value from the range defined by the two integer arguments.
In this instance, the summation terms are obtained from evaluating (fun (i : int) => Zq2Zp
y.[i] ** exp Rp.iX i) on integers from 0 (including) up to n (excluding). In the definition of
this function, y.[i] refers to the coefficient with index i of polynomial y, exp Rp.iX i represents
the monomial Xi interpreted as an element from Rp, and ** denotes constant multiplication,
i.e., multiplication of each coefficient of the right-hand side polynomial with the left-hand side
constant. As such, letting Zq2Zp, Rq2Rp, yi and Xi respectively represent Zq2Zp, Rq2Rp, y.[i]

76 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.1. PRELIMINARIES

and exp Rp.iX i, we can derive the following equality for the Rq2Rp operator.

Rq2Rp(y) =
n−1∑
i=0

Zq2Zp(yi) ·Xi

Since Zq2Zp solely reduces its argument modulo p, Rq2Rp produces the polynomial that results
from reducing each of y’s coefficients modulo p. As a result, Rq2Rp exactly corresponds to the
coefficient-wise extension of the aforementioned mod p operator; that is, the extension mapping
from Rq to Rp.

As a final necessary extension, the last operator in Listing 4.6, i.e., Rqv2Rpv, extends the Rq2Rp
operator to elements of type Rq_vec, i.e., l-dimensional vectors with entries of type Rq. Specifically,
Rqv2Rpv implements this extension through the Mat_Rp.Vector.offunv operator, which constructs
a vector of type Rp_vec from a given function. In this case, this given function is (fun (i : int)
=> Rq2Rp v.[i]), where v.[i] refers to the entry with index i of vector v. Hence, combining this
with the above discussion on Rq2Rp, it follows that Rqv2Rpv converts each entry of the argument
vector from type Rq to Rp, producing a value of type Rp_vec; particularly, it does so by reducing all
coefficients of each entry modulo p. Concluding, Rqv2Rpv precisely corresponds to the combination
of the coefficient-wise and entry-wise extensions of the above-mentioned mod p operator, i.e., the
combination of extensions mapping from Rl×1

q to Rl×1
p .

Modular Scaling and Flooring For the second additional category of operators, i.e., the
modular scaling and flooring operators, Listing 4.7 defines several necessary preliminary operators.
Here, the %/ operator returns the quotient resulting from the Euclidean division of the left-hand
side operand by the right-hand side operand. This operator and its properties are defined in
EasyCrypt’s standard library.

1 (* Right and Left Bit-Shift *)
2 op shr (x : int, ex : int) : int = x %/ 2 ^ ex.
3 op shl (x : int, ex : int) : int = x * 2 ^ ex.
4

5 (* Right and Left Bit-Shift *)
6 op downscale (x : int, ea : int, eb : int) : int = shr x (ea - eb).
7 op upscale (x : int, ea : int, eb : int) : int = shl x (ea - eb).

Listing 4.7: Preliminary Operators for Modular Scaling and Flooring

Provided with the non-negative integer arguments x and ex, the shr and shl operators can be
interpreted to compute the right and, respectively, left bit-shift of x by ex bits. Notably, albeit
these operators technically allow for x and ex to be negative, this does not occur throughout the
formal verification process; as such, we can safely adopt these intuitive interpretations2.

The remaining operators in Listing 4.7, i.e., downscale and upscale, are nearly identical to the
shr and shl operators. In particular, downscale and upscale also effectively compute the right
and, respectively, left bit-shift of their integer argument x; however, instead of a single argument
that specifies the number of bits to shift, downscale and upscale both take two integer arguments
ea and eb and shift for ea - eb bits3. As a last remark, although each bit-shifting operator pair
in Listing 4.7 could be combined in a single operator, this would significantly complicate the
remainder of the formal verification effort, especially with regards to proving the properties of
these operators; therefore, we refrain from doing so.

2Indeed, if x and/or ex are negative, the stated bit-shift interpretations of these operators are invalid.
3Naturally, by extension of the fact that shr and shl are never provided a negative x or a negative ex,

downscale and upscale are never given a negative x; moreover, ea will invariably be greater than or equal to eb.

Formal Verification of Saber 77

4.1. PRELIMINARIES CHAPTER 4. FORMAL VERIFICATION

Utilizing the preliminary operators defined above, Listing 4.8 provides two examples of modular
scaling and flooring operators and their extensions: one for downwards scaling and the other
for upwards scaling. As with Listing 4.6, this list of modular scaling and flooring operators is
not exhaustive. That is, the actual formal verification effort comprises more of such operators
than presented here; in particular, it includes variants concerning moduli different from p and
q. Moreover, similarly to the modular reduction and conversion operators, all (formalizations of
the) modular scaling and flooring operators follow an identical identifier format. Namely, if such
an operator takes a value of type X and produces a value of type Y, the operator is identified by
scaleX2Y.

1 (* Downwards Modular Scaling and Flooring *)
2 op scaleZq2Zp (z : Zq) : Zp = Zp.inzmod (downscale (Zq.asint z) eq ep).
3

4 (* Extend Downwards Modular Scaling and Flooring to Polynomials *)
5 op scaleRq2Rp (y : Rq) : Rp =
6 BigRp.XnD1CA.bigi predT (fun (i : int) => scaleZq2Zp y.[i] ** exp Rp.iX i) 0 n.
7

8 (* Extend Downwards Modular Scaling and Flooring to Polynomial Vectors *)
9 op scaleRqv2Rpv (v : Rq_vec) : Rp_vec =

10 Mat_Rp.Vector.offunv (fun (i : int) => scaleRq2Rp v.[i]).
11

12 (* Upwards Modular Scaling and Flooring *)
13 op scaleZp2Zq (z : Zp) : Zq = Zq.inzmod (upscale (Zp.asint z) eq ep).
14

15 (* Extend Upwards Modular Scaling and Flooring to Polynomials *)
16 op scaleRp2Rq (y : Rp) : Rq =
17 BigRq.XnD1CA.bigi predT (fun i => scaleZp2Zq y.[i] ** exp Rq.iX i) 0 n.
18

19 (* Extend Upwards Modular Scaling and Flooring to Polynomial Vectors *)
20 op scaleRpv2Rqv (v : Rp_vec) : Rq_vec =
21 Mat_Rq.Vector.offunv (fun i => scaleRp2Rq v.[i]).

Listing 4.8: Modular Scaling and Flooring Operators with Extensions

Respecting the definition of downscale, we observe that the first operator in Listing 4.8, i.e.,
scaleZq2Zp, practically performs a right bit-shift of eq - ep bits on the integer interpretation of its
argument z, which is initially of type Zq; afterward, scaleZq2Zp converts this integer interpretation
to Zp, implicitly reducing it modulo p. Nevertheless, this modular reduction is nullified by the
preceding right bit-shift. In particular, this is because the result of bit-shifting an eq-bit value, such
as those of type Zq, to the right by eq - ep bits cannot comprise more than ep bits; consequently,
the succeeding reduction modulo p effectively reduces to the identity function. As such, scaleZq2Zp
precisely formalizes the b·cq→p operator defined in Section 3.1. Furthermore, the second and third
operators in Listing 4.8, i.e., scaleRq2Rp and scaleRqv2Rpv, accordingly extend scaleZq2Zp in the
same manner as the above-discussed Rq2Rp and Rqv2Rpv extend Zq2Zp; therefore, scaleRq2Rp and
scaleRqv2Rpv formalize the coefficient-wise extension and, respectively, the combination of the
coefficient-wise and entry-wise extensions of the b·cq→p operator.

Lastly, following a similar line of reasoning to the one provided for scaleZq2Zp, scaleRq2Rp, and
scaleRqv2Rpv, we see that the remaining three operators in Listing 4.8 formalize the b·cp→q operator
and its extensions.

Encoding and Decoding Concerning the encoding and decoding operators for the abstract
cryptographic types, Listing 4.9 provides the encoding and decoding operator pairs specified for
the pkey type as an example.

78 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.1. PRELIMINARIES

1 (* Specification Encoding and Decoding *)
2 op pk_encode_s : seed * Rp_vec -> pkey.
3 op pk_decode_s : pkey -> seed * Rp_vec.
4

5 (* Games Encoding and Decoding *)
6 op pk_encode_g ['a] : 'a -> pkey.
7 op pk_decode_g ['a] : pkey -> 'a.

Listing 4.9: Encoding and Decoding Operator Pairs for Public Key Type pkey

The first operator pair in this listing is intended for the formalization of Saber.PKE and Saber.PKEA;
contrarily, the second pair is designed for the formalization of the games in the game-playing secur-
ity proof. In agreement with the introduction of these encoding and decoding operators provided
earlier, the operators constituting the former pair are monomorphic, i.e., they have a concrete
domain and range types. Conversely, the operators composing the latter pair are polymorphic;
that is, they either have an abstract domain type, an abstract range type, or both. In this case,
the polymorphic encoding operator has an abstract domain type, while the polymorphic decoding
operator has an abstract range type.

Exemplifying the formalization of the desired properties of the encoding and decoding operators,
Listing 4.10 presents several relevant axioms; for consistency purposes, the considered axioms
relate to the operators shown in Listing 4.9.

1 (* Encoding and Decoding are Each Other's Inverses *)
2 axiom pks_enc_dec_inv : cancel pk_encode_s pk_decode_s.
3 axiom pks_dec_enc_inv : cancel pk_decode_s pk_encode_s.
4

5 axiom pkg_enc_dec_inv ['a] : cancel pk_encode_g<:'a> pk_decode_g<:'a>.
6 axiom pkg_dec_enc_inv ['a] : cancel pk_decode_g<:'a> pk_encode_g<:'a>.
7

8

9 (* Encoding and Decoding Pairs are Equivalent for Correct Types *)
10 axiom eq_pks_pkg_enc (x : seed * Rp_vec) : pk_encode_s x = pk_encode_g x.
11 axiom eq_pks_pkg_dec (x : pkey) : pk_decode_s x = pk_decode_g x.

Listing 4.10: Properties of the Encoding and Decoding Operator Pairs for Public Key Type pkey

The initial four axioms in this listing denote that the encoding and decoding operators are each
other’s inverses. Specifically, this is achieved by means of the cancel predicate, which denotes
that its second argument is the inverse function of its first argument. Regarding the third and
fourth axiom, the <:'a> directly succeeding the operators ensure that the domain type of the
encoding operator matches the range type of the decoding operator; particularly, this guarantees
that both of these types equal the type (abstractly) represented by 'a. Lastly, the final two axioms
indicate that if the input to the polymorphic operators is of the same type as the domain of their
monomorphic counterparts, then these operators are equal. Here, in eq_pks_pkg_enc, the concrete
type of x automatically instantiates the domain type of pk_encode_g to seed * Rp_vec; similarly,
in eq_pks_pkg_dec, the concrete type of pk_decode_s x automatically instantiates the range type
of pk_decode_g to seed * Rp_vec.

Distributions

At this point, we have formalized the parameters, algebraic structures, and operators relevant to
Saber.PKE. As such, the distributions employed in Saber.PKE constitute the sole artifacts still
absent from the general context necessary to model Saber.PKE and its algorithms; we presently
formalize these required distributions.

Formal Verification of Saber 79

4.1. PRELIMINARIES CHAPTER 4. FORMAL VERIFICATION

Comprising most of the distributions used in Saber.PKE, Listing 4.11 formalizes all distributions
related to Rq.

1 (* Uniform Distribution over Rq *)
2 op dRq : Rq distr = Rq.dpolyXnD1.
3

4 (* Extension of Uniform Distribution over Rq to Vectors *)
5 op dRq_vec : Rq_vec distr = Mat_Rq.Matrix.dvector dRq.
6

7 (* Extension of Uniform Distribution over Rq to Matrices *)
8 op dRq_mat : Rq_mat distr = Mat_Rq.Matrix.dmatrix dRq.
9

10

11 (* Abstract Distribution over Rq (Replaces Centered Binomial Distribution) *)
12 op [lossless] dsmallRq : Rq distr.
13

14 (* Extension of Abstract Distribution over Rq to Vectors *)
15 op dsmallRq_vec : Rq_vec distr = Mat_Rq.Matrix.dvector dsmallRq.

Listing 4.11: Distributions Over Rq

In this listing, the first distribution is assigned the lossless, full, and uniform distribution over Rq,
which is defined in the cloned instance of the polynomial quotient ring theory corresponding to this
type. The second and third distributions are trivial extensions of this distribution to, respectively,
vectors and matrices. Specifically, these vector and matrix distributions emerge from sampling each
of their entries in accordance with the provided distribution. In this case, the provided distribution
is the above-mentioned initial distribution in this listing, dRq. Furthermore, as is established in the
Matrix theory, if this provided distribution is uniform, full, and lossless, then the corresponding
vector and matrix distributions also possess these properties. Therefore, as desired, these vector
and matrix distributions accordingly formalize the U(Rl×1

q) and U(Rl×lq) distributions utilized in
Saber.PKE. The fourth distribution in Listing 4.11, i.e., dsmallRq, denotes a relatively abstract
distribution over Rq. Namely, provided that it is lossless, dsmallRq may be any distribution over
Rq. Indeed, this abstract definition of dsmallRq encompasses the centered binomial distribution
employed in Saber.PKE. Consequently, as suggested before, proving the desired properties of
Saber.PKE with this abstraction gives slightly stronger guarantees than doing so for the more
concrete centered binomial distribution with parameter µ. Moreover, substituting the centered
binomial distribution with this abstraction eliminates the relatively tedious effort of formalizing
the centered binomial distribution. For these reasons, the formal verification effort considers
dsmallRq instead of the centered binomial distribution with parameter µ. Lastly, analogous to
dRq_vec, dsmallRq_vec is a trivial extension of dsmallRq to vectors. However, as opposed to dRq_
vec, dsmallRq_vec only inherits the lossless property from dsmallRq.

Apart from the above-discussed distributions over Rq, the formal verification effort necessitates two
additional distributions; these distributions correspond to U({0, 1}256) and U(Rl×1

p). Listing 4.12
provides the formalizations of these distributions.

1 (* Uniform Distribution over Rp *)
2 op dRp : Rp distr = Rp.dpolyXnD1.
3

4 (* Extension of Uniform Distribution over Rq to Vectors *)
5 op dRp_vec : Rp_vec distr = Mat_Rp.Matrix.dvector dRp.
6

7 (* Uniform Distribution over Seed Domain *)
8 op [lossless full uniform] dseed : seed distr.

Listing 4.12: Distributions Over Rp and Seeds

80 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

Here, the distributions over Rp and Rp_vec are defined analogously to the distributions over Rq and,
respectively, Rq_vec; as a consequence, these distributions are lossless, full, and uniform. Finally,
the concrete seed domain in Saber, i.e., {0, 1}256, is abstractly represented by the seed type in the
formal verification effort; as such, U({0, 1}256) is formalized by dseed, a lossless, full, and uniform
distribution over seed.

4.2 Public-Key Encryption Scheme
Proceeding, we leverage the general context established in the preceding section to formalize and
(formally) verify Saber.PKE.

This section follows an analogous structure to that of Section 3.2. That is, first, Section 4.2.1
considers the formalization of the specification provided in Section 3.2.1. Afterward, Section 4.2.2
and Section 4.2.3 respectively address the formal verification of the proofs given in Section 3.2.2
and Section 3.2.3.

4.2.1 Specification
Facilitating the formal verification process for PKE schemes, EasyCrypt’s standard library provides
a dedicated PKE theory, comprising a multitude of useful definitions. Most notably, this theory
includes a module type for PKE schemes and a general IND-CPA security game based on this
module type. Listing 4.13 presents the exact definition of this module type, i.e., Scheme.

1 module type Scheme = {
2 proc kg() : pkey * skey
3 proc enc(pk: pkey, m: plaintext) : ciphertext
4 proc dec(sk: skey, c: ciphertext) : plaintext option
5 }.

Listing 4.13: Module Type for PKE schemes

As expected, Scheme defines three procedures: a key generation procedure, an encryption proced-
ure, and a decryption procedure. Moreover, the procedures have suitable input and output types.
In particular, the output type of the decryption procedure dec is appropriate since, for certain
PKE schemes, the decryption algorithm explicitly indicates a potential “decryption failure”; this is
precisely the purpose of the option type constructor. Specifically, this constructor can be applied
to any type in order to construct a slightly extended type that, in addition to all the values of
the original type, includes the value None. Indeed, this None is analogous to the Null value in
many programming languages, enabling, for example, the explicit indication of a failure. As a
minor syntactical change that comes with the application of this type constructor, values of the
constructed type that correspond to values of the original type are referred to with a prepended
“Some”. For instance, if m is a value of type plaintext, then Some m is the corresponding value of
type plaintext option. Nevertheless, although utilized in many cryptographic constructions, the
explicit indication of failures is not described in Saber.Dec’s specification; hence, the return value
of (the formalization of) Saber.PKE’s decryption algorithm is invariably of the form Some x, where
x is a value of type plaintext.

Utilizing the Scheme module type, Listing 4.14 gives the skeleton structure of Saber.PKE’s form-
alization.

1 module Saber_PKE_Scheme : Scheme = {
2 proc kg() : pkey * skey = {
3

4 }

Formal Verification of Saber 81

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

5

6 proc enc(pk: pkey, m: plaintext) : ciphertext = {
7

8 }
9

10 proc dec(sk: skey, c: ciphertext) : plaintext option = {
11

12 }
13 }.

Listing 4.14: Skeleton Structure of Saber.PKE

Next, Listing 4.15 adds the concrete implementation of the kg procedure to this skeleton structure.
This implementation is obtained by, after declaring the necessary variables, directly translating
the specification of Saber.KeyGen provided in Section 3.2.1. Here, the *^ operator denotes matrix-
vector multiplication.

1 module Saber_PKE_Scheme : Scheme = {
2 proc kg() : pkey * skey = {
3 var sd: seed;
4 var _A: Rq_mat;
5 var s: Rq_vec;
6 var b: Rp_vec;
7

8 sd <$ dseed;
9 _A <- gen sd;

10 s <$ dsmallRq_vec;
11 b <- scaleRqv2Rpv (_A *^ s + h);
12

13 return (pk_encode_s (sd, b), sk_encode_s s);
14 }
15

16 proc enc(pk: pkey, m: plaintext) : ciphertext = {
17

18 }
19

20 proc dec(sk: skey, c: ciphertext) : plaintext option = {
21

22 }
23 }.

Listing 4.15: Saber.KeyGen’s Specification

In order to comply with the Scheme module type, rather than immediately returning the concrete
values computed for the public and secret keys, we first convert these values to the associated
abstract cryptographic types, i.e., pkey and skey; indeed, this is accomplished by means of the
corresponding encoding operators.

Extending the formalization of Saber.PKE, Listing 4.16 includes the implementation of the enc
procedure. However, to prevent unnecessary duplication, this listing folds the implementation of
the kg procedure, as indicated by the (*...*). The implementation of enc utilizes several operators
not elaborated on before, viz. trmx and dotp. These operators compute the transpose of its matrix
argument and the inner product of its two vector arguments, respectively.

1 module Saber_PKE_Scheme : Scheme = {
2 proc kg() : pkey * skey = {
3 (*...*)

82 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

4 }
5

6 proc enc(pk: pkey, m: plaintext) : ciphertext = {
7 var pk_dec: seed * Rp_vec;
8 var m_dec: R2;
9 var sd: seed;

10 var _A: Rq_mat;
11 var s': Rq_vec;
12 var b, b': Rp_vec;
13 var v': Rp;
14 var cm: R2t;
15

16 m_dec <- m_decode m;
17 pk_dec <- pk_decode_s pk;
18 sd <- pk_dec.`1;
19 b <- pk_dec.`2;
20

21 _A <- gen sd;
22 s' <$ dsmallRq_vec;
23 b' <- scaleRqv2Rpv ((trmx _A) *^ s' + h);
24 v' <- (dotp b (Rqv2Rpv s')) + (Rq2Rp h1);
25 cm <- scaleRp2R2t (v' + (scaleR22Rp m_dec));
26

27 return c_encode_s (cm, b');
28 }
29

30 proc dec(sk: skey, c: ciphertext) : plaintext option = {
31

32 }
33 }.

Listing 4.16: Saber.Enc’s Specification

Naturally, because the input arguments of enc are of abstract cryptographic types, they must
be decoded to concrete values before being usable in the procedure’s computations. Likewise,
as with the kg procedure, the return values of enc must be encoded to their respective abstract
cryptographic types in order to comply with the Scheme module type.

Finally, completing Saber.PKE’s formalization, Listing 4.17 incorporates the implementation of
the dec procedure. To preclude redundancy, this listing folds the implementations of the kg and
enc procedures.

1 module Saber_PKE_Scheme : Scheme = {
2 proc kg() : pkey * skey = {
3 (*...*)
4 }
5

6 proc enc(pk: pkey, m: plaintext) : ciphertext = {
7 (*...*)
8 }
9

10 proc dec(sk: skey, c: ciphertext) : plaintext option = {
11 var c_dec: R2t * Rp_vec;
12 var cm: R2t;
13 var b': Rp_vec;
14 var v: Rp;
15 var s: Rq_vec;
16 var m': R2;

Formal Verification of Saber 83

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

17

18 c_dec <- c_decode_s c;
19 s <- sk_decode_s sk;
20 cm <- c_dec.`1;
21 b' <- c_dec.`2;
22

23 v <- (dotp b' (Rqv2Rpv s)) + (Rq2Rp h1);
24 m' <- scaleRp2R2 (v - (scaleR2t2Rp cm) + (Rq2Rp h2));
25

26 return Some (m_encode m');
27 }
28 }.

Listing 4.17: Saber.Dec’s Specification

As elaborated on earlier, due to the option type constructor, the return value of the dec procedure
must be prepended by Some. Apart from this, the implementation of dec does not contain any
unprecedented concepts in need of further elaboration.

4.2.2 Security
Thus far, we have formalized the relevant general context and the specification of Saber.PKE. Em-
ploying these formalizations, we can initiate the actual formal verification process for Saber.PKE’s
desired properties; as in Chapter 3, we commence with Saber.PKE’s IND-CPA security property.
To this end, the ensuing discussion follows a similar structure to that of Section 3.2.2. Namely,
we first address the formalization of the relevant hardness assumptions and security property.
Subsequently, we cover the formalization and formal verification of the proofs related to these
hardness assumptions and this security property.

Security Property and Hardness Assumptions

As aforementioned, the PKE theory provided in EasyCrypt’s standard library defines a general
IND-CPA security game; in essence, this is a formalization of GameIND-CPA

A,PKE , depicted in Figure 3.1.
Listing 4.18 comprises the precise definition of this (formalized) game.

1 module CPA (S : Scheme, A : Adversary) = {
2 proc main() : bool = {
3 var pk : pkey;
4 var sk : skey;
5 var m0, m1 : plaintext;
6 var c : ciphertext;
7 var b, b' : bool;
8

9 (pk, sk) <@ S.kg();
10 (m0, m1) <@ A.choose(pk);
11 (* {0,1} denotes a lossless, full, and uniform distribution over the boolean

values false and true *)
12 b <$ {0,1};
13 c <@ S.enc(pk, if (b) then m1 else m0);
14 b' <@ A.guess(c);
15

16 return (b' = b);
17 }
18 }.

Listing 4.18: GameIND-CPA
A,PKE

84 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

As can be derived from this listing, the general IND-CPA game is defined with respect to two
module arguments: the first is of module type Scheme and the second is of module type Adversary.
Indeed, the former module type is the one utilized for Saber.PKE’s formalization; the latter module
type is novel and, for this reason, specified in Listing 4.19.

1 module type Adversary = {
2 proc choose(pk : pkey) : plaintext * plaintext
3 proc guess(c : ciphertext) : bool
4 }.

Listing 4.19: Module Type for Adversaries Against GameIND-CPA
A,PKE

Evidently, the Adversary module type formalizes the class of adversaries against the IND-CPA
game. More precisely, the choose and guess procedures respectively model the A.P and A.D al-
gorithms defined by adversaries from this class. Notably however, despite their correspondence,
A.D and guess differ with respect to their parameters. Namely, guess only takes a ciphertext,
while A.D takes both a public key and a ciphertext. Nevertheless, because the formal verification
effort exclusively considers these adversaries in the context of the above-introduced CPA module, an
adversary’s choose procedure is invariably called before its guess procedure. Furthermore, no com-
putational restrictions are imposed on the considered adversaries; in particular, these adversaries
are capable of maintaining states. As such, an adversary can store the value of the public key pk
provided in the call to its choose procedure, removing the need of passing this value anew in the
subsequent call to its guess procedure4.

From the above, we can derive that the CPA module may be instantiated with Saber_PKE_Scheme and
any module of type Adversary. Moreover, doing so produces a correct formalization of the concrete
IND-CPA game for Saber.PKE and an IND-CPA adversaryA = (P,D), i.e., GameIND-CPA

A,Saber.PKE.

Regarding the utilized hardness assumptions, we initiate the formalization process by considering
the various relevant adversaries. Examining the definitions of these hardness assumptions in
Figure 3.4 and Figure 3.5, we see that adversaries against the GMLWR game have different
interfaces from adversaries against the XMLWR game; as such, we specify a distinct module type
for each of these adversary classes. Listing 4.20 provides these module types.

1 module type Adv_GMLWR = {
2 proc guess(sd : seed, b : Rp_vec) : bool
3 }.
4

5 module type Adv_XMLWR = {
6 proc guess(sd : seed, b : Rp_vec, a : Rq_vec, d : Rp) : bool
7 }.

Listing 4.20: Module Types for Adversaries Against GameGMLWR
A,l,µ,q,p and GameXMLWR

A,l,µ,q,p

As suggested by their names and interfaces, from top to bottom, the module types in this listing
respectively represent (the classes of) adversaries against GameGMLWR

A,l,µ,q,p and GameXMLWR
A,l,µ,q,p.

Finally, due to the similarity between the GMLWR and XMLWR games, we solely present the
formalization of the GMLWR game, i.e., GameGMLWR

A,l,µ,q,p. This formalization, GMLWR, is particularized
in Listing 4.21. Given the concepts introduced and explained in the preceding discussion, GMLWR is
a rather straightforward translation of GameGMLWR

A,l,µ,q,p, only significantly deviating from a verbatim
translation in a single aspect. Namely, rather than a formalization of the modular scaling and

4Certainly, in GameIND-CPA
A,PKE , the public key pk is technically not required as an argument to A.D as well;

however, for reasons of explicitness, GameIND-CPA
A,PKE still passes the public key in the call to this algorithm.

Formal Verification of Saber 85

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

rounding operator employed in GameGMLWR
A,l,µ,q,p, GMLWR utilizes the formalization of the analogous

modular scaling and flooring operator under the addition of h; here, h formalizes the constant
h. Furthermore, we do not explicitly verify that (the formalizations of) these operations are
equivalent; that is, we essentially assume that for all x ∈ Rl×1

q , bxeq→p is indeed equivalent to
bx + hcq→p, as shown in Section 3.1. The rationale for doing so arises from the severe disparity
between the triviality of this equivalence and the effort necessary to formally verify it. Thus, we
directly formalize both the GMLWR and XMLWR games with the modular scaling and flooring
operator.

1 module GMLWR(A : Adv_GMLWR) = {
2 proc main(u : bool) : bool = {
3 var u' : bool;
4 var sd : seed;
5 var _A : Rq_mat;
6 var s : Rq_vec;
7 var b : Rp_vec;
8

9 sd <$ dseed;
10 _A <- gen sd;
11 s <$ dsmallRq_vec;
12

13 if (u) {
14 b <$ dRp_vec;
15 } else {
16 b <- scaleRqv2Rpv (_A *^ s + h);
17 }
18

19 u' <@ A.guess(sd, b);
20

21 return u';
22 }
23 }.

Listing 4.21: GameGMLWR
A,l,µ,q,p

Hardness of GMLWR and XMLWR

Before using the above-discussed formalizations of the GMLWR and XMLWR games, i.e., GMLWR
and XMLWR, in the formal verification of Saber.PKE’s IND-CPA security property, we argue for
the aptness of these hardness assumptions. In particular, we do so by formally verifying the
corresponding ROM proofs discussed in Section 3.2.2; that is, we formally verify that if gen is
a random oracle, (instances of) GMLWR and XMLWR are at least as hard as (corresponding
instances of) MLWR.

Due to the ubiquity of the ROM in cryptography, EasyCrypt supplies a multitude of theories
related to this concept. One of these theories provides the definitions and properties associated
with the concept of a Programmable Random Oracle (PRO). Essentially, such a random oracle
allows for the manual manipulation of the mapping it defines. Indeed, this suffices to model
the manipulation of the random oracle query results performed by the reduction adversaries in
the ROM proofs concerning the hardness of the GMLWR and XMLWR games. Listing 4.22
provides the relevant part of the module type utilized to formalize these types of random oracles
in EasyCrypt.

1 module type PRO = {
2 proc init()
3 proc get(x : in_t) : out_t

86 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

4 proc set(x : in_t, y : out_t)
5 (*...*)
6 }.

Listing 4.22: Module Type for Programmable Random Oracles

Here, in_t and out_t types are abstract placeholders for the oracle’s input and output types,
respectively. In the current context, since the employed oracle replaces the gen function, in_t is
instantiated with seed and out_t is instantiated with Rq_mat. Furthermore, the intended purpose
of each provided procedure is quite evident from its signature. Specifically, init() performs the
necessary initialization of the oracle, get(x) returns the image of x, and set(x, y) sets the image
of x to y. As such, get embodies the querying of the random oracle, while set represents the
manipulation of the oracle query results.

Demonstrating the formal verification of the hardness proofs, we consider the proof regarding
GMLWR. As discussed in Section 3.2.2, given an adversary A against GameROMGMLWR

A,l,µ,q,p, this
proof constructs an adversary RA against GameMLWR

RA,l,l,µ,q,p. Hence, for the formal verification of
this proof, we foremost require a formalization of these (classes of) adversaries and games. Akin
to before, the classes of adversaries are formalized through dedicated module types; Listing 4.23
defines these module types.

1 module type Adv_MLWR = {
2 proc guess(_A : Rq_mat, b : Rp_vec) : bool
3 }.
4

5 module type Adv_GMLWR_RO(Gen : PRO) = {
6 proc guess(sd : seed, b : Rp_vec) : bool { Gen.get }
7 }.

Listing 4.23: Module Types for Adversaries Against GameMLWR
A,l,l,µ,q,p and GameROMGMLWR

A,l,µ,q,p

From top to bottom, these module types respectively represent the classes of adversaries against
GameMLWR

A,l,l,µ,q,p and GameROMGMLWR
A,l,µ,q,p. Concerning the latter, the explicit random oracle access

is modeled through a module parameter of the above-mentioned PRO type. Nevertheless, since
these adversaries are solely allowed to query the random oracle, they exclusively gain access to
the random oracle’s get procedure. Indeed, this is conveyed to EasyCrypt by the { Gen.get } in
the definition of the corresponding guess procedure.

As with the preceding game formalizations, we formalize GameMLWR
A,l,l,µ,q,p and GameROMGMLWR

A,l,µ,q,p
through specifying a separate module for each of them; both of these modules are parameterized by
other modules that formalize the adversaries against the corresponding games. More precisely, the
formalization of GameMLWR

A,l,l,µ,q,p, MLWR, is defined with respect to a parameter of type Adv_MLWR; ana-
logously, the formalization of GameROMGMLWR

A,l,µ,q,p, GMLWR_RO, is defined with respect to a parameter
of type Adv_GMLWR_RO. Apart from its parameter type, this latter formalization solely deviates
from GMLWR in the acquisition of _A; specifically, while GMLWR evaluates gen sd, GMLWR_RO queries the
random oracle on sd. Certainly, this is consistent with the differences between GameROMGMLWR

A,l,µ,q,p
and GameGMLWR

A,l,µ,q,p. Due to its vast similarity with GMLWR, GMLWR_RO is not explicitly presented here.
Contrarily, albeit a rather trivial translation of GameMLWR

A,l,l,µ,q,p, MLWR is specified in Listing 4.24 for
future reference and reasons of completeness.

1 module MLWR(A : Adv_MLWR) = {
2 proc main(u : bool) : bool = {
3 var u' : bool;
4 var _A : Rq_mat;

Formal Verification of Saber 87

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

5 var s : Rq_vec;
6 var b : Rp_vec;
7

8 _A <$ dRq_mat;
9 s <$ dsmallRq_vec;

10

11 if (u) {
12 b <$ dRp_vec;
13 } else {
14 b <- scaleRqv2Rpv (_A *^ s + h);
15 }
16

17 u' <@ A.guess(_A, b);
18

19 return u';
20 }
21 }.

Listing 4.24: GameMLWR
A,l,l,µ,q,p

Then, utilizing the above-introduced module types, Listing 4.25 presents the formalization of the
reduction adversaryRA against GameMLWR

RA,l,l,µ,q,p, whereA is any adversary against GameROMGMLWR
A,l,µ,q,p.

1 (* Adversary Against MLWR (l samples) Game, Constructed From Adversary Against
GMLWR_RO Game *)

2 module AGM(AG : Adv_GMLWR_RO) : Adv_MLWR = {
3 module AG = AG(Gen)
4

5 proc guess(_A : Rq_mat, b : Rp_vec) : bool = {
6 var u' : bool;
7 var sd : seed;
8

9 Gen.init();
10

11 sd <$ dseed;
12

13 Gen.set(sd, _A);
14

15 u' <@ AG.guess(sd, b);
16

17 return u';
18 }
19 }.

Listing 4.25: Reduction Adversary RA Against GameMLWR
RA,l,l,µ,q,p

In this listing, Gen constitutes a concrete implementation of the required random oracle5; more
precisely, Gen is a module of type PRO, where the in_t and out_t types are accordingly instantiated
with the seed and Rq_mat types. Using this random oracle, we instantiate the given adversary
through the statement module AG = AG(Gen). Indeed, this instantiation provides adversary AG
access to Gen; nevertheless, due to the restriction specified in the Adv_GMLWR_RO module type, AG
is only capable of accessing the get procedure of Gen. Employing this instantiated adversary
against GMLWR_RO, (the formalization of) the reduction adversary, i.e., AGM, operates as follows.
Foremost, AGM initializes the random oracle by means of a call to Gen.init(); intuitively, this can be
interpreted as the random oracle defining a uniformly random mapping from its input to its output

5This implementation is provided in EasyCrypt’s standard library.

88 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

domain. Afterward, AGM samples a value of type seed uniformly at random, storing the result in sd.
Subsequently, AGM adjusts the mapping defined by the random oracle; specifically, it ensures that
the random oracle maps sd to _A, i.e., the matrix received from the MLWR game. Penultimately, AGM
calls AG.guess(sd, b) in an effort to solve the GMLWR problem instance corresponding to sd and
b. Indeed, since the random oracle maps sd to _A, this GMLWR problem instance exactly matches
the MLWR problem instance that AGM attempts to solve. Moreover, because the random oracle’s
output distribution remains uniformly random, AG cannot distinguish between the reduction and
the corresponding run of its own game; in turn, as elaborated on before, this guarantees that
AG behaves as in this corresponding run of GMLWR_RO. Concluding, directly returning the value
obtained from the call to AG.guess(sd, b), as AGM ultimately does, results in a winning probability
for AGM against the MLWR instance with _A and b that is equal to the winning probability of AG
against the GMLWR_RO instance with sd and b. In fact, since this reasoning is independent of the
value of u (from MLWR), this process additionally guarantees an advantage for AGM that is equal to
the advantage of AG.

Lastly, the formal verification effort concerning the equality between the advantages of A against
GameROMGMLWR

A,l,µ,q,p andRA against GameMLWR
RA,l,l,µ,q,p commences by formalizing this property through

an appropriately defined lemma. Listing 4.26 defines an instance of such a lemma.

1 lemma Equal_Advantage_GMLWR_RO_MLWR &m (A <: Adv_GMLWR_RO{Gen}) :
2 `| Pr[GMLWR_RO(A).main(true) @ &m : res] - Pr[GMLWR_RO(A).main(false) @ &m : res] |
3 =
4 `| Pr[MLWR(AGM(A)).main(true) @ &m : res] - Pr[MLWR(AGM(A)).main(false) @ &m :

res] |.
5 proof. (*...*) qed.

Listing 4.26: Equality of Advantages for A Against GameROMGMLWR
A,l,µ,q,p and RA Against

GameMLWR
RA,l,l,µ,q,p

For a detailed deconstruction and explanation of lemmas such as Equal_Advantage_GMLWR_RO_MLWR,
refer to the subsequent discussion on the formal verification of the game-playing security proof.
At present, it suffices to recognize the following correspondences.

Pr[GMLWR_RO(A).main(true) @ &m : res] ∼= Pr
[
GameROMGMLWR

A,l,µ,q,p(1) = 1
]

Pr[GMLWR_RO(A).main(false) @ &m : res] ∼= Pr
[
GameROMGMLWR

A,l,µ,q,p(0) = 1
]

Pr[MLWR(AGM(A)).main(true) @ &m : res] ∼= Pr
[
GameMLWR

RA,l,l,µ,q,p(1) = 1
]

Pr[MLWR(AGM(A)).main(false) @ &m : res] ∼= Pr
[
GameMLWR

RA,l,l,µ,q,p(0) = 1
]

From the (A <: Adv_GMLWR_RO{Gen}) before the colon of Equal_Advantage_GMLWR_RO_MLWR, we discern
that in the above probability statements, A is an adversary against GMLWR_RO; moreover, as enforced
by the {Gen}, A is unable to access the global variables of the random oracle, which include the
random oracle’s concrete mapping. Then, considering `| | denotes the absolute value operator, we
see that the statement succeeding the colon of Equal_Advantage_GMLWR_RO_MLWR correctly formalizes
the equality between the considered advantages.

The proof of lemma Equal_Advantage_GMLWR_RO_MLWR, which was left out in Listing 4.26, proceeds
in a straightforward manner. Namely, the truth of this lemma trivially follows after show-
ing that Pr[GMLWR_RO(A).main(true) @ &m : res] equals Pr[MLWR(AGM(A)).main(true) @ &m :
res] and Pr[GMLWR_RO(A).main(false) @ &m : res] equals Pr[MLWR(AGM(A)).main(false) @ &m
: res]. In turn, these equalities follow from the fact that the collated games are indistinguishable
from the perspective of A. Certainly, as aforementioned, this is a consequence of the uniformity

Formal Verification of Saber 89

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

of the random oracle query results observed by A (i.e., even after the manipulation of these query
results performed by the reduction adversary).

IND-CPA Security of Saber.PKE

Hitherto, by leveraging the initially established general context, we have formalized the specific-
ation of Saber.PKE, the IND-CPA game for Saber.PKE, the GMLWR and XMLWR games, and
the relevant classes of adversaries against these games. With respect to Saber.PKE’s IND-CPA
security, these constitute the required concepts not specific to the corresponding game-playing se-
curity proof. As such, proceeding, we first formalize the necessary concepts specific to this proof.
More precisely, we extend the general context to include the assumption of the security theorem,
i.e., qp ≤

p
2·t ; furthermore, we formalize the sequence of games and reduction adversaries utilized

in the security proof. Afterward, employing the constructed formalizations, we formalize the steps
carried out in the game-playing security proof. Ultimately, we formally verify the correctness of
the proof and, hence, the validity of the security theorem.

Proof-Specific Context The security theorem in Section 3.2.2 extends the general context of
Saber.PKE by introducing an additional assumption; indeed, this assumption states that q

p ≤
p

2·t . The context emerging from this extension constitutes the full context in which the security
proof of Saber.PKE manifests itself, i.e., the proof-specific context. To accurately replicate this
context in EasyCrypt, we must formalize this assumption as well; this formalization is provided
in Listing 4.27. Notice that, since p | q and 2 · t | p, evaluating q

p and p
2·t through regular division

is equivalent to computing their respective quotients arising from Euclidean division. As such,
q
p ≤

p
2·t can be formalized using the %/ operator.

1 axiom sec_assumption_og: q %/ p <= p %/ (2 * t).

Listing 4.27: Security Theorem Assumption

Game Sequence Having established the proof-specific context, we continue by formalizing the
game sequence corresponding to the considered game-playing security proof, i.e., the game se-
quence presented in Figure 3.8; specifically, we do so by defining a separate module for each game
in the sequence. All of these modules are defined with respect to a module parameter of type
Adversary, modeling the considered IND-CPA adversary A = (P,D). Given all of the previously
discussed material, the remainder of each module definition is a relatively straightforward transla-
tion of the corresponding game’s specification; as such, the complete formalizations of these games
are not explicitly presented here. However, for future reference, we remark that in each of these
formalizations, the procedure comprising the actual implementation of the corresponding game has
the signature main() : bool. Furthermore, throughout the remainder (with the exception of code
listings), the formalizations of Game0

A, Game1
A, Game2

A, Game3
A, and Game4

A are respectively
referred to as Game0, Game1, Game2, Game3, and Game4.

Reduction Adversaries Akin to the games in the game sequence, the considered reduction
adversaries are formalized as distinct modules. As suggested in Section 3.2.2, these reduction
adversaries can essentially be divided into two mutually exclusive categories. Namely, one cat-
egory concerns reductions between two consecutive games, the other category regards reductions
from distinguishing between two successive games to a hardness assumption. Exemplifying the
formalization of reduction adversaries from the former category, Listing 4.28 defines the module
that formalizes reduction adversary RA against Game2

RA , specified in Figure 3.10.

1 (* Adversary A2 Against Game2, Constructed from Adversary A1 Against Game1 *)
2 module A2(A1 : Adversary) : Adversary = {
3 proc choose(pk : pkey) : plaintext * plaintext = {
4 var m0, m1 : plaintext;

90 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

5

6 (m0, m1) <@ A1.choose(pk);
7

8 return (m0, m1);
9 }

10

11 proc guess(c : ciphertext) : bool = {
12 var u' : bool;
13 var c_dec : Rppq * Rp_vec;
14 var cmu : Rppq;
15 var b' : Rp_vec;
16 var cmu' : R2t;
17

18 c_dec <- c_decode_g c;
19 cmu <- c_dec.`1;
20 b' <- c_dec.`2;
21

22 cmu' <- scaleRppq2R2t cmu;
23

24 u' <@ A1.guess(c_encode_g (cmu', b'));
25

26 return u';
27 }
28 }.

Listing 4.28: Reduction Adversary RA Against Game2
RA

As Listing 4.28 conveys, reduction adversary RA against Game2
RA is formalized as module A2,

parameterized by a different module A1. Moreover, both A1 and A2 are of type Adversary, ensuring
they are suitable as arguments to their intended games. As desired, the A2.choose and A2.guess
procedures are, respectively, exact translations of the A′.P and A′.D algorithms presented in
Figure 3.10, i.e., barring the necessary encoding and decoding operations concerning the abstract
cryptographic types.

Illustrating the formalization of reduction adversaries from the other category, Listing 4.29 provides
the formalization of BA0 against GameGMLWR

BA0 ,l,µ,q,p
, defined in Figure 3.9.

1 (* Adversary B0 Against GMLWR, Constructed from Adversary A Distinguishing Between
Game0 and Game1 *)

2 module B0(A : Adversary) : Adv_GMLWR = {
3 proc guess(sd : seed, b : Rp_vec) : bool = {
4 var w, w' : bool;
5 var m0, m1 : plaintext;
6 var _A : Rq_mat;
7 var s' : Rq_vec;
8 var b' : Rp_vec;
9 var v' : Rp;

10 var cmw : R2t;
11

12 w <$ dbool;
13 _A <- gen sd;
14

15 (m0, m1) <@ A.choose(pk_encode_g (sd, b));
16

17 s' <$ dsmallRq_vec;
18 b' <- scaleRqv2Rpv ((trmx _A) *^ s' + h);
19 v' <- (dotp b (Rqv2Rpv s')) + (Rq2Rp h1);

Formal Verification of Saber 91

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

20

21 if (w) {
22 cmw <- scaleRp2R2t (v' + (scaleR22Rp (m_decode m1)));
23 } else {
24 cmw <- scaleRp2R2t (v' + (scaleR22Rp (m_decode m0)));
25 }
26

27 w' <@ A.guess(c_encode_g (cmw, b'));
28

29 return (w = w');
30 }
31 }.

Listing 4.29: Reduction Adversary BA0 Against GameGMLWR
BA0 ,l,µ,q,p

Similarly to reduction adversary RA, BA0 is formalized as a module B0 parameterized by another
module A. However, in contrast to A1, B0 is of type Adv_GMLWR; naturally, this correctly corresponds
to the fact that BA0 is an adversary against GameGMLWR

BA0 ,l,µ,q,p
. Likewise, the Adversary type of A

justly models the fact that the A in BA0 is an IND-CPA adversary. Lastly, concerning the concrete
implementation of B0, the guess procedure is virtually a direct translation of the algorithm of BA0
specified in Figure 3.9.

Auxiliary Games At this point, we have, in addition to the entire proof-specific context, form-
alized every concept employed in Section 3.2.2; nevertheless, before advancing to the formal verific-
ation of the game-playing security proof, we define several auxiliary games. The reason for this is
that, while unnecessarily verbose for the discussion in Section 3.2.2, these auxiliary games signific-
antly reduce the complexity of the security proof’s formal verification. For each of these auxiliary
games, we describe its underlying mechanisms and specific purpose in the formal verification of the
security proof. However, we do not provide listings with the precise definitions of these games in
EasyCrypt, predominantly because this would hardly convey any additional valuable information
for the current discussion6.

The initial two auxiliary games, Game2a and Game2b, facilitate in verifying the correctness of the
step from Game2 to Game3; in particular, they do so by enabling the use of EasyCrypt’s DMapSampling
theory. Conceptually, this theory proves that, given a distributionD(X) and a function f : X → Y ,
sampling from D and then applying f is equivalent to directly sampling from the distribution that
results from mapping D(X) with respect to f . Indeed, for D(X) := U(Rl×1

q) and f := mod p, this
is exactly one of the properties required to prove the validity of the step from Game2

A to Game3
A.

Specifically, as shown in Section 3.2.2, the step from Game2
A to Game3

A is correct (partly) due
to the fact that sampling from U(Rl×1

q) and then reducing modulo p is equivalent to directly
sampling from U(Rl×1

p). Certainly, U(Rl×1
p) is the distribution that results from mapping U(Rl×1

q)
with respect to reduction modulo p.

The final auxiliary game, Auxiliary_Game, assists in proving that Game4 guarantees a winning prob-
ability of exactly 1

2 , independent of the considered adversary. These games, i.e., Auxiliary_Game
and Game4, are nearly identical; in fact, they solely deviate in how they obtain the ciphertext and
the order of certain operations. Specifically, while Game4 computes the first part of its ciphertext
through an addition involving an adversarially selected message, Auxiliary_Game samples this arti-
fact uniformly at random. Moreover, rather than in its initial statement, Auxiliary_Game samples
the selection bit in the statement directly preceding its final return statement7. This is possible be-
cause, apart from the final return statement, no statement requires knowledge of this bit. As such,
it is trivial to verify that all computations in Auxiliary_Game are independent of the selection bit.

6If so desired, refer to the actual code for the concrete definitions of these auxiliary games in EasyCrypt.
7In terms of the games from the security proof’s game sequence (see Figure 3.8), “selection bit” refers to bit u.

92 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

In particular, this implies that all artifacts passed to the adversary provide no information about
the selection bit; hence, an adversary against Auxiliary_Game invariably has a winning probability
of 1

2 . Although it is relatively complicated to formally verify that, in Game4, all artifacts provided
to the adversary are completely independent of the selection bit, it is significantly less difficult
to formally verify the equivalence between Game4 and Auxiliary_Game. From this equivalence, it
follows that the winning probability for any adversary against Game4 equals 1

2 as well.

Security Proof Leveraging the established formalizations, the remainder of this discussion cov-
ers the formal verification of the game-playing security proof. To this end, we illustrate the formal
verification process for each kind of proof step with a concrete example from the actual formal
verification effort; naturally, as can be extracted from Section 3.2.2, these kinds of proof step
directly correspond to the aforementioned categories of reduction adversaries. For intelligibility
purposes, the presented examples are consistent with the instances of reduction adversaries de-
scribed earlier; that is, the considered proof steps utilize the reduction adversaries from Listing 4.28
and Listing 4.29. Although not all four proof steps are explicated individually, the discussion on
a particular step can straightforwardly be extrapolated to other steps of the same kind. After
the consideration of these proof steps, we detail the formal verification of the proof’s remnants;
specifically, these remnants comprise the equivalence between GameIND-CPA

A,Saber.PKE and Game0
A, the

invariable winning probability of any adversary against Game4
A, and the security theorem.

Demonstrating the formalization of the different kinds of proof step, Listing 4.30 provides the
lemmas stating the desired results of the security proof’s first and second step. As indicated by
the &m and (A <: Adversary) preceding the colons, both lemmas in this listing universally quantify
over the sets of potential memories and relevant adversaries8. Regarding the latter, this type is
explicitly indicated to be Adversary, in agreement with the module parameters of the considered
games and reduction adversaries. Consequently, for each lemma to hold, the statement after
its colon must be true for all possible combinations of a valid memory and a module of type
Adversary.

1 (* Step 1 *)
2 lemma Step_Distinguish_Game0_Game1_GMLWR &m (A <: Adversary) :
3 `| Pr[Game0(A).main() @ &m : res] - Pr[Game1(A).main() @ &m : res] |
4 =
5 `| Pr[GMLWR(B0(A)).main(true) @ &m : res] - Pr[GMLWR(B0(A)).main(false) @ &m :

res] |.
6 proof. (*...*) qed.
7

8 (* Step 2 *)
9 lemma Step_Game1_Game2 &m (A <: Adversary) :

10 `| Pr[Game1(A).main() @ &m : res] - 1%r / 2%r |
11 =
12 `| Pr[Game2(A2(A)).main() @ &m : res] - 1%r / 2%r |.
13 proof. (*...*) qed.

Listing 4.30: First and Second Step in Game-Playing Security Proof

Commencing with Step_Game1_Game2, we show that this lemmas indeed corresponds to the se-
curity proof’s second step by deconstructing it as follows. First, consider Game1(A).main() and
Game2(A2(A)).main(). As mentioned before, these main() procedures contain the actual trans-
lations of the games that their modules formalize. Furthermore, Game1(A) and Game2(A2(A))
denote the instantiations of Game1 with A and, respectively, Game2 with A2(A). Similarly, A2(A)
signifies the instantiation of module A2 with A, where A2 is the module defined in Listing 4.28;

8In EasyCrypt, a memory assigns values to all global variables declared in the modules specified by the currently
considered script; each procedure call, e.g., A.guess(sd, b), is carried out with respect to such a memory. As
such, memories essentially formalize the (global) context in which entities such as adversaries execute.

Formal Verification of Saber 93

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

certainly, this implies that Game2(A2(A)).main() precisely corresponds to the reduction given in
Figure 3.10. Combining these observations with the fact that res refers to the output of the con-
sidered procedure, we deduce that the statements Pr[Game1(A).main() @ &m : res] and Pr[Game2(
A2(A)).main() @ &m : res] accordingly denote the probability that executing Game1(A).main()
and Game2(A2(A)).main() in memory &m returns true. Ergo, accounting for the universal quan-
tification over the valid memories, it follows that these probability statements respectively cor-
respond to Pr

[
Game1

A = 1
]
and Pr

[
Game2

RA = 1
]
. In particular, these correspondences are valid

since, in these latter statements, the global context in which the game and adversary execute (or,
in EasyCrypt’s terminology, the memory) is left abstract; alternatively stated, Pr

[
Game1

A = 1
]

and Pr
[
Game2

RA = 1
]
implicitly perform universal quantification over these contexts. At last, con-

sidering `| | constitutes the absolute value operator and 1%r / 2%r denotes 1
2 , we conclude that

lemma Step_Game1_Game2 accurately formalizes the desired result of the security proof’s second
step.

Resembling the proof of the second step in Section 3.2.2, the proof of lemma Step_Game1_Game2
is predominantly concerned with showing that the information provided to an adversary against
the first game is identical between a run of the first game and a run of the considered reduction.
Particularly, this involves proving that the cmu from Game1(A).main() invariably equals the cmu'
from Game2(A2(A)).main(). Comparing the concrete executions of these game formalizations, we
see this is indeed the case. Namely, Game1 computes cmu by applying the scaleRp2R2t operator to
some value constructed in the initial part of the game; contrarily, Game2 obtains cmu by using the
scaleRp2Rppq operator on this same value. Nullifying this difference, the reduction adversary A2(A)
applies the scaleRppq2R2t operator to the cmu it receives from Game2, producing cmu'. Therefore,
it suffices to show that for any x of type Rp, scaleRp2R2t x = scaleRppq2R2t (scaleRp2Rppq x)
holds. Indeed, the proof of Step_Game1_Game2 employs a lemma that states this property. In turn,
the verification of this latter lemma depends on numerous properties, primarily concerning the
relevant types and operators.

Following a similar line of reasoning, we ascertain that lemma Step_Distinguish_Game0_Game1_
GMLWR correctly denotes the desired result of the security proof’s first step. In particular, we
observe that GMLWR(B0(A)).main(true) precisely matches the reduction defined in Figure 3.9
with u = 1; likewise, GMLWR(B0(A)).main(false) exactly formalizes this reduction with u = 0.
As such, the probability statements in Step_Distinguish_Game0_Game1_GMLWR accordingly satisfy
the correspondences below.

Pr[Game0(A).main() @ &m : res] ∼= Pr
[
Game0

A = 1
]

Pr[Game1(A).main() @ &m : res] ∼= Pr
[
Game1

A = 1
]

Pr[GMLWR(B0(A)).main(true) @ &m : res] ∼= Pr
[
GameGMLWR

BA0 ,l,µ,q,p
(1) = 1

]
Pr[GMLWR(B0(A)).main(false) @ &m : res] ∼= Pr

[
GameGMLWR

BA0 ,l,µ,q,p
(0) = 1

]
From these correspondences, it immediately follows that lemma Step_Distinguish_Game0_Game1_
GMLWR accurately formalizes the desired result of the security proof’s first step.

In contrast to the proof of lemma Step_Game1_Game2, the proof of Step_Distinguish_Game0_Game1_
GMLWR does not employ any properties of performed (sequences of) operations. Namely, due
to the construction of reduction adversary B0(A), GMLWR(B0(A)).main(true) and GMLWR(B0(A)
).main(false) are semantically equivalent to Game1(A).main() and Game0(A).main(), respectively.
That is, in GMLWR(B0(A)).main(true), B0(A) effectively performs the same operations as Game1(A).main();
analogously, in GMLWR(B0(A)).main(false), B0(A) effectively carries out the same operations as
Game0(A).main(). In fact, the only difference between these executions is that B0(A) gets its initial
values from GMLWR, while Game0(A).main() and Game1(A).main() acquire these values themselves.

94 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

Nevertheless, if u equals true, then the values given to B0(A) are obtained identically to the values
in Game1(A).main(); similarly, if u equals false, then the values given to B0(A) are acquired in
the same manner as the values in Game0(A).main(). Concluding, it suffices for the proof of Step_
Distinguish_Game0_Game1_GMLWR to show these semantic equivalences; certainly, this is precisely
the approach that the proof takes.

As alluded to before, after formally verifying the security proof’s game-playing steps, the remainder
of the formal verification effort for Saber.PKE’s IND-CPA security comprises the formalization
and (formal) verification of the equivalence between GameIND-CPA

A,Saber.PKE and Game0
A, the invariable

winning probability of any adversary against Game0
A, and, ultimately, the security theorem. Re-

garding the first of these remaining endeavors, Listing 4.31 contains the lemma that formalizes
the equivalence between GameIND-CPA

A,Saber.PKE and Game0
A. Technically, this lemma expresses that for

any adversary, the advantage against the former game is equal to the advantage against the latter
game; nevertheless, due to the binary output domain of these games, this is tantamount to stating
that the games are equivalent. The reason for choosing the advantage-based formalization is that,
in this form, the lemma is apter for the formal verification of the final security theorem.

1 (* Saber's INDCPA == Game0 *)
2 lemma Equivalence_SaberINDCPA_Game0 &m (A <: Adversary) :
3 `| Pr[CPA(Saber_PKE_Scheme, A).main() @ &m : res] - 1%r / 2%r |
4 =
5 `| Pr[Game0(A).main() @ &m : res] - 1%r /2%r |.
6 proof. (*...*) qed.

Listing 4.31: Equivalence Between GameIND-CPA
A,Saber.PKE and Game0

A

The verification of Equivalence_SaberINDCPA_Game0 is rather trivial. Specifically, by inlining the
procedures of Saber_PKE_Scheme in CPA(Saber_PKE_Scheme, A).main(), we obtain a procedure that
is semantically equivalent to Game0(A).main()9; as a result, CPA(Saber_PKE_Scheme, A).main() and
Game0(A).main() can be used interchangeably. Naturally, this directly implies that Pr[CPA(Saber_
PKE_Scheme, A).main() @ &m : res] is equal to Pr[Game0(A).main() @ &m : res], which is suffi-
cient for proving the considered claim.

Penultimately, the final endeavor preceding the formal verification of the security theorem concerns
the formal verification of the invariable winning probability of any adversary against Game4

A;
Listing 4.32 presents the lemmas employed in this endeavor.

1 (* Auxiliary_Game Analysis *)
2 lemma Aux_Prob_Half &m (A <: Adversary) :
3 Pr[Auxiliary_Game(A).main() @ &m : res] = 1%r / 2%r.
4 proof. (*...*) qed.
5

6 (* Pr[Game4(A) = 1] == Pr[Auxiliary_Game(A) = 1] *)
7 lemma Equal_Prob_Game4_Aux &m (A <: Adversary) :
8 Pr[Game4(A).main() @ &m : res] = Pr[Auxiliary_Game(A).main() @ &m : res].
9 proof. (*...*) qed.

10

11 (* Game4 Analysis *)
12 lemma Game4_Prob_Half &m (A <: Adversary) :
13 Pr[Game4(A).main() @ &m : res] = 1%r / 2%r.
14 proof. (*...*) qed.

Listing 4.32: Analysis of Game4
A

9In particular, as aforementioned, the polymorphic encoding and decoding operators utilized in
Game0(A).main() axiomatically equal their monomorphic analogs used in the procedures of Saber_PKE_Scheme.

Formal Verification of Saber 95

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

As can be extracted from this listing, Auxiliary_Game is indeed employed in the manner described
earlier. Namely, first, lemma Aux_Prob_Half asserts that for any combination of a valid memory
and an adversary of type Adversary, the winning probability against Auxiliary_Game invariably
equals 1

2 . Subsequently, the Equal_Prob_Game4_Aux lemma states that the winning probability
against Auxiliary_Game moreover equals the winning probability against Game4 for the same memory
and adversary. Naturally, from these lemmas, it trivially follows that the winning probability
against Game4 also invariably equals 1

2 , irrespective of the considered memory and adversary. This
latter property is explicitly formalized by the final lemma in Listing 4.32, i.e., lemma Game4_Prob_
Half.

Finally, harnessing the results obtained hitherto, the formal verification effort for Saber.PKE’s
IND-CPA security culminates with the formalization and (formal) verification of the corresponding
security theorem. The ensuing listing, i.e., Listing 4.33, provides the lemmas relevant to this
culminating endeavor.

1 (* Intermediate Result *)
2 lemma Difference_Game1_Game4_XMLWR &m (A <: Adversary):
3 `| Pr[Game1(A).main() @ &m : res] - Pr[Game4(A3(A2(A))).main() @ &m : res] |
4 =
5 `| Pr[XMLWR(B1(A3(A2(A)))).main(true) @ &m : res] - Pr[XMLWR(B1(A3(A2(A)))

).main(false) @ &m : res] |.
6 proof. (*...*) qed.
7

8 (* Final Result (Security Theorem) *)
9 lemma Saber_INDCPA_Security_Theorem &m (A <: Adversary) :

10 `| Pr[CPA(Saber_PKE_Scheme, A).main() @ &m : res] - 1%r / 2%r |
11 <=
12 `| Pr[GMLWR(B0(A)).main(true) @ &m : res] - Pr[GMLWR(B0(A)).main(false) @ &m :

res] |
13 +
14 `| Pr[XMLWR(B1(A3(A2(A)))).main(true) @ &m : res] - Pr[XMLWR(B1(A3(A2(A)))

).main(false) @ &m : res] |.
15 proof. (*...*) qed.

Listing 4.33: Intermediate Result and Security Theorem

In this listing, the initial lemma, Difference_Game1_Game4_XMLWR, corresponds to the intermedi-
ate result deduced immediately prior to the derivation of the security theorem in Section 3.2.2;
specifically, this lemma states that, given any valid memory &m and adversary A against Game1,
there exists adversaries against Game4 and XMLWR such that the difference in winning probabilities
between the adversaries against Game1 and Game4 is equal to the advantage of the adversary against
XMLWR. Certainly, these existing adversaries against Game4 and XMLWR can be constructed from an
adversary against Game1 through the formalized reduction adversaries. However, in order to utilize
the previously verified lemmas regarding the security proof’s steps, these adversaries should not
directly be constructed as A3(A) and B1(A); rather, the adversaries against Game4 and XMLWR should
respectively be constructed as A3(A2(A)) and B1(A3(A2(A))).

The proof of lemma Difference_Game1_Game4_XMLWR ensues as follows. First, by lemma Game4_Prob_
Half, Pr[Game4(A3(A2(A))).main() @ &m : res] is replaced by 1%r / 2%r. Afterward, applying
lemma Step_Game1_Game2, the resulting left-hand side of the equality, i.e., `|Pr[Game1(A).main() @
&m : res] - 1%r / 2%r|, is rewritten as `|Pr[Game2(A2(A)).main() @ &m : res] - 1%r / 2%r|.
Subsequently, the proof utilizes a lemma that, although not explicitly discussed here, is analogous
to lemma Step_Game1_Game2; however, instead of the step between Game1 and Game2, it concerns the
step between Game2 and Game3. As such, by this lemma, `|Pr[Game2(A2(A)).main() @ &m : res]
- 1%r / 2%r| is replaced with `|Pr[Game3(A3(A2(A))).main() @ &m : res] - 1%r / 2%r|. Lastly,

96 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

the 1%r / 2%r is exchanged for Pr[Game4(A3(A2(A))).main() @ &m : res], reversing the initial
replacement. At this point, the initial statement of lemma Difference_Game1_Game4_XMLWR has been
transformed in one that, concerning adversary A3(A2(A)), precisely matches the Step_Distinguish_
Game3_Game4_XMLWR lemma. As a result, direct application of this latter lemma concludes the formal
verification of Difference_Game1_Game4_XMLWR.

Utilizing the above-verified Difference_Game1_Game4_To_XMLWR lemma, the formal verification of
the final security theorem, i.e., lemma Saber_INDCPA_Security_Theorem, proceeds in a manner that
closely resembles the corresponding derivation in Section 3.2.2. Foremost, by lemma Equivalence_
SaberINDCPA_Game0, the left-hand side of the original inequality is replaced by `|Pr[Game0(A).main()
@ &m : res] - 1%r /2%r|. Afterward, employing lemma Game4_Prob_Half instantiated with ad-
versary A3(A2(A)), 1%r / 2%r is rewritten to Pr[Game4(A3(A2(A))).main() @ &m : res]. Fol-
lowing, from the triangle inequality for real numbers, the proof deduces that the current left-
hand side of the inequality is less than or equal to the sum of `|Pr[Game0(A).main() @ &m
: res] - Pr[Game1(A).main() @ &m : res]| and `|Pr[Game1(A).main() @ &m : res] - Pr[Game4(
A3(A2(A))).main() @ &m : res]|. In turn, utilizing the lemmas that correspond to the security
proof’s first step and the intermediate result, this sum is verified to be less than or equal to the
sum in the right-hand side of the original inequality. At last, the veracity of the security theorem
follows from the transitivity of <=.

Altogether, in the formal verification endeavor regarding Saber.PKE’s security property, we have
formally verified that if GMLWR and XMLWR are hard, Saber.PKE is IND-CPA secure; fur-
thermore, the suitability of GMLWR and XMLWR as hardness assumptions has been formally
substantiated through the formal verification of corresponding ROM proofs that relate these as-
sumptions to MLWR.

4.2.3 Correctness
Advancing from the formal verification of Saber.PKE’s IND-CPA security, we presently discuss
the formal verification of the scheme’s other desired property, i.e., its correctness property. As can
be extracted from Chapter 3, the security and correctness proofs are, apart from the considered
general context and Saber.PKE’s original specification, entirely distinct; in turn, the corresponding
formal verification endeavors are as well. As such, the preliminaries for the formal verification effort
concerning Saber.PKE’s correctness, and hence for the ensuing discussion, exclusively comprise
the formalizations of the general context and Saber.PKE’s specification, respectively addressed in
Section 4.1 and Section 4.2.1.

The imminent discussion follows a structure analogous to that of Section 3.2.3. More precisely,
we first discuss the formalization of Saber.PKEA and the (formal) verification of the equivalence
between Saber.PKE and Saber.PKEA. Afterward, we present the formalizations of the utilized
correctness definitions. Lastly, we explicate the formal verification of the correctness analysis
provided in the final part of Section 3.2.3.

Alternative Specification of Saber.PKE

Akin to Saber.PKE, Saber.PKEA is a PKE scheme; as such, we formalize Saber.PKEA utilizing
the same module type we used for Saber_PKE_Scheme. That is, the formalization of Saber.PKEA,
Saber_PKE_Scheme_Alt, is given the module type Scheme. Consequently, this formalization must
implement a key generation procedure kg, an encryption procedure enc, and a decryption proced-
ure dec. In agreement with the fact that Saber.KeyGenA precisely matches Saber.KeyGen, the kg
procedure of Saber_PKE_Scheme_Alt is identical to that of Saber_PKE_Scheme; contrarily, the other
two procedures of Saber_PKE_Scheme_Alt deviate from their counterparts of Saber_PKE_Scheme, con-
gruent with the differences between the corresponding algorithms of Saber.PKEA and Saber.PKE.
For this reason, the implementation of the kg procedure from Saber_PKE_Scheme_Alt is not expli-

Formal Verification of Saber 97

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

citly shown here, yet the implementations of the other two procedures from Saber_PKE_Scheme_Alt
are. Covering the first of these two implementations, Listing 4.34 provides the implementation of
enc.

1 module Saber_PKE_Scheme_Alt : Scheme = {
2 proc kg() : pkey * skey = {
3 (*...*)
4 }
5

6 proc enc(pk: pkey, m: plaintext) : ciphertext = {
7 var pk_dec: seed * Rp_vec;
8 var m_dec: R2;
9 var sd: seed;

10 var _A: Rq_mat;
11 var s': Rq_vec;
12 var b, b': Rp_vec;
13 var bq: Rq_vec;
14 var v': Rq;
15 var cm: R2t;
16

17 m_dec <- m_decode m;
18 pk_dec <- pk_decode_s pk;
19 sd <- pk_dec.`1;
20 b <- pk_dec.`2;
21

22 _A <- gen sd;
23 s' <$ dsmallRq_vec;
24 b' <- scaleRqv2Rpv ((trmx _A) *^ s' + h);
25 bq <- scaleRpv2Rqv b;
26 v' <- (dotp bq s') + (upscaleRq h1 (eq - ep));
27 cm <- scaleRq2R2t (v' + (scaleR22Rq m_dec));
28

29 return c_encode_s (cm, b');
30 }
31

32 proc dec(sk: skey, c: ciphertext) : plaintext option = {
33

34 }
35 }.

Listing 4.34: Saber.EncA’s Specification

Apart from the necessary encoding and decoding operations regarding the abstract cryptographic
types, the implementation of enc is a relatively straightforward translation of Saber.EncA’s spe-
cification. Namely, considering all of the material discussed hitherto, this implementation does not
comprise any unprecedented concepts or operators; that is, except for the utilized upscaleRq oper-
ator. However, the definition and purpose of this operator are trivially derived from its application
in the implementation. Particularly, upscaleRq multiplies each coefficient of its first argument, an
element of type Rq, by an integral power-of-two; indeed, the exponent of this power-of-two is
provided through the operator’s second argument. Moreover, the output of this operator is an
element of type Rq. As such, upscaleRq h1 (eq - ep) correctly formalizes 2εq−εp ·h1 = q

p ·h1.

Completing the formalization of Saber.PKEA, Listing 4.35 presents the implementation of the dec
procedure from Saber_PKE_Scheme_Alt.

98 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

1 module Saber_PKE_Scheme_Alt : Scheme = {
2 proc kg() : pkey * skey = {
3 (*...*)
4 }
5

6 proc enc(pk: pkey, m: plaintext) : ciphertext = {
7 (*...*)
8 }
9

10 proc dec(sk: skey, c: ciphertext) : plaintext option = {
11 var c_dec: R2t * Rp_vec;
12 var cm: R2t;
13 var cmq: Rq;
14 var b': Rp_vec;
15 var bq': Rq_vec;
16 var v: Rq;
17 var s: Rq_vec;
18 var m': R2;
19

20 c_dec <- c_decode_s c;
21 s <- sk_decode_s sk;
22 cm <- c_dec.`1;
23 b' <- c_dec.`2;
24

25 cmq <- scaleR2t2Rq cm;
26 bq' <- scaleRpv2Rqv b';
27 v <- (dotp bq' s) + (upscaleRq h1 (eq - ep));
28 m' <- scaleRq2R2 (v - cmq + (upscaleRq h2 (eq - ep)));
29

30 return Some (m_encode m');
31 }
32 }.

Listing 4.35: Saber.DecA’s Specification

Similarly to the formalization of Saber.EncA, dec is a rather trivial translation of Saber.DecA’s
specification; in fact, with the introduction of the upscaleRq operator above, this implementation
does not contain any novel concepts or operators that require additional elaboration.

Finally, concerning the formal verification of the equivalence between Saber.PKE and Saber.PKEA,
Listing 4.36 defines the relevant lemmas. Specifically, for each pair of analogous procedures
between Saber_PKE_Scheme and Saber_PKE_Scheme_Alt, this listing contains a lemma stating their
equivalence; indeed, this is consistent with the definition of scheme equivalence discussed in Sec-
tion 3.2.3. Namely, in this context, two schemes are equivalent if each algorithm in one scheme is
equivalent to exactly one algorithm in the other scheme; two algorithms are equivalent if they have
identical in and output domains and, given the same input, they produce identical output.

1 (* Equivalence of Key Generation *)
2 lemma Equivalence_kg:
3 equiv[Saber_PKE_Scheme.kg ~ Saber_PKE_Scheme_Alt.kg : true ==> ={res}].
4 proof. (*...*) qed.
5

6 (* Equivalence of Encryption *)
7 lemma Equivalence_enc:
8 equiv[Saber_PKE_Scheme.enc ~ Saber_PKE_Scheme_Alt.enc : ={pk, m} ==> ={res}].
9 proof. (*...*) qed.

10

Formal Verification of Saber 99

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

11 (* Equivalence of Decryption *)
12 lemma Equivalence_dec:
13 equiv[Saber_PKE_Scheme.dec ~ Saber_PKE_Scheme_Alt.dec : ={sk, c} ==> ={res}].
14 proof. (*...*) qed.

Listing 4.36: Equivalence between Saber.PKE and Saber.PKEA

Exemplifying the interpretation of the lemmas in Listing 4.36, we elaborate on the lemma that
denotes the equivalence between the encryption procedures, i.e., lemma Equivalence_enc. In this
lemma, although applicable to more general situations as well, equiv is utilized to state the desired
equivalence. More precisely, inside the square brackets belonging to equiv, the part preceding the
colon indicates the procedures that the statement concerns; as desired, in lemma Equivalence_enc,
these procedures are Saber_PKE_Scheme.enc and Saber_PKE_Scheme_Alt.enc. Furthermore, the part
succeeding the colon defines the conditions on the initial and resulting memories under which
the equivalence holds. In this case, ={pk, m} ==> ={res} conveys that, for any combination of
valid memories such that the provided public key and message are equal between these memories,
executing the considered procedures in their respective memories entails an equal probability for
both procedures to output any specific value. More concretely, consider any two valid memories:
one for Saber_PKE_Scheme.enc, the other for Saber_PKE_Scheme_Alt.enc. Additionally, let the values
assigned to pk and m by the former memory be equal to, respectively, the values assigned to pk and
m by the latter memory. Then, when executing each procedure in their respective memories, the
probability of Saber_PKE_Scheme.enc returning true is precisely equal to the probability of Saber_
PKE_Scheme_Alt.enc returning true; analogously, this also holds for the output value false.

Comparing the interpretation of the lemmas in Listing 4.36 to the definition of (algorithm) equival-
ence employed in Section 3.2.3, we see that these lemmas merely formalize the requirement stating
that, given the same input, the collated algorithms must invariably produce identical output. In
particular, the lemmas do not formalize the requirement denoting that the algorithms’ input and
output domains must be identical. Nevertheless, albeit not formally verifiable in EasyCrypt, the
conformance to this requirement is trivially confirmed through manual inspection. Namely, this
conformance directly follows from the fact that all procedures have the same parameter types in
the same order as their counterparts from the other scheme.

The proofs of the above-discussed equivalence lemmas proceed as expected based on the discussion
in Section 3.2.3. Particularly, the proof of Equivalence_kg directly verifies the statement of this
lemma by utilizing that Saber_PKE_Scheme.kg and Saber_PKE_Scheme_Alt.kg are identical. Further-
more, the proofs of Equivalence_enc and Equivalence_dec verify the statements of these lemmas by
showing the equivalence between the computations performed by the collated procedures.

Correctness Definitions

Employing the established formalizations of Saber.PKE and Saber.PKEA, we formalize the rel-
evant correctness definitions, i.e., standard correctness and FO-correctness, for both schemes.
Furthermore, we formally verify that standard correctness and FO-correctness with respect to
Saber.PKE are equivalent to, respectively, standard correctness and FO-correctness with respect
to Saber.PKEA. Indeed, these equivalences enable the remainder of the formal verification effort
to, for either definition, consider the correctness of Saber.PKEA rather than the correctness of
Saber.PKE.

Given all of the previously discussed material, it is a relatively straightforward endeavor to form-
alize the correctness definitions defined in Figure 3.13 and Figure 3.14. Nevertheless, rather than
constructing a separate formalization for Saber.PKE and Saber.PKEA, we establish a single,
more abstract formalization per correctness definition. Specifically, for each of standard correct-
ness and FO-correctness, we construct a single module that is parameterized by another mod-
ule of type Scheme; indeed, since the Scheme module type is designed for the formalization of

100 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

PKE schemes, this essentially formalizes the correctness definitions concerning a general PKE
scheme, i.e., PProgSTDCOR

PKE and GameFOCOR
A,PKE . As such, we prevent unnecessary duplication while

retaining the capability of referring to the concrete correctness definitions for Saber.PKE and
Saber.PKEA. Listing 4.37 comprises this formalization regarding standard correctness (for a gen-
eral PKE scheme).

1 module Correctness_Standard (S : Scheme) = {
2 proc main(m : plaintext) : bool = {
3 var m': plaintext option;
4 var c: ciphertext;
5 var pk: pkey;
6 var sk: skey;
7

8 (pk, sk) <@ S.kg();
9 c <@ S.enc(pk, m);

10 m' <@ S.dec(sk, c);
11

12 return (Some m = m');
13 }
14 }.

Listing 4.37: Standard Correctness Definition (i.e., PProgSTDCOR
PKE)

Certainly, instantiating this module with Saber_PKE_Scheme and Saber_PKE_Scheme_Alt produces
the formalizations of PProgSTDCOR

Saber.PKE and PProgSTDCOR
Saber.PKEA, respectively. The equivalence between

these formalizations is formally verified by employing a lemma similar to those presented in List-
ing 4.36; this lemma is shown in the ensuing listing.

1 lemma Equivalence_Correctness_Standard_Orig_Alt :
2 equiv[Correctness_Standard(Saber_PKE_Scheme).main ~

Correctness_Standard(Saber_PKE_Scheme_Alt).main : ={m} ==> ={res}].
3 proof. (*...*) qed.

Listing 4.38: Equivalence Between PProgSTDCOR
Saber.PKE and PProgSTDCOR

Saber.PKEA

The interpretation of Equivalence_Correctness_Standard_Orig_Alt is analogous to the interpret-
ation of the formerly explicated equivalence lemmas. Furthermore, the proof of this lemma is
exclusively contingent on the previously verified equivalences between the procedures of Saber_
PKE_Scheme and Saber_PKE_Scheme_Alt.

As elaborated on in Section 3.2.3, contrariwise to standard correctness, FO-correctness is defined
with respect to an adversary; more precisely, FO-correctness considers an adversary that, given a
public key and a secret key, produces a message. As with former adversaries, we formalize this
adversary by means of a distinct module type; this module type is defined in Listing 4.39.

1 module type Adv_Cor = {
2 proc choose(pk : pkey, sk : skey) : plaintext
3 }.

Listing 4.39: Module Type for Adversaries Against GameFOCOR
A,PKE

Then, utilizing Adv_Cor to formalize A, we construct the module that serves as the formalization
of FO-correctness for a general PKE scheme; Listing 4.40 provides this module.

Formal Verification of Saber 101

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

1 module Correctness_Game (S : Scheme, A : Adv_Cor) = {
2 proc main() : bool = {
3 var m: plaintext;
4 var m': plaintext option;
5 var c: ciphertext;
6 var pk: pkey;
7 var sk: skey;
8

9 (pk, sk) <@ S.kg();
10 m <@ A.choose(pk, sk);
11 c <@ S.enc(pk, m);
12 m' <@ S.dec(sk, c);
13

14 return (Some m = m');
15 }
16 }.

Listing 4.40: FO-Correctness Definition (i.e., GameFOCOR
A,PKE)

Similarly to Correctness_Standard, the module in this listing can be instantiated with Saber_PKE_
Scheme and Saber_PKE_Scheme_Alt to produce the formalizations of FO-correctness for Saber.PKE
and, respectively, Saber.PKEA. Specifically, Correctness_Game(Saber_PKE_Scheme, A) and Correctness_
Game(Saber_PKE_Scheme_Alt, A) accordingly formalize GameFOCOR

A,Saber.PKE and GameFOCOR
A,Saber.PKEA,

where A represents A.

Lastly, we formally verify the equivalence between the formalizations of GameFOCOR
A,Saber.PKE and

GameFOCOR
A,Saber.PKEA through a lemma that is analogous to the lemma in Listing 4.38. In particular,

this lemma states that for any module A of type Adv_Cor, Correctness_Game(Saber_PKE_Scheme,
A) is equivalent to Correctness_Game(Saber_PKE_Scheme_Alt, A). Moreover, akin to the proof of
Equivalence_Correctness_Standard_Orig_Alt, the proof of this lemma solely depends on the equi-
valences between the procedures from Saber_PKE_Scheme and Saber_PKE_Scheme_Alt.

Correctness Equivalence and Error Expression

In the correctness-related formal verification effort, we have hitherto formalized Saber.PKEA and
the two relevant correctness definitions, i.e., standard correctness and FO-correctness. Further-
more, we have formally verified that the correctness definitions in the context of Saber.PKE are
equivalent to their analogs in the context of Saber.PKEA. Leveraging these established formaliza-
tions and results, the remainder of this formal verification effort continues to resemble the manual
analysis carried out in Section 3.2.3. Namely, first, we formalize the error expression considered
by Saber’s script to exhaustively compute the correctness of Saber.PKE. Then, we formalize
PProgCOR, i.e., the probabilistic program that almost represents the computation carried out by
Saber’s script, solely deviating from an accurate representation of this computation regarding the
distribution of the considered matrix A. Afterward, we formally verify that this probabilistic
program is equivalent to both standard correctness and FO-correctness for Saber.PKEA; indeed,
by the transitivity of equivalences, this shows that these correctness definitions are additionally
equivalent in the context of Saber.PKE. Penultimately, we formalize PProgδCOR, the probabilistic
program that accurately represents the computation carried out by Saber’s script. Lastly, under
the assumption that gen is a random oracle, we formally verify that in the context of Saber.PKE,
the considered correctness definitions are equivalent to PProgδCOR; certainly, this proves that if
the output distribution of (the instantiation of) gen (practically) equals the uniform distribution
over the domain of A, the correctness of Saber.PKE is (almost) accurately computed by Saber’s
script.

First and foremost, we reiterate the definitions of the error expression and error terms provided

102 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

in Section 3.2.3. Specifically, the error expression is defined as follows.
errTb′q · s− errTbq · s

′ − errcmq
Here, errb′q , errbq , and errcmq denote the error terms; the definitions of these terms are repeated
below.

errb′q = b′q −AT · s′ = bbAT · s′ + hcq→pcp→q −AT · s′

errbq = bq −A · s = bbA · s + hcq→pcp→q −A · s

errcmq = cmq − (v′ + bmc2→q) + q

4 · t = bbv′ + bmc2→qcq→2·tc2·t→q − (v′ + bmc2→q) + q

4 · t
In both the error expression and the error terms, all variables refer to the identically denoted
artifacts considered in Saber.PKEA.

Illustrating the manner in which the above-reiterated error terms are formalized, we examine the
formalizations of errbq and errb′q ; these formalizations are provided in Listing 4.41.

1 op error_bq (_A : Rq_mat) (s : Rq_vec) : Rq_vec =
2 (scaleRpv2Rqv (scaleRqv2Rpv (_A *^ s + h))) - (_A *^ s).
3

4 op error_bq' (_A : Rq_mat) (s': Rq_vec) : Rq_vec =
5 (scaleRpv2Rqv (scaleRqv2Rpv ((trmx _A) *^ s' + h))) - ((trmx _A) *^ s').

Listing 4.41: Error Terms errbq and errb′q

As this listing demonstrates, we formalize the error terms as parameterized operators. For intel-
ligibility purposes, the parameters of these operators are denominated identically to the artifacts
with which they are intended to be instantiated. For example, the formalization of errbq , i.e.,
error_bq, is defined with respect to parameters _A of type Rq_mat and s of type Rq_vec. Indeed,
these parameters are expected to be instantiated with, respectively, the _A and s artifacts from
Saber_PKE_Scheme_Alt; since these artifacts accordingly formalize A and s from Saber.PKEA, this
is consistent with the fact that, excluding constants, errbq is only dependent on this A and
s. Provided with concrete values for these parameters, error_bq is defined as (scaleRpv2Rqv
(scaleRqv2Rpv (_A *^ s + h))) - (_A *^ s), which formalizes bbA · s + hcq→pcp→q −A · s. Cer-
tainly, as substantiated by the definitions reiterated above, this precisely matches the expression
corresponding to errbq . A comparable analysis shows that the other operator in Listing 4.41, i.e.,
error_bq', accurately formalizes the error term errb′q .

Utilizing the formalizations of the error terms, we formalize the error expression in a similar
fashion, i.e., by means of a parameterized operator; this operator is defined in Listing 4.42.

1 op error_expression (_A : Rq_mat) (s : Rq_vec) (s' : Rq_vec) =
2 dotp (error_bq' _A s') s - dotp (error_bq _A s) s' - error_cmq_nom_centered _A s s'

Listing 4.42: Error Expression

As with error_bq and error_bq', error_expression is intended to be instantiated with the formaliz-
ations of the relevant artifacts from Saber.PKEA. Specifically, this operator is meant to receive the
A, s, and s' produced by Saber_PKE_Scheme_Alt. Combining this with the preceding discussion, it
follows that the first two terms in this operator’s definition correctly formalize errTbq ·s

′ and errTb′q ·s,
respectively. The remaining term, i.e., error_cmq_nom_centered _A s s', formalizes the expression
for errcmq that does not include the message m; that is, it formalizes bbv′cq→2·tc2·t→q − v′ + q

4·t ,
as derived in Section 3.2.3.

Building on the formalization of the error expression, we formalize PProgCOR, the probabilistic
program that almost denotes the computation carried out by Saber’s script, originally specified

Formal Verification of Saber 103

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

in Figure 3.15. As mentioned before, the only difference between PProgCOR and a program that
accurately represents the computation performed by Saber’s script concerns the distribution of the
considered matrix A. Namely, PProgCOR generates A through gen while, to accurately represent
the computation performed by Saber’s script, A must necessarily be uniformly distributed. Indeed,
in PProgCOR, A is only uniformly distributed if gen is (assumed to be) a random oracle; in turn,
PProgCOR also only accurately represents this computation if gen is (assumed to be) a random
oracle. In fact, we formalize and verify this reasoning momentarily. However, before doing so, we
address the formalization of PProgCOR and the formal verification of the equivalences between
this program, PProgSTDCOR

Saber.PKEA, and GameFOCOR
A,Saber.PKEA. To this end, first, Listing 4.43 provides

the definition of the module that formalizes PProgCOR.

1 module Correctness_PProg = {
2 proc main() : bool = {
3 var sd: seed;
4 var _A : Rq_mat;
5 var s, s': Rq_vec;
6

7 sd <$ dseed;
8 _A <- gen sd;
9 s <$ dsmallRq_vec;

10 s' <$ dsmallRq_vec;
11

12 return coeffs_corr_rng (error_expression _A s s');
13 }
14 }.

Listing 4.43: PProgCOR

Examining the definition of Correctness_PProg, we see that the coeffs_corr_rng operator is the
only novelty introduced in this module; indeed, the remainder of this module is a straightforward
translation of PProgCOR that exclusively utilizes formerly explained concepts. As its name sug-
gests, the coeffs_corr_rng operator formalizes the coeffs_in_correctness_rng predicate defined in
Section 3.2.3. That is, coeffs_corr_rng takes an argument of type Rq and evaluates to true if and
only if all of its argument’s coefficients lie between -q %/ 4 (including) and q %/ 4 (excluding). In
the case of Correctness_PProg, the argument given to this operator is error_expression _A s s',
an instance of the formalized error expression. As such, coeffs_corr_rng (error_expression _A
s s') correctly formalizes the return statement of PProgCOR.

Employing the formalizations of PProgCOR, PProgSTDCOR
Saber.PKEA, and GameFOCOR

A,Saber.PKEA, we formally
verify the equivalences between PProgCOR and the correctness definitions for Saber.PKEA. In
particular, we do so by means of the equivalence lemmas presented in Listing 4.44; certainly,
the interpretation of these lemmas is similar to the interpretation of the previously discussed
equivalence lemmas.

1 lemma Equivalence_CorrStd_CorrPProg :
2 equiv[Correctness_Standard(Saber_PKE_Scheme_Alt).main ~ Correctness_PProg.main :

true ==> ={res}].
3 proof. (*...*) qed.
4

5 lemma Equivalence_CorrStd_CorrGame (A <: Adv_Cor) :
6 equiv[Correctness_Game(Saber_PKE_Scheme_Alt, A).main ~ Correctness_PProg.main :

true ==> ={res}].
7 proof. (*...*) qed.

Listing 4.44: Equivalences Between PProgSTDCOR
Saber.PKEA, GameFOCOR

A,Saber.PKEA, and PProgCOR

104 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

Conceptually, the process of formally verifying either of these lemmas is quite simplistic; moreover,
this process is identical for both lemmas. Namely, we initiate both proofs by verifying that repla-
cing the return expression Some m' = m by coeffs_corr_rng (error_expression _A s s') produces
an equivalent program. Subsequently, we remove all statements, variables, and entities that do
not affect the manner in which the artifacts _A, s, and s' are obtained; indeed, this includes the
removal of the considered message m and, for Correctness_Game(Saber_PKE_Scheme_Alt, A).main,
the adversary A. Since the substitute return statement, i.e., coeffs_corr_rng (error_expression
_A s s'), exclusively depends on _A, s, and s', this removal trivially produces an equivalent
program. After these transformations, the considered initial program, i.e., either Correctness_
Standard(Saber_PKE_Scheme_Alt).main or Correctness_Game(Saber_PKE_Scheme_Alt, A).main, has
become identical to Correctness_PProg.main; naturally, this identity directly implies the equival-
ence between the program resulting from the transformations and Correctness_PProg.main. Lastly,
because the sequence of performed transformations is formally verified to yield a program that is
equivalent to the initial program, it follows that this initial program is equivalent to Correctness_
PProg.main. Certainly, in the case of lemma Equivalence_CorrStd_CorrPProg, this initial program
is Correctness_Standard(Saber_PKE_Scheme_Alt).main; in the case of lemma Equivalence_CorrStd_
CorrGame, this initial program is Correctness_Game(Saber_PKE_Scheme_Alt, A).main. This com-
pletes the formal verification process for both of these lemmas.

Despite its conceptual simplicity, the above-described formal verification process for Equivalence_
CorrStd_CorrPProg and Equivalence_CorrGame_CorrPProg is significantly more complex and strenu-
ous in practice. This intricacy predominantly arises from the necessity of proving a plethora
of auxiliary properties regarding the relevant (sequences of) operations. Particularly, in veri-
fying that replacing the return statement in Correctness_Standard(Saber_PKE_Scheme_Alt).main
and Correctness_Game(Saber_PKE_Scheme_Alt, A).main yields an equivalent program, we essen-
tially need to formally verify the majority of the mathematical derivations presented in Section
3.2.3. However, because these derivations intertwine a multitude of different, potentially uncon-
ventional operators, the properties required to formally verify their validity are not predefined in
EasyCrypt. As such, we are necessitated to both formalize and verify these required properties.
Since this endeavor is rather technically involved, it is not suited for explication in the current
discussion. Therefore, for further details on the formal verification of the mathematical derivations
discussed in Section 3.2.3, refer to the actual code.

Finally, we proceed to the formal verification of the main correctness-related result for Saber.PKE.
To reiterate, this result states the following: With respect to both the standard correctness and FO-
correctness definitions, Saber.PKE’s correctness is a constant probability 1− δ ∈ [0, 1] that, under
the assumption that gen is a random oracle, is accurately computed in Saber’s script. Initiating
the formal verification effort for this result, we formalize PProgδCOR, the probabilistic program
that accurately captures the computation performed by Saber’s script; this probabilistic program
is defined in Figure 3.16. Indeed, unlike PProgCOR, PProgδCOR directly samples A from U(Rl×lq),
ensuring that A is uniformly distributed; this is in accordance with the assumed distribution of
this matrix in Saber’s script. Listing 4.45 provides the formalization of PProgδCOR.

1 module Delta_Prob_PProg = {
2 proc main() : bool = {
3 var sd: seed;
4 var _A : Rq_mat;
5 var s, s': Rq_vec;
6

7 _A <$ dRq_mat;
8 s <$ dsmallRq_vec;
9 s' <$ dsmallRq_vec;

10

11 return coeffs_corr_rng (error_expression _A s s');

Formal Verification of Saber 105

4.2. PUBLIC-KEY ENCRYPTION SCHEME CHAPTER 4. FORMAL VERIFICATION

12 }
13 }.

Listing 4.45: PProgδCOR

As can be extracted from this listing, Delta_Prob_PProg is a straightforward translation of PProgδCOR,
containing no unprecedented concepts or operators; therefore, no further elaboration is provided
for this formalization.

For reasons of completeness, albeit trivially true, we formally verify that Pr
[
PProgδCOR = 1

]
is

actually constant. In particular, we do so by showing that for any valid contexts, this probability
is identical. Here, “context” refers to a particular assignment of concrete values to all artifacts
that might have an effect on the program’s execution. Indeed, in EasyCrypt, this would gener-
ally constitute a combination of a memory and concrete module and procedure parameter values.
Nevertheless, since PProgδCOR is not defined with respect to any adversaries or (function) para-
meters, Delta_Prob_PProg and its main procedure are not defined with respect to any parameters
either. As such, the lemma formalizing the property that Pr

[
PProgδCOR = 1

]
is constant can only

differentiate between the considered memories; this lemma is given in Listing 4.46.

1 lemma DeltaProb_Constant &m1 &m2 :
2 Pr[Delta_Prob_PProg.main() @ &m1 : res] = Pr[Delta_Prob_PProg.main() @ &m2 : res].
3 proof. (*...*) qed.

Listing 4.46: Pr
[
PProgδCOR = 1

]
is Constant

Due to the fact that Delta_Prob_PProg.main produces all the values on which it operates by itself,
the considered memory has no influence on its execution; hence the probability of Delta_Prob_
PProg.main returning a specific value is trivially constant. Consequently, the proof of this lemma
merely requires generic reasoning principles to conclude that this lemma is valid.

Associated with Delta_Prob_PProg, Listing 4.47 defines a constant and an axiom formalizing the
assumption that Pr

[
PProgδCOR = 1

]
= 1−δ, where 1−δ represents the correctness value computed

by Saber’s script for the considered parameter set.

1 const delta_prob : real.
2

3 axiom delta_correctness &m :
4 Pr[Delta_Prob_PProg.main() @ &m : res] = 1%r - delta_prob.

Listing 4.47: 1− δ Probability Assumption

At this point, the remainder of the formal verification effort primarily entails proving the equi-
valence between Correctness_PProg.main and Delta_Prob_PProg.main, i.e., under the assumption
that gen is a random oracle. Subsequently, together with this equivalence, we can employ the
previously verified equivalences to derive that Correctness_Standard(Saber_PKE_Scheme).main and
Correctness_Game(Saber_PKE_Scheme, A).main are equivalent to Delta_Prob_PProg.main. In turn,
these latter equivalences directly imply that the probability of Correctness_Standard(Saber_PKE_
Scheme).main(m) and Correctness_Game(Saber_PKE_Scheme, A).main() returning true is, irrespect-
ive of the considered message or adversary, equal to that of Delta_Prob_PProg.main(); naturally,
due to the delta_correctness axiom, this probability precisely equals 1 - delta_prob.

Concretizing the above-described remainder of the formal verification effort, we first define a vari-
ant of Correctness_PProg which we will refer to as Correctness_PProg_RO. As with GMLWR_RO in

106 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.2. PUBLIC-KEY ENCRYPTION SCHEME

relation to GMLWR (see Section 4.2.2), Correctness_PProg_RO is an exact copy of Correctness_PProg,
solely replacing gen by a random oracle10; however, in this case, the replacement oracle is a reg-
ular non-programmable random oracle. Afterward, formalizing the assumption that gen is a ran-
dom oracle, we introduce an axiom stating the equivalence between Correctness_PProg.main and
Correctness_PProg_RO.main. Following, utilizing a lemma analogous to the preceding equivalence
lemmas, we verify the equivalence between Correctness_PProg_RO.main and Delta_Prob_PProg.main.
Indeed, the veracity of this lemma immediately follows from the fact that the oracle’s output dis-
tribution is uniform, which is precisely what the lemma’s proof argues. Penultimately, we formally
verify the equivalence between PProgδCOR and the correctness definitions for Saber.PKE; more
precisely, we do so through the equivalence lemmas presented in Listing 4.48.

1 lemma Equivalence_CorrStd_DeltaProb :
2 equiv[Correctness_Standard(Saber_PKE_Scheme).main ~ Delta_Prob_PProg.main : true

==> ={res}].
3 proof. (*...*) qed.
4

5 lemma Equivalence_CorrGame_DeltaProb (A <: Adv_Cor) :
6 equiv[Correctness_Game(Saber_PKE_Scheme, A).main ~ Delta_Prob_PProg.main : true

==> ={res}].
7 proof. (*...*) qed.

Listing 4.48: Equivalences Between PProgSTDCOR
Saber.PKE, GameFOCOR

A,Saber.PKE, and PProgδCOR

As alluded to before, the proofs of these lemmas exclusively require the utilization of the other
equivalences verified thus far.

At last, we formalize and verify the final result from Section 3.2.3, i.e., Pr
[
PProgSTDCOR

Saber.PKE(m) = 1
]

=

Pr
[
GameFOCOR

A,Saber.PKE = 1
]

= 1− δ, by means of the lemmas provided in Listing 4.49.

1 lemma Delta_Correctness_Standard_Original_Scheme &m (msg : plaintext) :
2 Pr[Correctness_Standard(Saber_PKE_Scheme).main(msg) @ &m : res] = 1%r - delta_prob.
3 proof. (*...*) qed.
4

5 lemma Delta_Correctness_Game_Original_Scheme &m (A <: Adv_Cor) :
6 Pr[Correctness_Game(Saber_PKE_Scheme, A).main() @ &m : res] = 1%r - delta_prob.
7 proof. (*...*) qed.

Listing 4.49: Pr
[
PProgSTDCOR

Saber.PKE(m) = 1
]

= Pr
[
GameFOCOR

A,Saber.PKE = 1
]

= 1− δ

The truth of these lemmas directly follows from the equivalences established in Listing 4.48 and
the delta_correctness axiom; certainly, this is exactly the approach utilized by the respective
proofs.

To conclude, in the formal verification effort concerning Saber.PKE’s correctness property, we
have formally verified that standard correctness and FO-correctness are equivalent in the context
of Saber.PKE. Moreover, irrespective of the utilized definition, Saber.PKE’s correctness con-
stitutes a constant probability that, assuming gen is a random oracle, is accurately computed
by Saber’s script. Alternatively stated, if the output distribution of (the instantiation of) gen
(closely) resembles the uniform distribution over Rl×lq , Saber.PKE’s correctness is (almost) accur-
ately computed by Saber’s script.

10The concrete implementation of this random oracle is predefined in EasyCrypt’s standard library.

Formal Verification of Saber 107

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

4.3 Demonstration: Proving Lemmas in EasyCrypt
In the preceding discussion on the formal verification endeavor regarding Saber.PKE, we did not
elaborate on any concrete proofs corresponding to the employed lemmas. As alluded to before,
the principal rationale behind this arises from the fact that the exposition of such esoteric and
technical undertakings does not constitute a significant contribution to a discussion with a process-
oriented character. Nonetheless, to still provide an impression of EasyCrypt’s (lemma-)proving
process and the corresponding fundamental concepts and mechanisms, we presently discuss the
concrete formal verification of the Step_Game1_Game2 lemma; originally specified in Listing 4.30,
this lemma formalizes the second step of Saber.PKE’s game-playing security proof.

This section is structured as follows. Initially, we cover the relevant concepts and mechanisms
related to the process of formally verifying lemmas in EasyCrypt. Afterward, employing these
concepts and mechanisms, we discuss the concrete proof of the Step_Game1_Game2 lemma.

4.3.1 Fundamental Concepts and Mechanisms
Preceding the explication of the concrete proof for lemma Step_Game1_Game2, we elaborate on
several of EasyCrypt’s fundamental concepts and mechanisms relevant to the formal verification
of lemmas. Foremost, EasyCrypt’s proof engine, i.e., the component of EasyCrypt that manages
the formal verification process for lemmas, is based on the concept of goals. A goal comprises
two primary components: a context and a conclusion. Here, the former consists of an ordered set
of assumptions; the latter constitutes a single well-defined statement11. Considering such a goal,
tactics, i.e., built-in logical reasoning principles, can be employed to formally verify the goal’s
conclusion in the goal’s context. More precisely, if applicable to the considered goal, a tactic
effectively replaces this goal by zero or more (other) goals; by construction, the conjunction of
these generated goals’ conclusions implies the original goal’s conclusion. In case a tactic replaces
a goal with precisely zero goals, the tactic is said to solve this goal; that is, the tactic proves the
truth of this goal, completing its formal verification.

Exemplifying the general representation of goals during the process of proving a lemma in Easy-
Crypt, Listing 4.50 depicts (EasyCrypt’s representation of) the initial goal induced by lemma
scaleRp2Rppq2R2t_comp (p : Rp) : scaleRp2R2t p = scaleRppq2R2t (scaleRp2Rppq p), a lemma that
specifies a property required for the formal verification of lemma Step_Game1_Game2.

1 Current goal
2

3 p : Rp
4 --
5 scaleRp2R2t p = scaleRppq2R2t (scaleRp2Rppq p)

Listing 4.50: Example Goal 1

In this goal representation, the dotted line separates the goal’s context (above the line) from the
goal’s conclusion (below the line). In accordance with the definition of the considered lemma, the
goal’s context declares, or “assumes”, an artifact p of type Rp which, as such, may be employed in
the goal’s conclusion. Furthermore, since the context does not specify, or “assume”, any additional
restrictions on p, this artifact represents an arbitrary value of type Rp; alternatively stated, the
goal’s conclusion must hold for any value of type Rp. In fact, EasyCrypt allows for the transform-
ation of this goal into an equivalent one that does not declare an artifact of type Rp in its context;
instead, this goal’s conclusion universally quantifies over Rp. Listing 4.51 presents this equivalent
goal.

11Actually, the context of a goal additionally specifies a set of type variables that enable the context’s assumptions
to consider abstract types. Nevertheless, this feature has not been utilized throughout the entire formal verification
effort for Saber.PKE; therefore, we disregard this technicality.

108 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

1 Current goal
2

3 --
4 forall (p : Rp), scaleRp2R2 p = scaleRq2R2 (scaleRp2Rq p)

Listing 4.51: Example Goal 2, Equivalent to Example Goal 1

Indeed, this indicates that parameterizing a lemma is equivalent to universally quantifying over
the type(s) of the parameter(s), as previously mentioned in Section 2.3.1.

pRHL Judgment Goals and pRHL Statement Judgment Goals

Throughout the demonstration of the formal verification of lemma Step_Game1_Game2, we will en-
counter several goals with a special representation. More concretely, this concerns goals with
conclusions denoting either a pRHL judgment or a pRHL statement judgment, which EasyCrypt
renders in a non-linear fashion; we respectively refer to such goals as “pRHL judgment goals” and
“pRHL statement judgment goals”. In essence, both types of judgment correspond to statements
that are entirely defined by a single (use of the) equiv keyword; however, the difference between
the two is that pRHL judgments consider the identifiers of procedures, while pRHL statement
judgments consider the actual specifications of procedures12. Certainly, (the statements of) the
equivalence lemmas discussed in Section 4.2.3 constitute pRHL judgments; as such, the initial goals
in the proofs of these lemmas are subjected to the aforementioned non-linear rendering. Exempli-
fying this rendering, Listing 4.52 presents the initial goal in the proof of lemma Equivalence_kg;
the statement corresponding to this lemma is equiv[Saber_PKE_Scheme.kg ~ Saber_PKE_Scheme_
Alt.kg : true ==> ={res}], as defined in Listing 4.36.

1 Current goal
2

3 --
4 pre = true
5

6 Saber_PKE_Scheme.kg ~ Saber_PKE_Scheme_Alt.kg
7

8 post = ={res}

Listing 4.52: Example pRHL Judgment Goal

Comparing the conclusion of the goal in this listing to the statement of the corresponding lemma, it
is evident how EasyCrypt renders pRHL judgments as goal conclusions. Moreover, the non-linear
rendering of these judgments accurately conveys their intuitive interpretation. Namely, an arbit-
rary (valid) pRHL judgment equiv[M.a ~ N.b : phi ==> psi] intuitively denotes that executing
procedures M.a and N.b in any memories that satisfy predicate phi results in (sub-distributions
on) memories that satisfy predicate psi; this suggests that phi and psi can be interpreted as
a precondition and a postcondition, respectively13. Here, “memories that satisfy phi” refers to
memories for which phi evaluates to true when all of the identifiers in this predicate are replaced
by the corresponding concrete values from these memories; nevertheless, “(sub-distributions on)
memories that satisfy psi” has, due to the consideration of sub-distributions on memories instead

12As indicated previously, these types of statements can be employed considerably more generally than necessary
for the formal verification effort regarding Saber.PKE. In particular, these types of statements, and hence their
generality, are formally and rigorously defined through an abstruse mathematical definition [18, 54]. Nevertheless,
precluding gratuitous generalizations and expositions, we refrain from directly using or discussing this mathematical
definition; instead, we adopt a more intuitive and concrete approach concerning these types of statements in this
discussion, exclusively considering the relevant instances and applications.

13In the non-linear rendering of pRHL judgments as goal conclusions, these interpretations of phi and psi are
accordingly expressed as pre = phi and post = psi.

Formal Verification of Saber 109

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

of concrete memories, a rather intricate formal definition and does not allow for a straightfor-
ward intuitive interpretation. Fortunately, as can be extracted from Section 4.2, the preconditions
and postconditions of the pRHL statements employed in the formal verification effort regarding
Saber.PKE exclusively comprise (a conjunction of) equalities between values from the different
memories. Consequently, in the context of this discussion, “(sub-distributions on) memories that
satisfy psi” has the following relatively intuitive interpretation: For each equality in psi, the prob-
ability that the left-hand side is assigned a particular value by the corresponding memory is equal
to the probability that the right-hand side is assigned this same value by the other memory.

Similarly considering lemma Equivalence_kg as an example, Listing 4.53 illustrates the non-linear
rendering of a goal conclusion that corresponds to a pRHL statement judgment. In fact, the goal in
this listing can be obtained by applying the proc tactic on the goal presented in Listing 4.52.

1 Current goal
2

3 --
4 &1 (left) : Saber_PKE_Scheme.kg
5 &2 (right) : Saber_PKE_Scheme_Alt.kg
6

7 pre = true
8

9 sd <$ dseed (1) sd <$ dseed
10 _A <- gen sd (2) _A <- gen sd
11 s <$ dsmallRq_vec (3) s <$ dsmallRq_vec
12 b <- scaleRqv2Rpv (_A *^ s + h) (4) b <- scaleRqv2Rpv (_A *^ s + h)
13

14 post =
15 (pk_encode_s (sd{1}, b{1}), sk_encode_s s{1}) =
16 (pk_encode_s (sd{2}, b{2}), sk_encode_s s{2})

Listing 4.53: Example pRHL Statement Judgment Goal

As we can see, (the rendering of) a pRHL statement judgment is considerably more thorough than
(the rendering of) the corresponding pRHL judgment. First, as aforementioned, a pRHL statement
judgment concerns the specifications of the considered procedures instead of their identifiers.
Nevertheless, the rendering of such a judgment explicitly indicates both the identifiers and the
specifications; in this case, the left specification corresponds to Saber_PKE_Scheme.kg, while the
right specification corresponds to Saber_PKE_Scheme_Alt.kg. Second, although both the left and
right procedures of a pRHL judgment (that is, left and right of the ~) and a pRHL statement
judgment invariably execute in memories denominated &1 (left procedure) and &2 (right procedure),
only the rendering of a pRHL statement judgment explicitly states this fact. Notably, these
memories are slightly different from the memories discussed hitherto. Namely, the memories
considered thus far constitute, as initially described in Section 4.2, artifacts that assign values
to all global variables declared by the modules specified in the currently considered script; these
memories are utilized to, e.g., parameterize lemmas and specify certain probability statements.
However, given such a general memory &m, the aforementioned memories &1 and &2 extend &m
in the context of a procedure call by additionally assigning values to the considered procedure’s
parameters, local variables, and, if the procedure terminates, special artifact res; specifically, if
the considered procedure terminates, res is assigned the procedure’s return value. Nevertheless,
concerning either type of memory, the concrete value of a certain artifact, e.g., x, within a particular
memory, e.g., &mem, is denoted by x{mem}. In the remainder, we refer to the general, non-extended
memories as “general memories” and to the procedure-specific, extended memories as “procedure-
extended memories”. Lastly, (the rendering of) a pRHL statement judgment replaces all references
to res by the actual return value(s) of the corresponding procedures. As such, since ={res}
is equivalent to res{1} = res{2}, this becomes (pk_encode_s (sd, b), sk_encode_s s){1} = (pk_

110 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

encode_s (sd, b), sk_encode_s s){2}; in turn, this latter equality is equivalent to the actual
postcondition of the goal’s conclusion in Listing 4.53.

Tactics

Albeit EasyCrypt implements an abundance of different tactics, the proof of lemma Step_Game1_
Game2 merely requires several of the more prevalent ones. In the ensuing, we concisely describe these
tactics, primarily focalizing on the application of these tactics in the currently considered context,
i.e., the demonstration of the proof of lemma Step_Game1_Game2. Particularly, certain tactics might
be more generally applicable or support more features than indicated. Furthermore, to preclude
extensive technical discussions, several tactic descriptions remain relatively intuitive.

For reasons of intelligibility, we divide the tactics into two different categories based on their
applicability. More precisely, the first category contains tactics applicable to arbitrary goals;
the second category comprises tactics exclusively applicable to certain probability-related goals,
pRHL judgment goals, or pRHL statement judgment goals. Concerning the former, the following
list covers the relevant tactics applicable to arbitrary goals.

• trivial
This tactic solves a trivial goal by applying a combination of low-level tactics; these low-level
tactics are not directly accessible by the user.

• simplify
This tactic simplifies a goal’s conclusion by reducing it to a canonical normal form; this
exclusively affects the notation of the goal’s conclusion, not its meaning.

Demonstrating the utilization of this tactic, the following list constitutes several examples
of expressions that are reduced to a simpler form when applying simplify.

– Example 1
If a goal’s conclusion contains expressions of the form if true then a else b, applying
simplify reduces these expressions to a; similarly, expressions of the form if false
then a else b are reduced to b.

– Example 2
If a goal’s conclusion comprises expressions of the form (a, b).`1, applying simplify re-
duces these expressions to a; analogously, expressions of the form (a, b).`2 are reduced
to b.

• rewrite
This tactic rewrites a goal’s conclusion.

Consider an identifier of an axiom, a lemma, or an assumption that refers to a statement f =
g; moreover, consider a goal with a conclusion that contains f at least once. Then, applying
rewrite id to this goal produces a single goal with the following context and conclusion.

– Goal
Context: Identical to the original goal’s context.
Conclusion: Identical to the original goal’s conclusion, but with each occurrence of f
replaced by g.

• progress
This tactic breaks a goal into zero or more simplified goals by repeatedly applying several
other tactics. Relative to the original goal’s context, the contexts of the generated goals may

Formal Verification of Saber 111

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

be unchanged, contain novel assumptions, have assumptions removed, or a combination of
the latter two; similarly, compared to the original goal’s conclusion, the conclusions of the
generated goals may be unaltered or simplified.

• have
This tactic introduces an additional assumption in a goal’s context; as such, this tactic es-
sentially constitutes a formalization of the logical cut inference rule.

Consider a goal with conclusion psi; moreover, consider a predicate phi and an identifier id
not yet in the considered goal’s context. Then, applying have id: phi to this goal produces
two goals with the following contexts and conclusions.

– Goal 1
Context: Identical to the original goal’s context.
Conclusion: phi

– Goal 2
Context: Identical to the original goal’s context extended with the assumption id: phi.
Conclusion: psi

• congr
This tactic removes the application of an operator in a goal’s conclusion; this is based on
the fact that, in EasyCrypt, operators are mathematical functions.

Consider a goal with conclusion f x_1 ... x_n = f y_1 ... y_n or f x_1 ... x_n <=> f
y_1 ... y_n, where f is an operator and 1 ≤ n. Then, applying congr to this goal produces
n goals with the following context(s) and conclusion(s).

– Goal i (1 ≤ i ≤ n)
Context: Identical to the original goal’s context.
Conclusion: x_i = y_i.

Regarding the remaining category, the ensuing list describes the relevant tactics exclusively applic-
able to particular probability-related goals, pRHL judgment goals or pRHL statement judgment
goals.

• byequiv
This tactic transforms a probability-related goal into a pRHL judgment goal.

Consider a general memory &m, predicates phi and psi, and modules M and N with, re-
spectively, procedures a(x_1, ..., x_n) and b(x_1, ..., x_n); for these procedures, the
parameter list might be empty, i.e., n might be equal to 0. Furthermore, consider a goal
with conclusion Pr[M.a(x_1, ..., x_n) @ &m : res] = Pr[N.b(x_1, ..., x_n) @ &m : res].
Then, applying byequiv (_ : phi ==> psi) to this goal produces three goals with the fol-
lowing contexts and conclusions.

– Goal 1
Context: Identical to the original goal’s context.
Conclusion: A pRHL judgment equiv[M.a ~ N.b : phi ==> psi].

– Goal 2
Context: Identical to the original goal’s context.
Conclusion: phi.

112 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

– Goal 3
Context: Identical to the original goal’s context.
Conclusion: For all procedure-extended memories &1 (for M.a) and &2 (for N.b), psi
==> ={res}.

Alternatively, applying byequiv, i.e., omitting phi and psi, enforces EasyCrypt (to attempt
to) infer phi and psi. In this case, phi typically denotes a relation between the (actual)
parameters; moreover, oftentimes, psi straightforwardly equals ={res}.

• proc
This tactic replaces a pRHL judgment goal by an equivalent pRHL statement judgment goal.

Consider a pRHL judgment goal equiv[M.a ~ N.b : phi ==> psi] where the identifiers de-
note the same artifacts as in the explanation of byequiv above. Then, applying proc to this
goal produces a single goal with the following context and conclusion.

– Goal
Context: Identical to the original goal’s context.
Conclusion: A pRHL statement judgment that arises from, in the original goal’s con-
clusion, replacing M.a and N.b by their specification.

• inline
In a pRHL statement judgment goal, this tactic replaces a call to a (concrete) procedure with
the specification of this procedure; naturally, each of the specification’s formal parameters
is substituted with the corresponding argument provided in the call.

Consider a pRHL statement judgment goal with procedure specifications containing a (con-
crete) procedure call M.a(x_1, ..., x_n). Then, applying inline M.a to this goal produces
one goal with the following context and conclusion.

– Goal
Context: Identical to the original goal’s context.
Conclusion: A pRHL statement judgment that arises from, in the original goal’s con-
clusion, replacing M.a by its specification; moreover, in this specification, each formal
parameter is substituted with the corresponding argument provided in the original pro-
cedure call.

• wp
This tactic removes the longest suffixes of regular assignment statements and if-else control
structures from the procedure specifications considered in a pRHL statement judgment goal;
afterward, the postcondition is appropriately adjusted. Specifically, the postcondition of the
resulting pRHL statement judgment goal is the weakest precondition required for the original
postcondition to hold if the removed suffixes were to be executed (starting from this weakest
precondition); here, “weakest” intuitively refers to “least restrictive”.

• auto
This tactic simplifies a pRHL statement judgment goal by repeatedly applying numerous
different tactics; an example of such a different tactic is the above-mentioned wp. More
precisely, application of this tactic removes the longest suffixes without call statements from
the considered procedure specifications; subsequently, akin to wp, it sets the postcondition to
the weakest precondition for the original postcondition to hold if the removed suffixes were
to be executed (commencing from this weakest precondition). Moreover, in case both of the
considered procedure specifications are empty, either preceding or during the application
of auto, this tactic generates an equivalent general goal; that is, if the precondition and

Formal Verification of Saber 113

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

postcondition of such a pRHL judgment statement goal respectively equal phi and psi, auto
produces a goal with conclusion phi ==> psi14.

• call
This tactic removes the last statement of each of the considered procedure specifications in
a pRHL statement judgment goal, provided these statements constitute calls to the same
abstract procedure. Specifically, for a predicate phi, application of call (_ : phi) to such a
pRHL statement judgment goal initially removes the last statement of each of the considered
procedure specifications. Thereafter, the postcondition is adjusted to essentially require that
if the (removed) procedures were to be called, phi would hold beforehand and afterward, the
procedures would behave identically, and the return values of the procedures would be equal;
additionally, the resulting postcondition necessitates that these properties imply the original
postcondition. In order to guarantee that two calls to the same abstract procedure in differ-
ent (procedure-extended) memories behave identically, both the arguments provided in the
calls and the accessible global variables of the corresponding module must be equal between
these memories. Here, remark the similarities with the discussion presented in Section 3.2.2,
particularly concerning the segment on the requirements for an adversary to behave identic-
ally between a reduction and a run of its own game; indeed, “the arguments provided in
the (abstract procedure) calls and the accessible global variables of the corresponding mod-
ule must be equal between the considered (procedure-extended) memories” is EasyCrypt’s
way of generically formalizing “the information provided/available to an adversary must be
indistinguishable (to this adversary) between a reduction and a run of its own game”.

4.3.2 Proof of Step_Game1_Game2 Lemma
Leveraging the concepts and mechanisms discussed in the preceding section, we demonstrate the
concrete formal verification of lemma Step_Game1_Game2 in EasyCrypt.

First, we reiterate the specification of Step_Game1_Game2 in Listing 4.54; however, in contrast to
the original specification of this lemma in Listing 4.30, this reiteration includes the concrete proof
of the lemma. Furthermore, for clarity purposes, this proof is commented and indented, indicating
its structure and flow.

1 lemma Step_Game1_Game2 &m (A <: Adversary) :
2 `| Pr[Game1(A).main() @ &m : res] - 1%r / 2%r |
3 =
4 `| Pr[Game2(A2(A)).main() @ &m : res] - 1%r / 2%r |.
5 proof.
6 (* Introduce useful assumption into goal's context with have *)
7 have eq_pr: Pr[Game1(A).main() @ &m : res] = Pr[Game2(A2(A)).main() @ &m : res].
8

9 (* Proof of assumption introduced by have *)
10 byequiv; trivial.
11 proc.
12 inline A2(A).choose; inline A2(A).guess.
13 wp.
14 call (_ : true).
15 auto.
16 call (_ : true).
17 auto.
18 progress.

14Albeit auto can automatically process a considerable portion of most pRHL statement judgment goals, it does
so in a generic manner; oftentimes, to reach the desired conclusions, the processing of these goals requires more
granular approaches. As such, although a powerful tactic, it is not a panacea for solving pRHL statement judgment
goals.

114 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

19 congr; congr.
20

21 (* Proof of equality first (output) tuple element *)
22 rewrite cg_enc_dec_inv; simplify.
23 rewrite scaleRp2Rppq2R2t_comp.
24 trivial.
25

26 (* Proof of equality second (output) tuple element *)
27 rewrite cg_enc_dec_inv.
28 trivial.
29

30 (* Proof of original claim using assumption introduced by initial have *)
31 rewrite eq_pr.
32 trivial.
33 qed.

Listing 4.54: Proof Demonstration 0 – Specification of Step_Game1_Game2 Including Proof

Commencing the formal verification process regarding this lemma, EasyCrypt generates the ini-
tial goal in accordance with the lemma’s specification. Namely, as depicted in Listing 4.55, the
generated goal’s context declares a memory &m and an Adversary module A, indicating the uni-
versal quantification over both memories and modules of type Adversary; indeed, this correctly
corresponds to the parameterization of the lemma. Furthermore, the generated goal’s conclusion
precisely equals the lemma’s statement.

1 Current goal
2

3 &m: memory
4 A : Adversary
5 --
6 `|Pr[Game1(A).main() @ &m : res] - 1%r / 2%r| =
7 `|Pr[Game2(A2(A)).main() @ &m : res] - 1%r / 2%r|

Listing 4.55: Proof Demonstration 1 – Initial Goal

Examining the conclusion of this goal, we see that it becomes trivial if the two probability state-
ments are identical. As such, utilizing the have tactic, the first step of the proof concerns introdu-
cing the assumption Pr[Game1(A).main() @ &m : res] = Pr[Game2(A2(A)).main() @ &m : res] into
the goal’s context. As can be extracted from Listing 4.54, we befittingly denominate this assump-
tion eq_pr. Applying this instance of the have tactic, i.e., have eq_pr: Pr[Game1(A).main() @ &m :
res] = Pr[Game2(A2(A)).main() @ &m : res], generates the goals presented in Listing 4.56.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 --
6 Pr[Game1(A).main() @ &m : res] = Pr[Game2(A2(A)).main() @ &m : res]
7

8

9

10 Goal #2
11 --
12 `|Pr[Game1(A).main() @ &m : res] - 1%r / 2%r| =
13 `|Pr[Game2(A2(A)).main() @ &m : res] - 1%r / 2%r|

Listing 4.56: Proof Demonstration 2 – Goals After have Tactic

Formal Verification of Saber 115

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

As this listing suggests, in case multiple goals remain to be verified, EasyCrypt merely renders
the context of a single goal, the “primary goal”15; for the remaining goals, only the conclusion
is rendered. Furthermore, the application of a tactic exclusively affects the primary goal; at
least, this applies to the first tactic in a chain. Namely, EasyCrypt allows for the chaining of
tactics by separating them with a semicolon. Essentially, each tactic following a ; is applied
to every goal generated in that chain of tactics. The ensuing step in the proof exemplifies this
mechanism. In particular, as shown in Listing 4.56, the current primary goal constitutes an
equality of probability statements; as such, we can progress the proof by employing the byequiv
tactic, transforming this goal into a pRHL judgment goal. Furthermore, in this case, EasyCrypt’s
inference mechanism for the precondition and postcondition of this pRHL judgment goal is apt
for the formal verification of this lemma; that is, it suffices to utilize the byequiv as is, without
manually specifying the precondition and postcondition. Nevertheless, the application of this
tactic produces three goals, two of which are trivial. Consequently, chaining the byequiv tactic
with the trivial tactic immediately solves two of the three generated goals. Importantly, if trivial
is applied to a tactic that it cannot solve, it does not fail or throw an error; instead, it simply
returns and leaves the goal unaltered. For this reason, even though one of the three goals generated
by byequiv is not solvable through trivial, we can still safely chain these tactics. Applying the
byequiv; trivial chain results in the set of remaining goals provided in Listing 4.57.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 --
6 pre = (glob A){2} = (glob A){m} /\ (glob A){1} = (glob A){m}
7

8 Game1(A).main ~ Game2(A2(A)).main
9

10 post = ={res}
11

12

13

14 Goal #2
15 --
16 `|Pr[Game1(A).main() @ &m : res] - 1%r / 2%r| =
17 `|Pr[Game2(A2(A)).main() @ &m : res] - 1%r / 2%r|

Listing 4.57: Proof Demonstration 3 – Goals After Chain of byequiv and trivial Tactics

As we can see, the application exclusively affected the primary goal; moreover, the chaining of
trivial indeed solved two out of three generated goals. Hereafter, for reasons of conciseness, we
will omit any non-primary goals that have already been shown in a previous listing. Considering
the primary goal in Listing 4.57, we notice an unprecedented artifact, viz., glob A. This artifact
denotes the aforementioned set of global variables that module A can access, including any global
variables declared by other modules16. Moreover, for a memory &mem, (glob A){mem} signifies this
same set, yet with each variable assigned a concrete value in accordance with mem. As such, the
precondition of the pRHL judgment in the above goal’s conclusion essentially states that the set
of global variables accessible by A is identical between the two considered procedure-extended
memories; certainly, from both of these procedure-extended memories, the variables in this set
are assigned the same concrete values as from the general memory &m. Conceptually, as alluded
to before, this suggests that the adversary against the first game operates in the same (global)
context for both games.

15This is by no means a conventional term; however, we introduce it for convenience purposes.
16More precisely, this set includes any global variables declared by other modules for which access is not explicitly

denied; albeit not relevant in this case, an example of such explicit denial is given in Listing 4.26.

116 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

In order to proceed, we require the actual specification of the considered procedures rather than
their identifiers; that is, we desire to transform the pRHL judgment goal into a corresponding
pRHL statement judgment goal. As such, we apply the proc tactic; moreover, to obtain the full
specifications, we subsequently inline the concrete procedure calls, i.e., A2(A).choose(pk_encode_g
(sd, b)) and A2(A).guess(c_encode_g (cmu, b')), through chaining two appropriate inline tac-
tics. The goal generated by this sequence of tactic applications is provided in Listing 4.58.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 --
6 &1 (left) : Game1(A).main
7 &2 (right) : Game2(A2(A)).main
8

9 pre = (glob A){2} = (glob A){m} /\ (glob A){1} = (glob A){m}
10

11 u <$ {0,1} (1) u <$ {0,1}
12 sd <$ dseed (2) sd <$ dseed
13 _A <- gen sd (3) _A <- gen sd
14 b <$ dRp_vec (4) b <$ dRp_vec
15 (m0, m1) <@ A.choose(pk_encode_g (5) pk <- pk_encode_g (sd, b)
16 (sd, b)) ()
17 s' <$ dsmallRq_vec (6) (m00, m10) <@ A.choose(pk)
18 b' <- scaleRqv2Rpv (trmx _A *^ s' (7) (m0, m1) <- (m00, m10)
19 + h) ()
20 v' <- dotp b (Rqv2Rpv s') (8) s' <$ dsmallRq_vec
21 + Rq2Rp h1 ()
22 cmu <- scaleRp2R2t (v' (9) b' <- scaleRqv2Rpv (trmx
23 + scaleR22Rp (m_decode () _A *^ s' + h)
24 (if u then m1 else m0))) ()
25 u' <@ A.guess(c_encode_g (cmu, b')) (10) v' <- dotp b (Rqv2Rpv s')
26 () + Rq2Rp h1
27 (11) cmu <- scaleRp2Rppq (v'
28 () + scaleR22Rp (m_decode
29 () (if u then m1 else m0)))
30 (12) c <- c_encode_g (cmu, b')
31 (13) c_dec <- c_decode_g c
32 (14) cmu0 <- c_dec.`1
33 (15) b'0 <- c_dec.`2
34 (16) cmu' <- scaleRppq2R2t cmu0
35 (17) u'0 <@ A.guess(c_encode_g(
36 () cmu', b'0))
37 (18) u' <- u'0
38

39 post = (u{1} = u'{1}) = (u{2} = u'{2})

Listing 4.58: Proof Demonstration 4 – Goals After proc and (Chain of) inline Tactics

As desired, comparing the left and right program specifications of the above pRHL statement
judgment goal to the specifications of Game1(A).main and, respectively, Game2(A2(A)).main (after
inlining the procedures of A2(A)), we see that they are indeed identical; moreover, both the left-
hand and right-hand sides of the postcondition’s equality in Listing 4.57, i.e., res{1} = res{2},
are accordingly replaced in Listing 4.58, viz., they are replaced by the respective return values of
the corresponding procedures.

Inspecting the procedure specifications of the pRHL statement judgment goal in Listing 4.58, we

Formal Verification of Saber 117

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

observe that the left specification ends with the abstract procedure call A.guess(c_encode_g (cmu,
b')), while the right specification ends with the regular assignment u' <- u'0. Nevertheless, to
show that this abstract procedure call behaves identically to the analogous procedure call in the
right specification, i.e., A.guess(c_encode_g(cmu', b'0)), we must remove them simultaneously by
applying the call tactic. Since this application requires both calls to be the final statement of the
considered specifications, we foremost desire to remove the u' <- u'0 from the right specification;
this can be accomplished through the wp tactic. Listing 4.59 shows the result of applying this
tactic.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 --
6 &1 (left) : Game1(A).main
7 &2 (right) : Game2(A2(A)).main
8

9 pre = (glob A){2} = (glob A){m} /\ (glob A){1} = (glob A){m}
10

11 u <$ {0,1} (1) u <$ {0,1}
12 sd <$ dseed (2) sd <$ dseed
13 _A <- gen sd (3) _A <- gen sd
14 b <$ dRp_vec (4) b <$ dRp_vec
15 (m0, m1) <@ A.choose(pk_encode_g (5) pk <- pk_encode_g (sd, b)
16 (sd, b)) ()
17 s' <$ dsmallRq_vec (6) (m00, m10) <@ A.choose(pk)
18 b' <- scaleRqv2Rpv (trmx _A *^ s' (7) (m0, m1) <- (m00, m10)
19 + h) ()
20 v' <- dotp b (Rqv2Rpv s') (8) s' <$ dsmallRq_vec
21 + Rq2Rp h1 ()
22 cmu <- scaleRp2R2t (v' (9) b' <- scaleRqv2Rpv (trmx
23 + scaleR22Rp (m_decode () _A *^ s' + h)
24 (if u then m1 else m0))) ()
25 u' <@ A.guess(c_encode_g (cmu, b')) (10) v' <- dotp b (Rqv2Rpv s')
26 () + Rq2Rp h1
27 (11) cmu <- scaleRp2Rppq (v'
28 () + scaleR22Rp (m_decode
29 () (if u then m1 else m0)))
30 (12) c <- c_encode_g (cmu, b')
31 (13) c_dec <- c_decode_g c
32 (14) cmu0 <- c_dec.`1
33 (15) b'0 <- c_dec.`2
34 (16) cmu' <- scaleRppq2R2t cmu0
35 (17) u'0 <@ A.guess(c_encode_g(
36 () cmu', b'0))
37

38 post = (u{1} = u'{1}) = (u{2} = u'0{2})

Listing 4.59: Proof Demonstration 5 – Goals After wp Tactic

From this listing, it is apparent that the application of the wp tactic had the anticipated effect.
Namely, this application removed the longest suffixes consisting of regular assignments and if-else
control structures from both procedure specifications; in this case, this merely amounted to the
removal of the aforementioned u' <- u'0 assignment. Furthermore, with the replacement of u' by
u'0, the postcondition was altered accordingly; that is, assuming a scenario in which this postcon-
dition holds, executing the removed assignment would validate the original postcondition.

118 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

Succeeding the removal of u' <- u'0, both procedure specifications conclude with a call to the
abstract procedure A.guess, albeit with different (identifiers of) variables as arguments. As alluded
to before, we aim to ascertain that these procedures calls behave identically, formalizing the
guaranteed identical behavior of the corresponding adversarial algorithm between the reduction
and a run of its own game. To this end, we employ the call tactic; particularly, we apply call (_
: true). Here, the provided predicate constitutes the trivial true predicate because the formal
verification does not require any properties to be maintained by the procedure calls; that is, the
formal verification solely necessitates the identical behavior of these calls. The goal generated by
applying the call (_ : true) tactic is given in Listing 4.60.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 --
6 &1 (left) : Game1(A).main
7 &2 (right) : Game2(A2(A)).main
8

9 pre = (glob A){2} = (glob A){m} /\ (glob A){1} = (glob A){m}
10

11 u <$ {0,1} (1) u <$ {0,1}
12 sd <$ dseed (2) sd <$ dseed
13 _A <- gen sd (3) _A <- gen sd
14 b <$ dRp_vec (4) b <$ dRp_vec
15 (m0, m1) <@ A.choose(pk_encode_g (5) pk <- pk_encode_g (sd, b)
16 (sd, b)) ()
17 s' <$ dsmallRq_vec (6) (m00, m10) <@ A.choose(pk)
18 b' <- scaleRqv2Rpv (trmx _A *^ s' (7) (m0, m1) <- (m00, m10)
19 + h) ()
20 v' <- dotp b (Rqv2Rpv s') (8) s' <$ dsmallRq_vec
21 + Rq2Rp h1 ()
22 cmu <- scaleRp2R2t (v' (9) b' <- scaleRqv2Rpv (trmx
23 + scaleR22Rp (m_decode () _A *^ s' + h)
24 (if u then m1 else m0))) ()
25 (10) v' <- dotp b (Rqv2Rpv s')
26 () + Rq2Rp h1
27 (11) cmu <- scaleRp2Rppq (v'
28 () + scaleR22Rp (m_decode
29 () (if u then m1 else m0)))
30 (12) c <- c_encode_g (cmu, b')
31 (13) c_dec <- c_decode_g c
32 (14) cmu0 <- c_dec.`1
33 (15) b'0 <- c_dec.`2
34 (16) cmu' <- scaleRppq2R2t cmu0
35

36 post =
37 (c_encode_g (cmu{1}, b'{1}) = c_encode_g (cmu'{2}, b'0{2}) /\ ={glob A} /\ true)
38 &&
39 forall (result_L result_R : bool) (A_L A_R : (glob A)),
40 result_L = result_R /\ A_L = A_R /\ true => (u{1} = result_L) = (u{2} = result_R)

Listing 4.60: Proof Demonstration 6 – Goals After call Tactic

As can be extracted from this listing, the abstract procedure calls are removed from the pro-
cedure specifications and the postcondition is appropriately adjusted. In particular, consistent
with the description of the call tactic, the generated postcondition states that the execution of
the current procedures must result in the equality of the arguments originally provided to the

Formal Verification of Saber 119

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

(removed) abstract procedure calls, i.e., c_encode_g (cmu{1}, b'{1}) and c_encode_g (cmu'{2},
b'0{2}); moreover, the accessible global variables of the module encompassing the abstract pro-
cedure, i.e., glob A, must have identical values between the two considered procedure-extended
memories. Indeed, these requirements guarantee that the abstract procedure calls would behave
the same, and hence produce identical results, if they were to be executed. Additionally, the
postcondition requires that this identical behavior, irrespective of the concrete value that would
have been produced by the (removed) abstract procedure calls, implies the postcondition of (the
conclusion of) the goal preceding the application of call.

Considering the procedure specifications in Listing 4.60, we recognize that the suffixes of both
specifications constitute a sequence of ordinary assignments and random samplings. As such, the
auto tactic can be applied to discard these suffixes and appropriately change the postcondition;
the precise effect of this application is exhibited in Listing 4.61.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 --
6 &1 (left) : Game1(A).main
7 &2 (right) : Game2(A2(A)).main
8

9 pre = (glob A){2} = (glob A){m} /\ (glob A){1} = (glob A){m}
10

11 u <$ {0,1} (1) u <$ {0,1}
12 sd <$ dseed (2) sd <$ dseed
13 _A <- gen sd (3) _A <- gen sd
14 b <$ dRp_vec (4) b <$ dRp_vec
15 (m0, m1) <@ A.choose(pk_encode_g (5) pk <- pk_encode_g (sd, b)
16 (sd, b)) ()
17 (6) (m00, m10) <@ A.choose(pk)
18

19 post =
20 (forall (s'R : Mat_Rq.vector), s'R \in dsmallRq_vec => s'R = s'R) &&
21 (forall (s'R : Mat_Rq.vector),
22 s'R \in dsmallRq_vec => mu1 dsmallRq_vec s'R = mu1 dsmallRq_vec s'R) &&
23 forall (s'L : Mat_Rq.vector),
24 s'L \in dsmallRq_vec => (s'L \in dsmallRq_vec) && s'L = s'L &&
25 let c_dec_R = c_decode_g (c_encode_g (scaleRp2Rppq (dotp b{2} (Rqv2Rpv s'L)
26 + Rq2Rp h1 + scaleR22Rp (m_decode (if u{2} then m10{2} else m00{2}))),
27 scaleRqv2Rpv (trmx _A{2} *^ s'L + h))) in
28 (c_encode_g (scaleRp2R2t (dotp b{1} (Rqv2Rpv s'L) + Rq2Rp h1 +
29 scaleR22Rp (m_decode (if u{1} then m1{1} else m0{1}))),
30 scaleRqv2Rpv (trmx _A{1} *^ s'L + h))
31 =
32 c_encode_g (scaleRppq2R2t c_dec_R.`1, c_dec_R.`2) /\ ={glob A}) &&
33 forall (result_L result_R : bool) (A_L A_R : (glob A)),
34 result_L = result_R /\ A_L = A_R => (u{1} = result_L) = (u{2} = result_R)

Listing 4.61: Proof Demonstration 7 – Goals After auto Tactic

As expected, the application of the auto tactic removed the suffixes of both procedures specifica-
tions up until the calls to A.choose, which this tactic cannot process; in addition, the postcondition
was changed accordingly. Evidently, the resulting postcondition is quite complex and illegible; this
is predominantly due to the relative extensiveness of the removed suffixes. Nevertheless, the pro-
cedure by which this postcondition was obtained is rather straightforward. Namely, in essence,
this postcondition arises from sequentially replacing the artifacts in the preceding postcondition

120 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

(i.e., the postcondition considered in Listing 4.60) by the values or expressions assigned to them
in the statements of the removed suffixes. Moreover, for the removed random samplings of s', the
postcondition in Listing 4.61 contains a requirement stating that these samplings were equivalent
between the two procedures; since these samplings were identical, this trivially holds. Although we
could endeavor to manually simplify this postcondition to get a better understanding of its inter-
pretation, the progress tactic will automatically perform this simplification momentarily.

At this point, following the same line of reasoning as before, we apply the call (_ : true) to simul-
taneously remove the abstract procedures calls A.choose(pk_encode_g (sd, b)) and A.choose(pk).
Afterward, the remainder of the considered procedure specifications exclusively consists of regular
assignments and random samplings. As such, directly following to the application of call (_ :
true), we apply the auto tactic anew. Listing 4.62 depicts the goal resulting from this sequence
of applications.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 --
6 forall &1 &2,
7 (glob A){2} = (glob A){m} /\ (glob A){1} = (glob A){m} =>
8 (forall (uR : bool), uR \in {0,1} => uR = uR) &&
9 forall (uL : bool),

10 uL \in {0,1} => uL = uL &&
11 (forall (sdR : seed), sdR \in dseed => sdR = sdR) &&
12 forall (sdL : seed), sdL \in dseed => sdL = sdL &&
13 let _A_R = gen sdL in (forall (bR : vector),
14 bR \in dRp_vec => bR = bR) && (forall (bR : vector), bR \in dRp_vec =>
15 mu1 dRp_vec bR = mu1 dRp_vec bR) && forall (bL : vector),
16 bL \in dRp_vec => (bL \in dRp_vec) && bL = bL &&
17 (pk_encode_g (sdL, bL) = pk_encode_g (sdL, bL) /\ ={glob A}) &&
18 forall (result_L result_R : plaintext * plaintext) (A_L A_R : (glob A)),
19 result_L = result_R /\ A_L = A_R => forall (s'L : Mat_Rq.vector),
20 s'L \in dsmallRq_vec => (s'L \in dsmallRq_vec) && (c_encode_g
21 (scaleRp2R2t (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1 + scaleR22Rp
22 (m_decode (if uL then result_L.`2 else result_L.`1))),
23 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)) = c_encode_g
24 (scaleRppq2R2t (c_decode_g (c_encode_g (scaleRp2Rppq (dotp bL
25 (Rqv2Rpv s'L) + Rq2Rp h1 + scaleR22Rp (m_decode
26 (if uL then result_R.`2 else result_R.`1))), scaleRqv2Rpv
27 (trmx _A_R *^ s'L + h)))).`1, (c_decode_g (c_encode_g (scaleRp2Rppq
28 (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1 + scaleR22Rp (m_decode
29 (if uL then result_R.`2 else result_R.`1))), scaleRqv2Rpv
30 (trmx _A_R *^ s'L + h)))).`2) /\ A_L = A_R) &&
31 forall (result_L0 result_R0 : bool) (A_L0 A_R0 : (glob A)),
32 result_L0 = result_R0 /\ A_L0 = A_R0 => (uL = result_L0) = (uL = result_R0)

Listing 4.62: Proof Demonstration 8 – Goals After call and auto Tactics

Notably, the goal in above listing is not a pRHL statement judgment goal; instead, it is a general
goal, i.e., its conclusion is an ordinary predicate. This is a consequence of the application of auto.
Namely, as mentioned before, this tactic is applied after the removal of the calls to A.choose,
i.e., when the considered procedure specifications exclusively constitute regular assignments and
random samplings. Since the auto tactic is capable of processing and removing all of these as-
signments and samplings, its application reaches a point at which both procedure specification
are empty. At such a point, as discussed in the description of auto, the application of this tactic

Formal Verification of Saber 121

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

constructs a general goal from the considered pRHL statement judgment goal; more precisely,
assuming the precondition and postcondition of the considered pRHL statement judgment goal
respectively equal phi and psi, the application of auto constructs a general goal with conclusion
phi ==> psi. Examining the conclusion of the goal provided in Listing 4.62, we recognize that
it indeed adheres to this format; namely, this conclusion is constructed as forall &1 &2, (glob
A){2} = (glob A){m} /\ (glob A){1} = (glob A){m} ==> (...), where the predicate preceding the
implication accurately matches the precondition of the pRHL statement judgment goals from the
preceding listings17.

Albeit the goal given in Listing 4.62 is vastly convoluted and (nearly) indecipherable, the applica-
tion of the progress tactic significantly extends the goal’s context and considerably simplifies the
goal’s conclusion. Specifically, this application generates the goal presented in Listing 4.63.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 &1: memory <Game1(A).main>
6 &2: memory <Game2(A2(A)).main>
7 uL: bool
8 H : uL \in {0,1}
9 sdL: seed

10 H0: sdL \in dseed
11 bL: vector
12 H1: bL \in dRp_vec
13 H2: bL \in dRp_vec
14 result_R: plaintext * plaintext
15 A_R: (glob A)
16 s'L: Mat_Rq.vector
17 H3: s'L \in dsmallRq_vec
18 H4: s'L \in dsmallRq_vec
19 --
20 c_encode_g
21 (scaleRp2R2t (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
22 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))),
23 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h))
24 =
25 c_encode_g
26 (scaleRppq2R2t (c_decode_g (c_encode_g
27 (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
28 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))),
29 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)))).`1,
30 (c_decode_g (c_encode_g (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
31 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))),
32 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)))).`2)

Listing 4.63: Proof Demonstration 9 – Goals After progress Tactic

Collating Listing 4.62 with Listing 4.63, we see that the assumptions introduced into the context
by the application of progress primarily originate from the explicit universal quantifications in
the conclusion of the previous goal. The remainder of the introduced assumptions indicate that
certain artifacts are elements of the set over which a particular distribution is defined; indeed,
these assumptions correspond to the similarly constructed expressions in the conclusion of the
preceding goal, i.e., the expressions utilizing \in. Furthermore, concerning the conclusion of the

17Remark that, although implicitly, pRHL statement judgment goals do universally quantify over the procedure-
extended memories; consequently, the forall &1 &2 in the general goal’s conclusion is warranted.

122 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

goal in Listing 4.63, the improvement on the intelligibility relative to the conclusion of the goal in
Listing 4.62 is evident.

Scrutinizing the goal in Listing 4.63, we observe that its conclusion has the form c_encode_g
(...) = c_encode_g (...); consequently, we can progress by applying the congr tactic, generating
a goal of which the conclusion equates the considered arguments. Subsequently, because these
arguments constitute 2-tuples, we can apply the congr tactic anew to generate two goals of which
the conclusions equate the respective elements of the tuples. This consecutive application of the
congr tactic can be performed at once by chaining two instances of this tactic; the ensuing listing
presents the goals induced by the application of this tactic chain.

1 Current goal (remaining: 3)
2

3 &m: memory
4 A : Adversary
5 &1: memory <Game1(A).main>
6 &2: memory <Game2(A2(A)).main>
7 uL: bool
8 H : uL \in {0,1}
9 sdL: seed

10 H0: sdL \in dseed
11 bL: vector
12 H1: bL \in dRp_vec
13 H2: bL \in dRp_vec
14 result_R: plaintext * plaintext
15 A_R: (glob A)
16 s'L: Mat_Rq.vector
17 H3: s'L \in dsmallRq_vec
18 H4: s'L \in dsmallRq_vec
19 --
20 scaleRp2R2t (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
21 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1)))
22 =
23 scaleRppq2R2t (c_decode_g (c_encode_g
24 (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
25 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))),
26 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)))).`1
27

28

29

30 Goal #2
31 --
32 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)
33 =
34 (c_decode_g (c_encode_g (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
35 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))),
36 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)))).`2

Listing 4.64: Proof Demonstration 10 – Goals After Chain of congr Tactics

Regarding the primary goal generated by the chain of congr, the right-hand side of the conclu-
sion’s equality comprises the successive application of c_decode_g and c_encode_g. Axiomatically,
these operators are each other’s inverse and, as such, their consecutive application reduces to the
identity function. Analogous to the axioms specified in Listing 4.10, axiom cg_enc_dec_inv ['a]
: cancel c_encode_g<:'a> c_decode_g<:'a> constitutes the axiom stating this inverse property.
Per the definition of cancel defined in EasyCrypt’s standard library, cg_enc_dec_inv effectively
denotes that for any x (of any type), c_decode_g (c_encode_g x) = x; thus, this axiom is compat-

Formal Verification of Saber 123

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

ible with the rewrite tactic. In fact, applying a chain of rewrite cg_enc_dec_inv and simplify to
the primary goal in Listing 4.64 produces the goal depicted in Listing 4.65. Here, we additionally
apply simplify to obtain a more convenient representation of the generated goal’s conclusion.

1 Current goal (remaining: 3)
2

3 &m: memory
4 A : Adversary
5 &1: memory <Game1(A).main>
6 &2: memory <Game2(A2(A)).main>
7 uL: bool
8 H : uL \in {0,1}
9 sdL: seed

10 H0: sdL \in dseed
11 bL: vector
12 H1: bL \in dRp_vec
13 H2: bL \in dRp_vec
14 result_R: plaintext * plaintext
15 A_R: (glob A)
16 s'L: Mat_Rq.vector
17 H3: s'L \in dsmallRq_vec
18 H4: s'L \in dsmallRq_vec
19 --
20 scaleRp2R2t (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
21 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1)))
22 =
23 scaleRppq2R2t (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
24 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))))

Listing 4.65: Proof Demonstration 11 – Goals After Chain of rewrite and simplify Tactics

At this point, the sole difference between the left- and right-hand sides of the conclusion’s equal-
ity concerns the outer operator applications. Namely, letting x denote dotp bL (Rqv2Rpv s'L)
+ Rq2Rp h1 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1)), the left-hand
side becomes scaleRp2R2t x, while the right-hand side reduces to scaleRppq2R2t (scaleRp2Rppq
x). In Section 4.3.1, we briefly utilized lemma scaleRp2Rppq2R2t_comp to demonstrate EasyCrypt’s
rendering of goals; to reiterate, this lemma proves scaleRp2R2t x = scaleRppq2R2t (scaleRp2Rppq
x), for any x of type Rp. Certainly, this suggests that applying rewrite scaleRp2Rppq2R2t_comp to
the goal from Listing 4.65 generates a goal of which the conclusion constitutes an equation with
identical expressions on both sides; the imminent listing shows this is indeed the case.

1 Current goal (remaining: 3)
2

3 &m: memory
4 A : Adversary
5 &1: memory <Game1(A).main>
6 &2: memory <Game2(A2(A)).main>
7 uL: bool
8 H : uL \in {0,1}
9 sdL: seed

10 H0: sdL \in dseed
11 bL: vector
12 H1: bL \in dRp_vec
13 H2: bL \in dRp_vec
14 result_R: plaintext * plaintext
15 A_R: (glob A)
16 s'L: Mat_Rq.vector
17 H3: s'L \in dsmallRq_vec

124 Formal Verification of Saber

CHAPTER 4. FORMAL VERIFICATION 4.3. DEMONSTRATION: PROVING LEMMAS

18 H4: s'L \in dsmallRq_vec
19 --
20 scaleRppq2R2t (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
21 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))))
22 =
23 scaleRppq2R2t (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
24 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))))

Listing 4.66: Proof Demonstration 12 – Goals After rewrite Tactic

Naturally, a goal with a conclusion that equates two identical expressions is solvable with trivial;
as such, applying trivial solves the above goal.

After solving the goal in Listing 4.66, the second goal from Listing 4.64 becomes the primary goal18.
In this goal’s conclusion, the right-hand side of the equality successively applies the c_decode_g
and c_encode_g operators; hence, as before, we progress by applying rewrite cg_enc_dec_inv,
generating the goal in Listing 4.67.

1 Current goal (remaining: 2)
2

3 &m: memory
4 A : Adversary
5 &1: memory <Game1(A).main>
6 &2: memory <Game2(A2(A)).main>
7 uL: bool
8 H : uL \in {0,1}
9 sdL: seed

10 H0: sdL \in dseed
11 bL: vector
12 H1: bL \in dRp_vec
13 H2: bL \in dRp_vec
14 result_R: plaintext * plaintext
15 A_R: (glob A)
16 s'L: Mat_Rq.vector
17 H3: s'L \in dsmallRq_vec
18 H4: s'L \in dsmallRq_vec
19 --
20 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)
21 =
22 (scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1
23 + scaleR22Rp (m_decode (if uL then result_R.`2 else result_R.`1))),
24 scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h)).`2

Listing 4.67: Proof Demonstration 13 – Goals After rewrite Tactic

As expected, the application of rewrite cg_enc_dec_inv effectively removed the sequential applic-
ations of c_decode_g and c_encode_g from the goal’s conclusion. Scrutinizing the resulting goal,
we observe that the right-hand side of the conclusion’s equality contains a 2-tuple: the first ele-
ment constitutes scaleRp2Rppq (dotp bL (Rqv2Rpv s'L) + Rq2Rp h1 + scaleR22Rp (m_decode (if
uL then result_R.`2 else result_R.`1))), and the second element is scaleRqv2Rpv (trmx (gen
sdL) *^ s'L + h). Moreover, denoting this tuple by t, we see that the right-hand side of the
conclusion’s equality reduces to t.`2; that is, in actuality, this side of the equality is equal to
the second element of t, i.e., scaleRqv2Rpv (trmx (gen sdL) *^ s'L + h). Indeed, because this
expression is identical to the expression on the left-hand side of the equality, the conclusion of the
goal trivially holds. Lastly, since the trivial tactic is capable of evaluating the `.2 operator, the

18This goal has an identical context to the primary goal in Listing 4.64.

Formal Verification of Saber 125

4.3. DEMONSTRATION: PROVING LEMMAS CHAPTER 4. FORMAL VERIFICATION

application of this tactic solves the above goal.

Finally, by solving the goal in Listing 4.67, we have completed the formal verification of the
assumption that we aspired to introduce in the beginning of the proof: eq_pr: Pr[Game1(A).main()
@ &m : res] = Pr[Game2(A2(A)).main() @ &m : res]. As such, the goal presented in Listing 4.68
remains the only goal to solve.

1 Current goal
2

3 &m: memory
4 A : Adversary
5 eq_pr: Pr[Game1(A).main() @ &m : res] = Pr[Game2(A2(A)).main() @ &m : res]
6 --
7 `|Pr[Game1(A).main() @ &m : res] - 1%r / 2%r| =
8 `|Pr[Game2(A2(A)).main() @ &m : res] - 1%r / 2%r|

Listing 4.68: Proof Demonstration 14 – Final Goal

Utilizing the introduced assumption, the formal verification of this last goal is relatively straight-
forward. Specifically, applying rewrite eq_pr replaces Pr[Game1(A).main() @ &m : res] in the
left-hand side of the conclusion’s equality by Pr[Game2(A2(A)).main() @ &m : res]. After this
replacement, both sides of the equality are identical; therefore, applying trivial solves the goal,
completing the formal verification of the Step_Game1_Game2 lemma. This concludes the demonstra-
tion of the (lemma-)proving process in EasyCrypt.

126 Formal Verification of Saber

Chapter 5

Conclusions

In this thesis, we considered the formal verification of (the specification of) the PKE scheme
provided in Saber, one of the selected few post-quantum cipher suites currently eligible for po-
tential standardization. More precisely, we endeavored to formally verify the desired security and
correctness properties of Saber’s PKE scheme in the EasyCrypt tool. For both of these properties,
the results of this endeavor are affirmative; that is, these results indicate that Saber’s PKE scheme
indeed satisfies the desired security and correctness properties.

In the process leading up to the obtained results, we initially analyzed Saber’s PKE scheme manu-
ally, devising hand-written proofs showing the scheme’s possession of the desired security and
correctness properties. Concerning the hand-written security proof, we purposely adopted the
code-based, game-playing approach to the provable security paradigm since this is the primary
proof method supported by EasyCrypt. Furthermore, for utilization in this security proof, we
constructed two custom variants of the MLWR hardness assumption, i.e., GMLWR and XM-
LWR. Justifying the use of these custom hardness assumptions, we showed that, in the ROM, the
GMLWR and XMLWR problems are as hard as the MLWR problem. Leveraging these concepts,
the resulting security proof relates the IND-CPA security of Saber’s PKE scheme to the hardness
of the GMLWR and XMLWR problems, claiming that compromising the scheme’s IND-CPA se-
curity is as hard as solving any of the two problems. In essence, this insinuates that, assuming
the MLWR problem is amply hard, Saber’s PKE scheme is IND-CPA secure if it employs an
adequate method of generating pseudorandomness (i.e., if it utilizes an adequate instantiation of
gen).

Regarding the hand-written correctness proof, we first composed an alternative specification for
Saber’s PKE scheme and proved it equivalent to its original counterpart. The principal reason
for establishing this alternative specification was the simplification of both the manual analysis
and the corresponding formal verification effort. Specifically, we accomplished this by minimizing
the algebraic structures utilized in the scheme’s computations. This change simplified the manual
analysis by diminishing the need to be aware of the interpretation of the considered elements;
moreover, this alteration reduced the complexity of the corresponding formal verification effort
by decreasing the number of necessary types and type conversions in the performed operations.
Employing this alternative specification, we considered the correctness of Saber’s PKE scheme with
respect to two slightly different definitions: standard correctness, the definition utilized in Saber’s
original analysis, and FO-correctness, the definition used in (the variant of) the FO transformation
applied to Saber’s PKE scheme to produce Saber’s KEM. Modeling these correctness definitions as
probabilistic programs, we attested that they are equivalent in the context of Saber’s PKE scheme.
Utilizing the above artifacts and results, the constructed correctness proof demonstrates that if the

Formal Verification of Saber 127

5.1. FUTURE WORK CHAPTER 5. CONCLUSIONS

output distribution of the utilized instantiation of gen (practically) equals the appropriate uniform
distribution, the standard correctness of Saber’s PKE scheme is (almost) accurately computed by
Saber’s script. Assuming a proper instantiation of gen, this suggests that for any parameter
set, the concrete probability produced by Saber’s script (nearly) matches the actual standard
correctness of Saber’s PKE scheme; indeed, this includes the concrete probabilities for Saber’s
customary parameter sets, publicized in the original paper and official specification. Additionally,
the correctness proof shows that the scheme’s FO-correctness is invariably equal to its standard
correctness and, hence, can (nearly) be computed through Saber’s script as well. Consequently, the
properties of Saber’s KEM, which are directly dependent on the FO-correctness of Saber’s PKE
scheme, can straightforwardly be evaluated by utilizing the probabilities produced per Saber’s
script.

The actual formal verification effort regarding the desired security and correctness properties of
Saber’s PKE scheme closely resembled the scheme’s manual analysis. Certainly, as alluded to
above, the devised hand-written proofs are structured with the purpose of facilitating the formal
verification process in EasyCrypt; as such, accurately leveraging the appropriate features, we were
able to formalize the hand-written proofs in EasyCrypt through a virtually literatim translation.
As aforementioned, the results of this effort are assenting, i.e., they imply that Saber’s PKE scheme
indeed possesses the desired security and correctness properties.

Finally, due to the affirmative results of the formal verification effort carried out in this thesis, we
have established a higher level of confidence in the security and correctness of Saber’s PKE scheme;
in turn, assuming the validity of the relevant FO transformation, these results have additionally
increased the confidence in the security and correctness of Saber’s KEM. This latter increase
is a consequence of the direct relation between the properties of Saber’s KEM and Saber’s PKE
scheme, induced by the relevant FO transformation. As a result of the formal verification endeavor
performed in independent previous work, the validity assumption concerning this transformation
seems quite reasonable [26]. Altogether, this thesis should provide the cryptographic community
with more certainty regarding Saber’s suitability for standardization as a post-quantum cipher
suite.

5.1 Future Work
Concerning potential future work, we recognize several ways in which this thesis’s work can be
utilized or extended to garner further results contributory to the process of appropriately stand-
ardizing post-quantum cryptography, particularly regarding Saber.

First, the results of other relevant formal verification research can be integrated with the results
of this thesis. However, if this other research utilizes tools different from EasyCrypt, a sound
justification that substantiates the compatibility of the results may be desirable to reduce the like-
lihood of an unwarranted integration. Considering the presumable complexity of the syntactical
and semantical disparities between tools, this justification might be rather intricate and difficult
to (manually) verify. Evidently, this intricacy increases the possibility of creating an erroneous
justification; if feasible, formally verifying the justification might partially attenuate this problem.
As explicated in Section 1.4, an example of an integration that would benefit from such a justific-
ation involves the results of this thesis and the result of the above-mentioned formal verification
effort regarding the relevant FO transformation.

Second, the relevant FO transformation can be formally verified generically in EasyCrypt; that
is, the application of this transformation on a generic PKE scheme conforming to the minimal
requirements can be formally verified to produce a (generic) KEM satisfying the properties that
the transformation attempts to guarantee. Subsequently, Saber’s KEM can be formally verified
by instantiating the generic PKE scheme with Saber’s PKE scheme; certainly, this is essentially

128 Formal Verification of Saber

CHAPTER 5. CONCLUSIONS 5.1. FUTURE WORK

equivalent to formally verifying whether Saber’s PKE scheme satisfies the minimal requirements
defined for the generic PKE scheme. Naturally, rather than via the instantiation of the generic
formal verification, Saber’s KEM can also be formally verified directly; indeed, this effectively
comes down to formally verifying the relevant FO transformation in the concrete case of its ap-
plication to Saber’s PKE scheme. Patently, the disadvantage of this concrete approach relative
to the generic approach is the incapability of reusing the constructed formal verification proof in
the context of other KEMs produced per this transformation. Since there exist a multitude of
relatively prevalent KEMs generated in this manner, this disadvantage is quite significant.

Lastly, leveraging the results of this thesis, the Jasmin framework can be employed in conjunction
with EasyCrypt to construct efficient and formally verified implementations of Saber’s schemes.
This contributes to the process of standardizing post-quantum cryptography because such high-
speed and high-assurance implementations are coveted for deployment in the real world. Consider-
ing an implementation of Saber’s PKE scheme in Jasmin’s programming language, e.g., one of the
implementations I created in my research internship [20], the results of this thesis can be utilized
in the formal verification of this implementation’s functional correctness. Namely, the functional
correctness tool from the Jasmin framework generates EasyCrypt code that facilitates the formal
verification of an implementation’s functional correctness. However, this requires a formalization
of the considered construction’s specification in EasyCrypt; indeed, for Saber’s PKE scheme, this
formalization has been established in this thesis. Furthermore, since, by virtue of this thesis, the
specification of Saber’s PKE scheme is formally verified to satisfy the desired security and correct-
ness properties, formally verifying the functional correctness of an implementation with respect to
this specification directly implies that the implementation also possesses these properties.

As mentioned in Section 1.3, this thesis is part of an encompassing project that, following a
general formal verification process based on EasyCrypt and Jasmin, seeks to formally verify the
specifications of Saber’s PKE scheme and KEM, as well as construct formally verified, optimized
implementations of these schemes. As such, in addition to the work performed in this thesis, this
encompassing project essentially intends to carry out the latter two suggestions for future work
presented above.

Formal Verification of Saber 129

Bibliography

[1] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC, 3rd edition, December 2020.

[2] Lynn Batten. Public Key Cryptography: Applications and Attacks. IEEE Press Series on
Information and Communication Networks Security. John Wiley & Sons, 1st edition, January
2013.

[3] Mika Hirvensalo. Quantum Computing. Natural Computing Series. Springer-Verlag Berlin
Heidelberg, 2nd edition, December 2003.

[4] Song Y. Yan. Quantum Attacks on Public-Key Cryptosystems. Springer, Boston, MA, 1st
edition, April 2013.

[5] Emily Grumbling and Mark Horowitz. Quantum Computing: Progress and Prospects. Na-
tional Academies of Sciences, Engineering, and Medicine. The National Academies Press, 1st
edition, April 2019.

[6] Neal Koblitz and Alfred J. Menezes. Critical perspectives on provable security: Fifteen years
of “another look” papers. Advances in Mathematics of Communications, 13(4):517–558, 2019.

[7] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin
Liao, and Bryan Parno. SoK: Computer-aided cryptography. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 777–795. IEEE Computer Society, may 2021.

[8] Fabio Cavaliere, John Mattsson, and Ben Smeets. The security implications of quantum
cryptography and quantum computing. Network Security, 2020(9):9–15, September 2020.

[9] Andy Majot and Roman Yampolskiy. Global catastrophic risk and security implications of
quantum computers. Futures, 72:17–26, September 2015. Confronting Future Catastrophic
Threats To Humanity.

[10] Michele Mosca. Cybersecurity in an era with quantum computers: Will we be ready? IEEE
Security & Privacy, 16:38–41, September 2018.

[11] Vikas Hassija, Vinay Chamola, Vikas Saxena, Vaibhav Chanana, Prakhar Parashari, Shahid
Mumtaz, and Mohsen Guizani. Present landscape of quantum computing. IET Quantum
Communication, 1(2):42–48, December 2020.

[12] Lidong Chen. Cryptography standards in quantum time: New wine in an old wineskin? IEEE
Security & Privacy, 15(4):51–57, July 2017.

Formal Verification of Saber 131

BIBLIOGRAPHY BIBLIOGRAPHY

[13] National Institute of Standards and Technology. Post-Quantum Cryptography | CSRC.
https://csrc.nist.gov/projects/post-quantum-cryptography, 2016. Accessed: July
28, 2021.

[14] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren.
Saber: Module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In
Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 18:
10th International Conference on Cryptology in Africa, volume 10831 of Lecture Notes in
Computer Science, pages 282–305. Springer, Heidelberg, May 2018.

[15] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 719–737. Springer,
Heidelberg, April 2012.

[16] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding,
revisited - new reduction, properties and applications. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 57–74. Springer, Heidelberg, August 2013.

[17] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does cryptographic
software fail? a case study and open problems. In Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys ’14, pages 1–7. Association for Computing Machinery, June 2014.

[18] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and
Pierre-Yves Strub. Easycrypt: A tutorial. In Alessandro Aldini, Javier Lopez, and Fabio
Martinelli, editors, Foundations of Security Analysis and Design VII: FOSAD 2012/2013
Tutorial Lectures, pages 146–166, Cham, 2014. Springer International Publishing.

[19] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer,
Heidelberg, May / June 2006.

[20] Matthias Meijers. A high-assurance and high-speed implementation of Saber in Jasmin.
Internship Report, Eindhoven University of Technology, December 2020.

[21] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vin-
cent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. Jas-
min: High-assurance and high-speed cryptography. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Com-
puter and Communications Security, pages 1807–1823. ACM Press, October / November
2017.

[22] Gilles Barthe, Sunjay Cauligi, Benjamin Gregoire, Adrien Koutsos, Kevin Liao, Tiago Oli-
veira, Swarn Priya, Tamara Rezk, and Peter Schwabe. High-assurance cryptography software
in the spectre era. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1884–1901.
IEEE Computer Society, May 2021.

[23] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based
KEM. In 2018 IEEE European Symposium on Security and Privacy (EuroS P), pages 353–
367. IEEE Computer Society, April 2018.

132 Formal Verification of Saber

https://csrc.nist.gov/projects/post-quantum-cryptography

BIBLIOGRAPHY BIBLIOGRAPHY

[24] National Institute of Standards and Technology. Third PQC Standardization Confer-
ence. https://csrc.nist.gov/Events/2021/third-pqc-standardization-conference,
2021. Accessed: July 31, 2021.

[25] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory
of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 341–371. Springer, Heidelberg, November 2017.

[26] Dominique Unruh. Post-quantum verification of fujisaki-okamoto. In Shiho Moriai and Huax-
iong Wang, editors, Advances in Cryptology – ASIACRYPT 2020, pages 321–352. Springer
International Publishing, December 2020.

[27] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, 3rd edition, June 2003.

[28] Joseph Gallian. Contemporary Abstract Algebra. Cengage, 9th edition, January 2017.

[29] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number Theory.
Springer-Verlag New York, 2nd edition, September 1990.

[30] Harold Davenport. The Higher Arithmetic: An Introduction to the Theory of Numbers. Cam-
bridge University Press, 8th edition, October 2008.

[31] Robert B. Ash. Basic Probability Theory. Dover Publications, 1st edition, June 2008.

[32] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange - A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016:
25th USENIX Security Symposium, pages 327–343. USENIX Association, August 2016.

[33] Jan-Pieter D’Anvers. Design and Security Analysis of Lattice-Based Post-Quantum Encryp-
tion. Ph.D. Dissertation, KU Leuven Arenberg Doctoral School, May 2021.

[34] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. Discrete Mathematics and Its Applications. CRC Press, 1st edition, October
1996.

[35] Daniele Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic
Perspective. The Springer International Series in Engineering and Computer Science. Springer
US, 1st edition, March 2002.

[36] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. https://eprint.iacr.org/2004/332.

[37] Yehuda Lindell. How to simulate it – a tutorial on the simulation proof technique. In Yehuda
Lindell, editor, Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich,
pages 277–346. Springer International Publishing, April 2017.

[38] Oded Regev. The learning with errors problem (invited survey). In 2010 IEEE 25th Annual
Conference on Computational Complexity, pages 191–204. IEEE Computer Society, June
2010.

[39] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, March 2016.

Formal Verification of Saber 133

https://csrc.nist.gov/Events/2021/third-pqc-standardization-conference
https://eprint.iacr.org/2004/332

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93. ACM Press, May 2005.

[41] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: exten-
ded abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of
Computing, pages 333–342. ACM Press, May / June 2009.

[42] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th Annual ACM Symposium on Theory of Computing, pages 575–584. ACM Press,
June 2013.

[43] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with er-
rors over rings. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010,
volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer, Heidelberg,
May / June 2010.

[44] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-LWE
for any ring and modulus. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
49th Annual ACM Symposium on Theory of Computing, pages 461–473. ACM Press, June
2017.

[45] Martin R. Albrecht and Amit Deo. Large modulus ring-LWE ≥ module-LWE. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 267–296. Springer, Heidelberg,
December 2017.

[46] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lat-
tices. Designs, Codes and Cryptography, 75(3):565–599, June 2015.

[47] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen. Towards
classical hardness of module-LWE: The linear rank case. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes
in Computer Science, pages 289–317. Springer, Heidelberg, December 2020.

[48] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions from LWE to LWR.
Cryptology ePrint Archive, Report 2016/589, 2016. https://eprint.iacr.org/2016/589.

[49] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, and Santiago Zanella
Béguelin. Computer-aided cryptographic proofs. In Lennart Beringer and Amy Felty, editors,
Interactive Theorem Proving, pages 11–27. Springer Berlin Heidelberg, August 2012.

[50] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Computer-
aided security proofs for the working cryptographer. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
71–90. Springer, Heidelberg, August 2011.

[51] Ran Canetti, Alley Stoughton, and Mayank Varia. EasyUC: Using EasyCrypt to mechanize
proofs of universally composable security. In Stephanie Delaune and Limin Jia, editors,
CSF 2019: IEEE 32st Computer Security Foundations Symposium, pages 167–183. IEEE
Computer Society Press, 2019.

[52] Dominique Unruh. Quantum relational hoare logic. Proceedings of the ACM on Programming

134 Formal Verification of Saber

https://eprint.iacr.org/2016/589

BIBLIOGRAPHY BIBLIOGRAPHY

Languages, 3(POPL):1–31, January 2019.

[53] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, pages 41–69. Springer, Heidelberg, December 2011.

[54] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Formal certification of
code-based cryptographic proofs. In 36th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2009, pages 90–101. Association for Computing
Machinery, January 2009.

Formal Verification of Saber 135

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Post-Quantum Cryptograhpy
	Saber

	Computer-Aided Cryptography
	EasyCrypt

	Related Work
	Purpose and Contribution
	Overview

	Background Knowledge
	Mathematics
	Abstract Algebra and Number Theory
	Probability Theory

	Cryptography
	Public-Key Cryptography
	Provable Security
	Security Properties
	Lattice-Based Cryptography
	Random Oracle Model

	Computer-Aided Cryptography
	EasyCrypt

	Notation

	Saber
	Preliminaries
	Public-Key Encryption Scheme
	Specification
	Security
	Correctness

	Formal Verification
	Preliminaries
	Saber Parameters and Axioms
	Types, Operators, and Distributions

	Public-Key Encryption Scheme
	Specification
	Security
	Correctness

	Demonstration: Proving Lemmas in EasyCrypt
	Fundamental Concepts and Mechanisms
	Proof of !StepGame1Game2! Lemma

	Conclusions
	Future Work

	Bibliography

